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Abstract:This paper uses the tools of two very important branches of Number Theory – Continued Fractions and theory of Fibonacci 
numbers. The Fibonacci sequence has been generalized in many ways, some by preserving the initial conditions, others by preserving 
the recurrence relation.The relationship between the golden ratio and continued fractions is commonly known about throughout the 
mathematical world. The convergents of the continued fraction are the ratios of consecutive Fibonacci numbers. The continued 
fractions for the powers of the golden ratio also exhibit an interesting relationship with the Fibonacci numbers. The ratios of anyk-
Fibonacci sequence 𝑭𝒌,𝒏 is expressed by means of continued fraction. We find simple closed form continued fraction expansions 
for 𝝓𝒌

𝒓 , for any positive integer r.
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1. Introduction 

The Fibonacci sequence  𝐹𝑛 𝑛≥1 is a series of numbers that 
begins with𝐹1 = 1, 𝐹2 = 1 and each next term is the sum of 
the previous two terms.The number of properties of these 
sequences were studied by many researchers. S. Falcon 
[7],[8],[9] defined k–Fibonacci numbers by the recurrence 
equation𝐹𝑘 ,𝑛 = 𝑘 𝐹𝑘 ,𝑛−1 + 𝐹𝑘 ,𝑛−2;  𝑛 ≥ 2with initial 
condition 𝐹𝑘 ,0 = 0, 𝐹𝑘 ,1 = 1.As a particular case, 
 if𝑘 = 1,we obtain the classical Fibonacci sequence  

0, 1, 2, 3, 5, 8, …

 if 𝑘 = 2, we getthe Pell sequence of numbers 

0, 1, 2, 5, 12, 29,70,… .

Continued fractions offer a useful means of expressing 
numbers and functions. In the early ages, 300 BC ‒ 200 AD, 

mathematicians used other algorithms and methods to 
express numbers and to express solutions of Diophantine 
equations. Many of these algorithms were studied and 
modeled in the development of the continued fractions. 
Throughout the eighteenth century, use of continued 
fractions was limited to the area of mathematics. Since the 
beginning of the twentieth century, continued fractions have 
become more common in various other areas [2], [3]. It 
encodes much useful information about the algebraic 
structure of a number and frequently arises in approximation 
theory and dynamical systems. Van der Poorten [4] wrote 
that the elementary nature and simplicity of the theory of 
continued fractions is mostly buried in the literature. Our 
work is an outgrowth of [1], [3], [5]. We refer the readers to 
see these papers for some basic information on continued 
fractions, and to the book [6],[10] for more details. 

Every real number αcan be represented in the form: 

α = a0 +
1

a1 +
1

a2+
1

⋱

We call such a representation a continued fraction. We can 
simplify this representation by restricting the𝑎𝑖 ,called the 

partial quotients, to be positive integers. To construct the 
continued fraction, one must simply let: 

𝑎0 =  α 

𝑎1 =
1

α −  α 
⋮

In order to simplify the notation, the usual convention will be 
used:α =  𝑎0, 𝑎1, 𝑎2,…  . 

Clearly, 𝛼 is rational if and only if its continued fraction is 
finite, and a beautiful theorem of Lagrange asserts that 𝛼 is a 
quadratic irrational if and only if the continued fraction 
expansion is periodic. 

The continued fraction expansion consisting of the number 1 
repeated indefinitely represents the „golden mean‟. This 

satisfies the quadratic equation 𝑥2 = 𝑥 + 1.The convergents 
of this continued fraction are obtained as the ratio of the 
successive terms of the Fibonacci sequence.Continued 
fractions turn out to be convenient representations of 
numbers since they provide the best approximation to a 
given number. 

2. Properties of k-Fibonacci sequence 

In this section we determine some interesting identities    
related with sequence  𝐹𝑘 ,𝑛 and use these identities to 
express the ratio  𝐹𝑘 ,𝑛

𝐹𝑘 ,𝑛−𝑟
as finite continued fraction expansion. 

Theorem 2.1:𝐹𝑘 ,𝑛 =
 
𝑘+  𝑘2+4

2
 

𝑛

− 
𝑘− 𝑘2+4

2
 

𝑛

 𝑘2+4
=

𝛼𝐹𝑘 ,𝑛
𝑛 − 𝛽𝐹𝑘 ,𝑛

𝑛

𝛼𝐹𝑘 ,𝑛
−𝛽𝐹𝑘 ,𝑛

 . 

Proof: We prove the result by the principle of mathematical 
induction. For 𝑛 = 1, we have 

𝐹𝑘 ,1 =
 
𝑘+  𝑘2+4

2
 − 

𝑘− 𝑘2+4

2
 

 𝑘2+4
 = 1, which proves the result for 

𝑛 = 1. 
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Now, assume that result holds for all positive integers up to 

some positive integer 𝑚. Thus both 𝐹𝑘 ,𝑚 =
𝛼𝐹𝑘 ,𝑛

𝑚 − 𝛽𝐹𝑘 ,𝑛
𝑚

𝛼𝐹𝑘 ,𝑛
−𝛽𝐹𝑘 ,𝑛

and 

𝐹𝑘 ,𝑚−1 =
𝛼𝐹𝑘 ,𝑛

𝑚−1− 𝛽𝐹𝑘 ,𝑛
𝑚−1

𝛼𝐹𝑘 ,𝑛
−𝛽𝐹𝑘 ,𝑛

 holds.  

This gives, 𝐹𝑘 ,𝑚+1 = 𝑘𝐹𝑘 ,𝑚 + 𝐹𝑘 ,𝑚−1

= 𝑘  
𝛼𝐹𝑘 ,𝑛

𝑚 −  𝛽𝐹𝑘 ,𝑛

𝑚

𝛼𝐹𝑘 ,𝑛
− 𝛽𝐹𝑘 ,𝑛

 +  
𝛼𝐹𝑘 ,𝑛

𝑚−1 −  𝛽𝐹𝑘 ,𝑛

𝑚−1

𝛼𝐹𝑘 ,𝑛
− 𝛽𝐹𝑘 ,𝑛

 

=
𝑘  𝛼𝐹𝑘 ,𝑛

𝑚 −  𝛽𝐹𝑘 ,𝑛

𝑚   +   𝛼𝐹𝑘 ,𝑛

𝑚−1 −  𝛽𝐹𝑘 ,𝑛

𝑚−1 

𝛼𝐹𝑘 ,𝑛
− 𝛽𝐹𝑘 ,𝑛

=
𝛼𝐹𝑘 ,𝑛

𝑚−1 𝑘𝛼𝐹𝑘 ,𝑛
+1  − 𝛽𝐹𝑘 ,𝑛

𝑚−1 𝑘𝛽𝐹𝑘 ,𝑛
+1 

𝛼𝐹𝑘 ,𝑛
−𝛽𝐹𝑘 ,𝑛

 . 

Now, 𝑘𝛼𝐹𝑘 ,𝑛
+ 1 = 𝑘  

𝑘+  𝑘2+4

2
 + 1 =

𝑘2+𝑘 𝑘2+4 +2

2

=
𝑘2 + 2𝑘 𝑘2 + 4  + 𝑘2 + 4

4

=  
𝑘+  𝑘2+4

2
 

2

=  𝛼𝐹𝑘 ,𝑛
 

2
. 

Similarly it can be shown that 𝑘𝛽𝐹𝑘 ,𝑛
+ 1 =  𝛽𝐹𝑘 ,𝑛

 
2
. Thus, 

𝐹𝑘 ,𝑚+1 =
𝛼𝐹𝑘 ,𝑛

𝑚−1 𝑘𝛼𝐹𝑘 ,𝑛
+ 1 −  𝛽𝐹𝑘 ,𝑛

𝑚−1 𝑘𝛽𝐹𝑘 ,𝑛
+ 1 

𝛼𝐹𝑘 ,𝑛
− 𝛽𝐹𝑘 ,𝑛

=
 𝛼𝐹𝑘 ,𝑛

 
𝑚−1

 𝛼𝐹𝑘 ,𝑛
 

2
−  𝛽𝐹𝑘 ,𝑛

 
𝑚  −1

 𝛽𝐹𝑘 ,𝑛
 

2

𝛼𝐹𝑘 ,𝑛
− 𝛽𝐹𝑘 ,𝑛

=
 𝛼𝐹𝑘 ,𝑛

 
𝑚 +1

− 𝛽𝐹𝑘 ,𝑛
 
𝑚 +1

𝛼𝐹𝑘 ,𝑛
−𝛽𝐹𝑘 ,𝑛

 . 

∴ 𝐹𝑘 ,𝑚+1 =
 
𝑘+  𝑘2+4

2
 

𝑚 +1

− 
𝑘− 𝑘2+4

2
 

𝑚 +1

 𝑘2+4
=

𝛼𝐹𝑘 ,𝑛
𝑚 +1− 𝛽𝐹𝑘 ,𝑛

𝑚 +1

𝛼𝐹𝑘 ,𝑛
−𝛽𝐹𝑘 ,𝑛

 . 

This proves the result for 𝑛 = 𝑚 + 1 and thus for all positive 
integers𝑛. 
We now obtain the limiting ratio of two consecutive 
𝑘 −Fibonacci numbers. 

Lemma 2.2: 𝜙𝐹𝑘 ,𝑛
= lim

𝑛→∞

𝐹𝑘 ,𝑛

𝐹𝑘 ,𝑛−1
=

𝑘+  𝑘2+4

2
 . 

Proof: We note that the sequence 𝑥𝑛 𝑛=1
∞ =  

𝐹𝑘 ,𝑛

𝐹𝑘 ,𝑛−1
 
𝑛=1

∞

is

convergent. Let this sequence converge to some real 
number𝑥.Now 𝐹𝑘 ,𝑛+1

𝐹𝑘 ,𝑛
= 𝑘 +

𝐹𝑘 ,𝑛−1

𝐹𝑘 ,𝑛
.

 Then lim
𝑛→∞

𝐹𝑘 ,𝑛

𝐹𝑘 ,𝑛−1
= 𝑘 + lim

𝑛→∞

𝐹𝑘 ,𝑛−2

𝐹𝑘 ,𝑛−1
= 𝑘 +

1

lim
𝑛→∞

𝐹𝑘 ,𝑛−1
𝐹𝑘 ,𝑛−2

 . 

This gives 𝑥 = 𝑘 +
1

𝑥
⇒ 𝑥2 − 𝑘𝑥 − 1 = 0. Solving for x

yields 𝑥 =
𝑘  𝑘2+4

2
. Considering only the positive root, we 

get the required result. 

We denote 𝛼𝐹𝑘 ,𝑛
=

𝑘+  𝑘2+4

2
and 𝛽𝐹𝑘 ,𝑛

=
𝑘− 𝑘2+4

2
 . 

We now show how extended Binet formula for 𝐹𝑘 ,𝑛  is useful 
to derive the above value of  𝜙𝐹𝑘 ,𝑛

. 

Lemma 2.3: [Alternate proof ] 

𝜙𝐹𝑘 ,𝑛
= lim

𝑛→∞

𝐹𝑘 ,𝑛

𝐹𝑘 ,𝑛−1
=

𝑘+  𝑘2+4

2
. 

Proof: Using extended Binet formula for 𝐹𝑘 ,𝑛 , we get 

lim
𝑛→∞

𝐹𝑘 ,𝑛

𝐹𝑘 ,𝑛−1

= lim
𝑛→∞

𝛼𝐹𝑘 ,𝑛
𝑛 − 𝛽𝐹𝑘 ,𝑛

𝑛

𝛼𝐹𝑘 ,𝑛
−𝛽𝐹𝑘 ,𝑛

𝛼𝐹𝑘 ,𝑛
𝑛−1 − 𝛽𝐹𝑘 ,𝑛

𝑛−1

𝛼𝐹𝑘 ,𝑛
−𝛽𝐹𝑘 ,𝑛

= lim
𝑛→∞

𝛼𝐹𝑘 ,𝑛
𝑛 − 𝛽𝐹𝑘 ,𝑛

𝑛

𝛼𝐹𝑘 ,𝑛
𝑛−1 − 𝛽𝐹𝑘 ,𝑛

𝑛−1 = lim
𝑛→∞

1− 
𝛽𝐹𝑘 ,𝑛
𝛼𝐹𝑘 ,𝑛

 

𝑛

1

𝛼𝐹𝑘 ,𝑛
−

1

𝛽𝐹𝑘 ,𝑛
 
𝛽𝐹𝑘 ,𝑛
𝛼𝐹𝑘 ,𝑛

 

𝑛  . 

Now we note that 𝛽𝐹𝑘 ,𝑛
 < 𝛼𝐹𝑘 ,𝑛

. Also lim
𝑛→∞

 
𝛽𝐹𝑘 ,𝑛

𝛼𝐹𝑘 ,𝑛

 

𝑛

→

0 (when 𝑛 is sufficiently large). 

Thus, lim
𝑛→∞

𝐹𝑘 ,𝑛

𝐹𝑘 ,𝑛−1
=

𝑘+  𝑘2+4

2
 , as required. 

Remark:

1) 𝛼𝐹𝑘 ,𝑛
− 𝛽𝐹𝑘 ,𝑛

=   
𝑘  +  𝑘2+4

2
 −  

𝑘− 𝑘2+4

2
 =  𝑘2 + 4. 

2) 𝛼𝐹𝑘 ,𝑛
𝛽𝐹𝑘 ,𝑛

=  
𝑘  +  𝑘2+4

2
  

𝑘− 𝑘2+4

2
 = −1. 

Catalan‟s Identity for Fibonacci numbers was found in 1879
by Eugene Charles Catalan, a Belgian mathematician who 
worked for the Belgian Academy of Science in the field of 
Number Theory. Here we obtain analogues result. 
Lemma 2.4: [Extended Catalan Identity] 

𝐹𝑘 ,𝑛−𝑟  𝐹𝑘 ,𝑛+𝑟 − 𝐹𝑘 ,𝑛
2 = (−1)𝑛+1−𝑟𝐹𝑘 ,𝑟

2 . 
Proof: By using theorem 2.1 and 𝛼𝐹𝑘 ,𝑛

𝛽𝐹𝑘 ,𝑛
= −1, we get 

𝐿𝐻𝑆

=
 𝛼𝐹𝑘 ,𝑛

𝑛−𝑟 −  𝛽𝐹𝑘 ,𝑛

𝑛−𝑟  𝛼𝐹𝑘 ,𝑛

𝑛+𝑟 −  𝛽𝐹𝑘 ,𝑛

𝑛+𝑟 − 𝛼𝐹𝑘 ,𝑛

2𝑛 + 2𝛼𝐹𝑘 ,𝑛

𝑛 𝛽𝐹𝑘 ,𝑛

𝑛 − 𝛽𝐹𝑘 ,𝑛

2𝑛

 𝛼𝐹𝑘 ,𝑛
− 𝛽𝐹𝑘 ,𝑛

 
2

=
 −𝛼𝐹𝑘 ,𝑛

𝑛+𝑟𝛽𝐹𝑘 ,𝑛

𝑛−𝑟 − 𝛼𝐹𝑘 ,𝑛

𝑛−𝑟𝛽𝐹𝑘 ,𝑛

𝑛+𝑟 + 2𝛼𝐹𝑘 ,𝑛

𝑛 𝛽𝐹𝑘 ,𝑛

𝑛  

 𝛼𝐹𝑘 ,𝑛
− 𝛽𝐹𝑘 ,𝑛

 
2

=
 −𝛼𝐹𝑘 ,𝑛

𝑛+2𝑟−𝑟𝛽𝐹𝑘 ,𝑛

𝑛−𝑟 − 𝛼𝐹𝑘 ,𝑛

𝑛−𝑟𝛽𝐹𝑘 ,𝑛

𝑛+2𝑟−𝑟 + 2𝛼𝐹𝑘 ,𝑛

𝑛 𝛽𝐹𝑘 ,𝑛

𝑛  

 𝛼𝐹𝑘 ,𝑛
− 𝛽𝐹𝑘 ,𝑛

 
2

=

 
− 𝛼𝐹𝑘 ,𝑛

𝛽𝐹𝑘 ,𝑛
 
𝑛−𝑟

𝛼𝐹𝑘 ,𝑛
2𝑟 −  𝛼𝐹𝑘 ,𝑛

𝛽𝐹𝑘 ,𝑛
 
𝑛−𝑟

𝛽𝐹𝑘 ,𝑛
2𝑟

+2 𝛼𝐹𝑘 ,𝑛
𝛽𝐹𝑘 ,𝑛

 
𝑛  

 𝛼𝐹𝑘 ,𝑛
− 𝛽𝐹𝑘 ,𝑛

 
2

=
 − −1 𝑛−𝑟𝛼𝐹𝑘 ,𝑛

2𝑟 −  −1 𝑛−𝑟𝛽𝐹𝑘 ,𝑛
2𝑟 + 2 −1 𝑛  

 𝛼𝐹𝑘 ,𝑛
− 𝛽𝐹𝑘 ,𝑛

 
2

=
  −1 𝑛−𝑟+1𝛼𝐹𝑘 ,𝑛

2𝑟 +  −1 𝑛−𝑟+1𝛽𝐹𝑘 ,𝑛
2𝑟 + 2 −1 𝑛  

 𝛼𝐹𝑘 ,𝑛
− 𝛽𝐹𝑘 ,𝑛

 
2

=
 −1 𝑛−𝑟+1

 𝛼𝐹𝑘 ,𝑛
− 𝛽𝐹𝑘 ,𝑛

 
2  𝛼𝐹𝑘 ,𝑛

2𝑟 + 𝛽𝐹𝑘 ,𝑛
2𝑟 + 2 −1 𝑟−1 

=
 −1 𝑛−𝑟+1

 𝛼𝐹𝑘 ,𝑛
− 𝛽𝐹𝑘 ,𝑛

 
2  𝛼𝐹𝑘 ,𝑛

2𝑟 + 𝛽𝐹𝑘 ,𝑛
2𝑟 − 2 −1 𝑟 

=
 −1 𝑛−𝑟+1

 𝛼𝐹𝑘 ,𝑛
− 𝛽𝐹𝑘 ,𝑛

 
2  𝛼𝐹𝑘 ,𝑛

2𝑟 + 𝛽𝐹𝑘 ,𝑛
2𝑟 − 2 𝛼𝐹𝑘 ,𝑛

𝛽𝐹𝑘 ,𝑛
 
𝑟
 

=  −1 𝑛−𝑟+1  
𝛼𝐹𝑘 ,𝑛

𝑟 −𝛽𝐹𝑘 ,𝑛
𝑟

𝛼𝐹𝑘 ,𝑛
−𝛽𝐹𝑘 ,𝑛

 

2

=  −1 𝑛−𝑟+1𝐹𝑘 ,𝑟
2 . 
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The following is analogues to one of the oldest identities 
involving the Fibonacci numbers, which was discovered in 
1680 by Jean-Dominique Cassini, a French Astronomer. 

Lemma 2.5: [Extended Cassini identity] 
𝐹𝑘 ,𝑛−1 𝐹𝑘 ,𝑛+1 − 𝐹𝑘 ,𝑛

2 =  −1 𝑛 . 
Proof: The proof follows immediately by taking 𝑟 = 1in 
Catalan‟s identity.

We next obtain extended d‟ Ocagne‟sIdentity. 

Lemma 2.6: 𝐹𝑘 ,𝑛 = 𝐹𝑘 ,𝑛−𝑟𝐹𝑘 ,𝑟+1 + 𝐹𝑘 ,𝑛−𝑟−1𝐹𝑘 ,𝑟  . 
Proof: We write the extended Binet‟s formula from theorem 

2.1 in the form𝐹𝑘 ,𝑛 = 𝐶1
∗𝛼𝐹𝑘 ,𝑛

𝑛 + 𝐶2
∗𝛽𝐹𝑘 ,𝑛

𝑛 ,
Where𝐶1

∗ =
1

𝛼𝐹𝑘 ,𝑛
−𝛽𝐹𝑘 ,𝑛

=
1

 𝑘2+4
 ,𝐶2

∗ =
−1

𝛼𝐹𝑘 ,𝑛
−𝛽𝐹𝑘 ,𝑛

=
−1

 𝑘2+4
 . 

We now express two consecutive terms of this sequence by 

using matrices as  𝐹𝑘 ,𝑛−𝑟
𝐹𝑘 ,𝑛−𝑟−1

 =  
𝛼𝐹𝑘 ,𝑛

𝑛−𝑟 𝛽𝐹𝑘 ,𝑛

𝑛−𝑟

𝛼𝐹𝑘 ,𝑛

𝑛−𝑟−1 𝛽𝐹𝑘 ,𝑛

𝑛−𝑟−1  
𝐶1
∗

𝐶2
∗ . Then 

 
𝐶1

∗

𝐶2
∗ =  

𝛼𝐹𝑘 ,𝑛

𝑛−𝑟 𝛽𝐹𝑘 ,𝑛

𝑛−𝑟

𝛼𝐹𝑘 ,𝑛

𝑛−𝑟−1 𝛽𝐹𝑘 ,𝑛

𝑛−𝑟−1 

−1

 
𝐹𝑘 ,𝑛−𝑟

𝐹𝑘 ,𝑛−𝑟−1

 

=
1

𝛼𝐹𝑘 ,𝑛

𝑛−𝑟𝛽𝐹𝑘 ,𝑛

𝑛−𝑟−1 − 𝛼𝐹𝑘 ,𝑛

𝑛−𝑟−1𝛽𝐹𝑘 ,𝑛

𝑛−𝑟  
𝛽𝐹𝑘 ,𝑛

𝑛−𝑟−1 −𝛽𝐹𝑘 ,𝑛

𝑛−𝑟

−𝛼𝐹𝑘 ,𝑛

𝑛−𝑟−1 𝛼𝐹𝑘 ,𝑛

𝑛−𝑟   
𝐹𝑘 ,𝑛−𝑟

𝐹𝑘 ,𝑛−𝑟−1

 

=

 
𝐹𝑘 ,𝑛−𝑟𝛽𝐹𝑘 ,𝑛

𝑛−𝑟−1−𝐹𝑘 ,𝑛−𝑟−1𝛽𝐹𝑘 ,𝑛
𝑛−𝑟

−𝐹𝑘 ,𝑛−𝑟𝛼𝐹𝑘 ,𝑛
𝑛−𝑟−1+𝐹𝑘 ,𝑛−𝑟−1𝛼𝐹𝑘 ,𝑛

𝑛−𝑟  

 𝛼𝐹𝑘 ,𝑛
𝛽𝐹𝑘 ,𝑛

 
𝑛−𝑟−1

 𝛼𝐹𝑘 ,𝑛
−𝛽𝐹𝑘 ,𝑛

 
. 

This gives 

𝐶1
∗ =

𝐹𝑘 ,𝑛−𝑟𝛽𝐹𝑘 ,𝑛
𝑛−𝑟−1− 𝐹𝑘 ,𝑛−𝑟−1𝛽𝐹𝑘 ,𝑛

𝑛−𝑟

 𝛼𝐹𝑘 ,𝑛
𝛽𝐹𝑘 ,𝑛

 
𝑛−𝑟−1

 𝛼𝐹𝑘 ,𝑛
−𝛽𝐹𝑘 ,𝑛

 
and 

𝐶2
∗ =

−𝐹𝑘 ,𝑛−𝑟𝛼𝐹𝑘 ,𝑛
𝑛−𝑟−1+ 𝐹𝑘 ,𝑛−𝑟−1𝛼𝐹𝑘 ,𝑛

𝑛−𝑟

 𝛼𝐹𝑘 ,𝑛
𝛽𝐹𝑘 ,𝑛

 
𝑛−𝑟−1

 𝛼𝐹𝑘 ,𝑛
−𝛽𝐹𝑘 ,𝑛

 
. 

Thus 𝐶1
∗ =

𝐹𝑘 ,𝑛−𝑟− 𝐹𝑘 ,𝑛−𝑟−1𝛽𝐹𝑘 ,𝑛

𝛼𝐹𝑘 ,𝑛
𝑛−𝑟−1 𝛼𝐹𝑘 ,𝑛

−𝛽𝐹𝑘 ,𝑛
 

 , 𝐶2
∗ =

− 𝐹𝑘 ,𝑛−𝑟+𝐹𝑘 ,𝑛−𝑟−1𝛼𝐹𝑘 ,𝑛

𝛽𝐹𝑘 ,𝑛
𝑛−𝑟−1 𝛼𝐹𝑘 ,𝑛

−𝛽𝐹𝑘 ,𝑛
 

 . 

Substituting values of  𝐶1
∗and 𝐶2

∗, we get 
𝐹𝑘 ,𝑛 = 𝐶1

∗𝛼𝐹𝑘 ,𝑛

𝑛 + 𝐶2
∗𝛽𝐹𝑘 ,𝑛

𝑛

=
 𝐹𝑘 ,𝑛−𝑟 −  𝐹𝑘 ,𝑛−𝑟−1𝛽𝐹𝑘 ,𝑛

 𝛼𝐹𝑘 ,𝑛

𝑛

𝛼𝐹𝑘 ,𝑛

𝑛−𝑟−1 𝛼𝐹𝑘 ,𝑛
− 𝛽𝐹𝑘 ,𝑛

 

+
 − 𝐹𝑘 ,𝑛−𝑟 + 𝐹𝑘 ,𝑛−𝑟−1𝛼𝐹𝑘 ,𝑛

 𝛽𝐹𝑘 ,𝑛

𝑛

𝛽𝐹𝑘 ,𝑛

𝑛−𝑟−1 𝛼𝐹𝑘 ,𝑛
− 𝛽𝐹𝑘 ,𝑛

 

=
𝛼𝐹𝑘 ,𝑛

𝑟+1 𝐹𝑘 ,𝑛−𝑟 −  𝐹𝑘 ,𝑛−𝑟−1𝛽𝐹𝑘 ,𝑛
 

 𝛼𝐹𝑘 ,𝑛
− 𝛽𝐹𝑘 ,𝑛

 

+
𝛽𝐹𝑘 ,𝑛

𝑟+1 − 𝐹𝑘 ,𝑛−𝑟 + 𝐹𝑘 ,𝑛−𝑟−1𝛼𝐹𝑘 ,𝑛
 

 𝛼𝐹𝑘 ,𝑛
− 𝛽𝐹𝑘 ,𝑛

 

=
𝐹𝑘 ,𝑛−𝑟  𝛼𝐹𝑘 ,𝑛

𝑟+1 − 𝛽𝐹𝑘 ,𝑛
𝑟+1 −  𝛼𝐹𝑘 ,𝑛

𝛽𝐹𝑘 ,𝑛
  𝐹𝑘 ,𝑛−𝑟−1 𝛼𝐹𝑘 ,𝑛

𝑟 − 𝛽𝐹𝑘 ,𝑛
𝑟  

 𝛼𝐹𝑘 ,𝑛
− 𝛽𝐹𝑘 ,𝑛

 

= 𝐹𝑘 ,𝑛−𝑟  
𝛼𝐹𝑘 ,𝑛

𝑟+1 − 𝛽𝐹𝑘 ,𝑛
𝑟+1

𝛼𝐹𝑘 ,𝑛
− 𝛽𝐹𝑘 ,𝑛

 

− 𝛼𝐹𝑘 ,𝑛
𝛽𝐹𝑘 ,𝑛

  𝐹𝑘 ,𝑛−𝑟−1  
𝛼𝐹𝑘 ,𝑛

𝑟 −𝛽𝐹𝑘 ,𝑛
𝑟

𝛼𝐹𝑘 ,𝑛
−𝛽𝐹𝑘 ,𝑛

 . 

Now since𝛼𝐹𝑘 ,𝑛
𝛽𝐹𝑘 ,𝑛

= −1, by using extended Binet formula 
for 𝑘 −Fibonacci numbers, we get  

𝐹𝑘 ,𝑛 = 𝐹𝑘 ,𝑛−𝑟𝐹𝑘 ,𝑟+1 + 𝐹𝑘 ,𝑛−𝑟−1𝐹𝑘 ,𝑟  . 

3. Continued fractions of powers of the  
k-Fibonacci sequences 

We now obtain the continued fraction expansion of ɸ𝑘
𝑟  . 

Theorem 3:

𝐹𝑘 ,𝑛

𝐹𝑘 ,𝑛−𝑟
=  

 𝐹𝑘 ,𝑟+1 + 𝐹𝑘 ,𝑟−1 ,
𝐹𝑘 ,𝑛−𝑟

𝐹𝑘 ,𝑛−2𝑟
                   ;  if 𝑟 is odd 

 𝐹𝑘 ,𝑟+1 + 𝐹𝑘 ,𝑟−1 − 1,1,
𝐹𝑘 ,𝑛−𝑟

𝐹𝑘 ,𝑛−2𝑟
− 1  ;  if 𝑟 is even,

 

which yields 
ɸ𝑘

𝑟

=  
 𝐹𝑘 ,𝑟+1 +  𝐹𝑘 ,𝑟−1 , 𝐹𝑘 ,𝑟+1 +  𝐹𝑘 ,𝑟−1

                                         ; if 𝑟 is odd 

 𝐹𝑘 ,𝑟+1 +  𝐹𝑘 ,𝑟−1 − 1, 1, 𝐹𝑘 ,𝑟+1 + 𝐹𝑘 ,𝑟−1 − 2                             ; if 𝑟 is even.
 

Proof: We have, 
𝐹𝑘 ,𝑛

𝐹𝑘 ,𝑛−𝑟

=
𝐹𝑘 ,𝑟+1𝐹𝑘 ,𝑛−𝑟 + 𝐹𝑘 ,𝑟  𝐹𝑘 ,𝑛−𝑟−1

𝐹𝑘 ,𝑛−𝑟

= 𝐹𝑘 ,𝑟+1 +
𝐹𝑘 ,𝑟  𝐹𝑘 ,𝑛−𝑟−1

𝐹𝑘 ,𝑛−𝑟

=  𝐹𝑘 ,𝑟+1 +
𝑘 𝐹𝑘 ,𝑟−1𝐹𝑘 ,𝑛−𝑟−1 + 𝐹𝑘 ,𝑟−2 𝐹𝑘 ,𝑛−𝑟−1

𝐹𝑘 ,𝑛−𝑟

= 𝐹𝑘 ,𝑟+1

+
𝑘 𝐹𝑘 ,𝑟−1𝐹𝑘 ,𝑛−𝑟−1 + 𝐹𝑘 ,𝑟−1𝐹𝑘 ,𝑛−𝑟−2+ 𝐹𝑘 ,𝑟−2 𝐹𝑘 ,𝑛−𝑟−1 −  𝐹𝑘 ,𝑟−1 𝐹𝑘 ,𝑛−𝑟−2

𝐹𝑘 ,𝑛−𝑟

= 𝐹𝑘 ,𝑟+1 + 𝐹𝑘 ,𝑟−1

𝐹𝑘 ,𝑛−𝑟

𝐹𝑘 ,𝑛−𝑟

+
𝐹𝑘 ,𝑟−2𝐹𝑘 ,𝑛−𝑟−1 −  𝐹𝑘 ,𝑟−1 𝐹𝑘 ,𝑛−𝑟−2

𝐹𝑘 ,𝑛−𝑟

= 𝐹𝑘 ,𝑟+1 +  𝐹𝑘 ,𝑟−1 +
𝐹𝑘 ,𝑟−2 𝐹𝑘 ,𝑛−𝑟−1−𝐹𝑘 ,𝑟−1 𝐹𝑘 ,𝑛−𝑟−2

𝐹𝑘 ,𝑛−𝑟
 . 

Now by Lemma 2.6, we have 
𝐹𝑘 ,𝑛−𝑟−1 =  𝐹𝑘 ,𝑟  𝐹𝑘 ,𝑛−𝑟−𝑟 + 𝐹𝑘 ,𝑟−1 𝐹𝑘 ,𝑛−𝑟−𝑟−1and 
𝐹𝑘 ,𝑛−𝑟−2 =  𝐹𝑘 ,𝑟−1 𝐹𝑘 ,𝑛−𝑟−𝑟−1 + 𝐹𝑘 ,𝑟−2 𝐹𝑘 ,𝑛−𝑟−𝑟−2. 

This gives 

𝐹𝑘 ,𝑛

𝐹𝑘 ,𝑛−𝑟

= 𝐹𝑘 ,𝑟+1 + 𝐹𝑘 ,𝑟−1

+
𝐹𝑘 ,𝑟−2(𝐹𝑘 ,𝑟𝐹𝑘 ,𝑛−2𝑟 +  𝐹𝑘 ,𝑟−1 𝐹𝑘 ,𝑛−2𝑟−1) − 𝐹𝑘 ,𝑟−1(𝐹𝑘 ,𝑟−1 𝐹𝑘 ,𝑛−2𝑟 +  𝐹𝑘 ,𝑟−2 𝐹𝑘 ,𝑛−2𝑟−1) 

𝐹𝑘 ,𝑛−𝑟

= 𝐹𝑘 ,𝑟+1 + 𝐹𝑘 ,𝑟−1

Paper ID: ART20161920 35



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391 

Volume 5 Issue 9, September 2016 
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

+
𝐹𝑘 ,𝑟−2(𝐹𝑘 ,𝑟𝐹𝑘 ,𝑛−2𝑟) − 𝐹𝑘 ,𝑟−1(𝐹𝑘 ,𝑟−1 𝐹𝑘 ,𝑛−2𝑟) 

𝐹𝑘 ,𝑛−𝑟

= 𝐹𝑘 ,𝑟+1 +  𝐹𝑘 ,𝑟−1 +
𝐹𝑘 ,𝑛−2𝑟 [𝐹𝑘 ,𝑟−2𝐹𝑘 ,𝑟−(𝐹𝑘 ,𝑟−1)2] 

𝐹𝑘 ,𝑛−𝑟
.         

Once again using Lemma 1, we get  
𝐹𝑘 ,𝑛

𝐹𝑘 ,𝑛−𝑟
= 𝐹𝑘 ,𝑟+1 + 𝐹𝑘 ,𝑟−1 +

𝐹𝑘 ,𝑛−2𝑟(−1)𝑟−1

𝐹𝑘 ,𝑛−𝑟
 . 

This gives 𝐹𝑘 ,𝑛

𝐹𝑘 ,𝑛−𝑟
= 𝐹𝑘 ,𝑟+1 +  𝐹𝑘 ,𝑟−1 +

(−1)𝑟−1

𝐹𝑘 ,𝑛−𝑟/𝐹𝑘 ,𝑛−2𝑟
. 

Now if 𝑟 is odd, then we get 
𝐹𝑘 ,𝑛

𝐹𝑘 ,𝑛−𝑟
= 𝐹𝑘 ,𝑟+1 + 𝐹𝑘 ,𝑟−1 +

 1

𝐹𝑘 ,𝑛−𝑟/𝐹𝑘 ,𝑛−2𝑟
. 

Thus 

𝜙𝑘
𝑟 =  lim

𝑛→∞

𝐹𝑘 ,𝑛

𝐹𝑘 ,𝑛−𝑟

= 𝐹𝑘 ,𝑟+1 +  𝐹𝑘 ,𝑟−1 + 
1

lim
𝑛→∞

𝐹𝑘 ,𝑛−𝑟

𝐹𝑘 ,𝑛−2𝑟

= 𝐹𝑘 ,𝑟+1 + 𝐹𝑘 ,𝑟−1 +  
1

𝜙𝑘
𝑟

=  𝐹𝑘 ,𝑟+1 +  𝐹𝑘 ,𝑟−1 +  
1

𝐹𝑘 ,𝑟+1+ 𝐹𝑘 ,𝑟−1+
1

𝐹𝑘 ,𝑟+1+ 𝐹𝑘 ,𝑟−1+
1
⋱

 . 

Also if 𝑟 is even, then we get 
𝐹𝑘 ,𝑛

𝐹𝑘 ,𝑛−𝑟
= 𝐹𝑘 ,𝑟+1 + 𝐹𝑘 ,𝑟−1 +

−1

𝐹𝑘 ,𝑛−𝑟/𝐹𝑘 ,𝑛−2𝑟
. 

In this case we manipulate further. We write it as 
𝐹𝑘 ,𝑛

𝐹𝑘 ,𝑛−𝑟
= (𝐹𝑘 ,𝑟+1 +  𝐹𝑘 ,𝑟−1 − 1) + 1 −

1

𝐹𝑘 ,𝑛−𝑟/𝐹𝑘 ,𝑛−2𝑟
 . 

Now, 

1 −
1

𝐹𝑘 ,𝑛−𝑟

𝐹𝑘 ,𝑛−2𝑟

=
𝐹𝑘 ,𝑛−𝑟 − 𝐹𝑘 ,𝑛−2𝑟

𝐹𝑘 ,𝑛−𝑟

=
1

𝐹𝑘 ,𝑛−𝑟/(𝐹𝑘 ,𝑛−𝑟 − 𝐹𝑘 ,𝑛−2𝑟) 

 =
1

((𝐹𝑘 ,𝑛−𝑟 −  𝐹𝑘 ,𝑛−2𝑟) + 𝐹𝑘 ,𝑛−2𝑟)/(𝐹𝑘 ,𝑛−𝑟 − 𝐹𝑘 ,𝑛−2𝑟) 

=
1

1 + (𝐹𝑘 ,𝑛−2𝑟/(𝐹𝑘 ,𝑛−𝑟 − 𝐹𝑘 ,𝑛−2𝑟)) 

=
1

1 + (1/((𝐹𝑘 ,𝑛−𝑟 − 𝐹𝑘 ,𝑛−2𝑟)/𝐹𝑘 ,𝑛−2𝑟)) 

=
1

1 + (1/( 𝐹𝑘 ,𝑛−𝑟/𝐹𝑘 ,𝑛−2𝑟 − 1)) 
.

Thus 𝐹𝑘 ,𝑛

𝐹𝑘 ,𝑛−𝑟
=  𝐹𝑘 ,𝑟+1 + 𝐹𝑘 ,𝑟−1 − 1 

+
1

1+(1/( 𝐹𝑘 ,𝑛−𝑟/𝐹𝑘 ,𝑛−2𝑟 −1)) 
 . 

Taking the limit as 𝑛 → ∞, we get 
𝜙𝑘

𝑟 =  lim
𝑛→∞

𝐹𝑘 ,𝑛

𝐹𝑘 ,𝑛−𝑟
= 𝐹𝑘 ,𝑟+1 +  𝐹𝑘 ,𝑟−1 − 1 + 

1

1+ 
1

(𝜙𝑘
𝑟 −1)

 

 . 

∴ 𝜙𝑘
𝑟 = 𝐹𝑘 ,𝑟+1 +  𝐹𝑘 ,𝑟−1 − 1

+ 
1

1+
1

𝐹𝑘 ,𝑟+1+ 𝐹𝑘 ,𝑟−1−2+
1

1+
1

𝐹𝑘 ,𝑟+1+ 𝐹𝑘 ,𝑟−1−2+
1
⋱

 . 

Finally the continued fraction of 𝜙𝑘
𝑟 follows easily. 

4. Conclusion 

 The techniques developed in this paper have allowed us to 
determine closed form expressions for the continued 
fraction expansion of some special quadratic numbers. 

 We have been able to prove the structure of the continued 
fraction of a sizeable class of numbers. Although it was 
pretty clear at the outset that was a nice structure to this 
class, we have successfully proven it, and can now use 

these results to possibly derive similar results for other 
classes. 
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