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Abstract: This paper uses the tools of two very important branches of Number Theory — Continued Fractions and theory of Fibonacci
numbers. The Fibonacci sequence has been generalized in many ways, some by preserving the initial conditions, others by preserving
the recurrence relation.The relationship between the golden ratio and continued fractions is commonly known about throughout the
mathematical world. The convergents of the continued fraction are the ratios of consecutive Fibonacci numbers. The continued
fractions for the powers of the golden ratio also exhibit an interesting relationship with the Fibonacci numbers. The ratios of anyk-
Fibonacci sequence{F k'n}is expressed by means of continued fraction. We find simple closed form continued fraction expansions

for @y, for any positive integer r.
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1. Introduction

The Fibonacci sequence {F, },>; is a series of numbers that
begins withF; = 1,F, = 1 and each next term is the sum of
the previous two terms.The number of properties of these
sequences were studied by many researchers. S. Falcon
[71,[8],[9] defined i—Fibonacci numbers by the recurrence

equationFy , = k Fy 1 + Fj ,_2; n = 2with initial

condition Fy o = 0, F, ; = 1.As a particular case,

o ifk = 1,we obtain the classical Fibonacci sequence
0,1,23,5,8,..

o if k=2, we getthe Pell sequence of numbers

0,1,2,5,12,29,70, ....

Continued fractions offer a useful means of expressing
numbers and functions. In the early ages, 300 BC — 200 AD,
mathematicians used other algorithms and methods to
express numbers and to express solutions of Diophantine
equations. Many of these algorithms were studied and
modeled in the development of the continued fractions.
Throughout the eighteenth century, use of continued
fractions was limited to the area of mathematics. Since the
beginning of the twentieth century, continued fractions have
become more common in various other areas [2], [3]. It
encodes much useful information about the algebraic
structure of a number and frequently arises in approximation
theory and dynamical systems. Van der Poorten [4] wrote
that the elementary nature and simplicity of the theory of
continued fractions is mostly buried in the literature. Our
work is an outgrowth of [1], [3], [5]. We refer the readers to
see these papers for some basic information on continued
fractions, and to the book [6],[10] for more details.

Every real number acan be represented in the form:

We call such a representation a continued fraction. We can
simplify this representation by restricting thea;,called the

partial quotients, to be positive integers. To construct the
continued fraction, one must simply let:

ay = [a]

_ 1
al_a—[a]

In order to simplify the notation, the usual convention will be
used:a = [ay, aq, ay, ... |.

Clearly, a is rational if and only if its continued fraction is
finite, and a beautiful theorem of Lagrange asserts that « is a
quadratic irrational if and only if the continued fraction
expansion is periodic.

The continued fraction expansion consisting of the number 1
repeated indefinitely represents the ‘golden mean’. This
satisfies the quadratic equation x? = x + 1.The convergents
of this continued fraction are obtained as the ratio of the
successive terms of the Fibonacci sequence.Continued
fractions turn out to be convenient representations of
numbers since they provide the best approximation to a
given number.

2. Properties of k-Fibonacci sequence

In this section we determine some interesting identities

related with sequence {Fk,n}and use these identities to
Fk,n

express the ratio as finite continued fraction expansion.

kn—r
et iZra\ . (k—kZia\" , ,
Theorem 2.1:F;, , = ( - ) _< - ) = “in”Plin
tn NP ary BF,
Proof: We prove the result by the principle of mathematical
induction. For n = 1, we have
<k+ Jk2_+4>_<k_m)
2

2

= 1, which proves the result for

F, ., =
el Vik2+4
n =

1.
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Now, assume that result holds for all positive integers up to

e LBE
some positive integer m. Thus both F ,, = Pien Tlngng
’ aFk,n_ﬁFk,n
aFkn_BFkn
Fy ,,_1 = —— holds.
fm=1 = aFkn BFkn
This gives, F, 11 = kFym + Fem—1
a;‘r;cn_ﬁgllcn aFkn ﬁFkn
=k - — |+
aFk,n_ﬂFk,n aFkn_ﬁFkn
_k(a?‘;c,n_ﬁ;‘r;c,n) + (aFkn BFkn)
aFk,n _ﬁpk,n
_ aFk (kaFkn+1) BFnkT;(kﬁFk,n+1)
a aFk,n ‘EFk,n '
2 2 2
Now, kay, +1= k(k+_ v2k+4) 1= e
k> +2kvVk2 +4 + k> +4
B 4

= (ICJrzﬂ>2 = (aFk,n)z'

Similarly it can be shown that kﬁpk'n +1= ([)’Fk’n)z. Thus,
alr’r;c,_nl (kaFk,n + 1) B ﬁgllc;ll(kﬁpk,n + 1)

ar,, — Bryn

() - (Be,)"

aFk,n - 'BFk,n

(e ()"

aFk,n _BFk,n

m+1
<k+\/k2+4)
2

Feme1 =

_ (apk,n)m _1(BFk,n)2

m+1 m+1
aFkn BFkn

m+1
_<k—\/k2+4)
2

“ Fimet = o

This proves the result forn = m
integersn.

aFk,n ﬁFk,n .
+ 1 and thus for all positive

We now obtain the limiting ratio of two consecutive
k —Fibonacci numbers.

Fy k+Vk2+4
Lemma 2.2: ¢, = =

Fen )7
Proof: We note that the sequence{x,}y_; = {F b } is
kn—1 n=1

convergent. Let this sequence converge to some real
F Frn—
numberx.Now —kntl — fp 4 Zkn=1
Fk,n Fk,n
. F . Frn- 1
Then lim —* = k + lim =22 =k + —/—— .
n—-oo Lpn—1 n-oo gn—1 lim kn-1

TL—>00Fkn 2

This gives x =k + % = x? —kx—1=0. Solving for x

. k Vk2+4 S ..
yields x = T+ Considering only the positive root, we
get the required result.
k+ x/k k—Vk2+4
We denote ag, = et nd Br,, = -,
n k,n 2

We now show how extended Binet formula for F ,, is useful
to derive the above value of ¢y, .

Lemma 2.3: [Alternate proof’]
i Frn kK44
¢Fk'" - rll—g}o Frn-1 - 2 :
Proof: Using extended Binet formula for Fj ,,, we get

n
aFkn ﬁFkn
] Fien - TF g PFyn
nl—l;gj _n—l;g) a 71—ﬂn71
kn—1 Fin Fin
aFkn_ﬁFkn
n _(ﬁFkn>
aFkn ﬁpkn “Fln

= —12
n—w af = BF

.
n—-oo 1 _ 1 (BFk,n>
aFkn ﬁFkn aFkn

n
BF
Now we note that|Bg, .| < ag, . Alsolim ( "") -

n-—oo a}:'kn

0 (when n is sufficiently large).

Fin  _ K+ Vk2+4 .
Thus, lim —2 = =~ "= a5 required.
n—oo Frn—1 2
Remark:

Dy, = (£ - (=0 - g
2) aFk,nﬁFk_n = (kh/ZkZﬁ) <k_ ;2 ) =-1.

Catalan’s Identity for Fibonacci numbers was found in 1879
by Eugene Charles Catalan, a Belgian mathematician who
worked for the Belgian Academy of Science in the field of
Number Theory. Here we obtain analogues result.

Lemma 2.4: [Extended Catalan Identity]
- sz,n = (_ 1)n+1_rFk2,r~
—1, we get

Fk,n—r Fk,n+r
Proof: By using theorem 2.1 and ar,  Br, , =

LHS

n+r _ pn+r\ _ . 2n n n
_(apkn BFkn)(aFkn B ) aFk,n+2aFk,nBFkn ﬁFkn

(aFkn _BFkn)z
__yntrpn _ n—rpn+r
i PR, — kPR, + 2k, Bry,
(aFkn - ﬂFkn)
(B — B + 208 B
(aFk,n - ﬂFkn)Z
[_(apk,nBFk,n)n ral%ltn (aFknﬁFkn)n rﬁFkn
_ +2(aFk,nﬂFk,n)
(aFk,n - BFk,n)Z
v, - om, + 211
(aFk,n - 'BFk,n)2
|evrrad + Cor iR 4+ 2=
(aFk,n - 'BFk,n)2
-1 n—r+1
- P e epr v 2]
(aFk,n - BFk,n)
(_1)n—r+1
"o o e P 2]
( f)kr? r+1 Pl

2 T
[aFkn Flrn _z(aFk,nﬁFk,n) ]
(aFkn ﬁFkn

2
-B
— (_1)n—r+1 ( Flen Fk.n) — (_1)n_r+1Fk2,r‘

aFk,n _ﬁpk,n
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The following is analogues to one of the oldest identities
involving the Fibonacci numbers, which was discovered in
1680 by Jean-Dominique Cassini, a French Astronomer.

Lemma 2.5: [Extended Cassini identity)

Fk,n—l Fk,n+1 - sz,n = (_ l)n'
Proof: The proof follows immediately by taking r = lin
Catalan’s identity.

We next obtain extended d’ Ocagne’sldentity.

Lemma 2.6: Fk,n = Fk,n—rFk,r+1 + Fk,n—r—le,r .
Proof: We write the extended Binet’s formula from theorem
2.1 in the formFy , = Ciap, + C3PBF, »

1 1 -1
WhereC; = = ) = = .
! aFk,n_BFk,n \/k2+4 2 \/k2+4

We now express two consecutive terms of this sequence by
n-—r
®Fin 'BFkn [Cf] Then
al‘r:l r—1 ﬁn -r—1 I
n—r
Cl]_[aFkn Fkn ] [Fknr ]
| n—r—1 n r—1
CZ aFkn Fkn Fkn r—1
-r—1

n
1 Fkn
n—-r—1 n—-r—1
Fkn

aFkn aFkn

-1

aFk,n _‘EFk,n

. . F _
using matrices as [Fk"'" " ] =

n—-r—1

Fkn][Fkn -r
aFkn Fkn r—1

—r pn—-r—1
aFkn Fkn

n-r—1 n-—r
l Fk,n—rﬁFkn _Fk,n—r—lﬁFkn ]

n—-r—1 n-r
_Fk,n—raFkn +Fk,n—r—1aFkn

(aFk,nBFk,n)n_r_l(aFk,n _‘BFk,n).
This gives

—r—1 —
Fk.n—rﬁir?lk:l _Fk.n—r—lﬁ;lk;

Cf = I and
(aFknﬁFkn) (“Fk,n_BFk,n)
1 p—
Cr = —Fin raFkr +Fk.n—r—1a?k;l
2 = n—r—1 .
(aFk,nﬁFk,n) (“Fk,n_BFk,n)
Fien— r_Fk,n—r—lﬁFk —Frn r+Fk,n—r—1aFk
Thus C; = - n

Fkr 1(aFk,n_BFk,n) Bn - 1(aFk,n_ﬁFk,n) .
Substituting values of Cjand C;, we get
Fk,n = Cl*a;:lk'n + C;:ng’n

_(Fkn r Fkn —-r— 1ﬁFk’n)a17~“lk’n
aFkn 1(O',Fkn ‘BFk,n)
(_ Fk.n—r + Fk,n—r—laFk'n ),Blgk_n

ﬂz"lk_,:_l(aFk,n - BFk,n)

= Fk.r+1

kaT 1Fkn -r— 1+ Fkr 1Fkn -r— 2+Fkr 2Fkn —-r—1 "

|

_ Q'F;—i (Fk,n—r - Fk,n—r—lﬁFk‘n)

(aFk,n - ﬁpk,n)
ﬁ;:i (_ Fk,n—r + Fk,n—r—laFkln)
(aFk,n - BFk,n)
1 1
Fk,n—r (a;':n ﬁ;;—n) - (aFk,nﬁFk,n) Fk,n—r—l(alr?k,n - ﬁ;'k,n)
(aFk n ﬁFk,n)
o = Br
= Fk,n—r —
aFk,n - BFk,n

(0( B )F @k Py
Fk,n Fk,n kn—r—1 aFkln_BFkln .

Now sincear,  Br, . = —1, by using extended Binet formula

for k —Fibonacci numbers, we get
Fk.n = Fk,n—rFk,r+1 + Fk,n—r—le,r .

3. Continued fractions of powers of the
k-Fibonacci sequences

We now obtain the continued fraction expansion of ¢}, .

Theorem 3:

Fin—r [F + F, =11, Fhn=r. 1] ; if ris even,
kr+1 kr—1 Fien—2r

which yields

b

;if ris odd

— 2] ;if r is even.

_ {[Fk,rﬂ + Frot s Fiopn + Fior—1)
[Fk:7’+1 + Fk,r—l - 1: 1; Fk,‘r+1 + Fk,r—l

Proof: We have,
Fk,n

Fk,n—r

_ Fk,r+1Fk,n—r + Fk,r Fk,n—‘r—l

Fk,n—r

_ Fk,r Fk,n—r—l

- Fk,r+1 + Fi
kn—r

k Fk,r—le,n—r—l + Fk,‘r—Z Fk,n—r—l

Fk,n—‘r

= Firp1

Fk,r—l Fk,n—r—Z

Fkn —r

ForaFinr1— FrraFenoro

=Ft+ Fpat

Fk,n—r

Fk,r—Z Fk,n—r—l_Fk,r—l Fk,n—r—Z

Fk,n—r

Now by Lemma 2.6, we have
Fk,n—r—l = Fk,r Fk,n—r—r + Fk,r—l Fk,n—r—r—land

Fk,n—r—Z = Fk,r—l Fk,n—r—r—l + Fk,r—Z Fk,n—r—r—Z'
This gives

Fin

—_Fkr+1+ Fkr 1

Fkn -r

Fkr Z(FkrFkn 2r+ Fkr len 2r— 1)_Fkr I(Fkr 1Fkn 2r+ Fkr ZFkn 2r— 1)

Fkn -r

- Fk,r+1 + Fk,r—l
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4 Fier—2(Fier Fien—2r) — Fiepe1 (Fie =1 Fien—2r)
Fk,n—r
Fien—2r[Fr—2Fr—(Frr—1)?]
Fk,nfr ’
Once again using Lemma 1, we get

= Fk,r+1 + Fk,r—l +

Fk,n _ Fk,nfzr(_l)r_l
B =Fgrpt B t—F———.
kn—r kn—-r
.. Fy -1
This gives ——=F .41 + Fr,_1 + b
Fk,nfr ! ! Fk,nfr/Fk,nfzr
Now if r is odd, then we get
Fin 1
—— =F + F,  +—
Fk,n—r ker+1 ler—1 Fk,n—r/Fk,n—Zr
Thus
ro_ 1: Fk,n _ 1
¢k = lim - Fk,r+1 + Fk,r—l + R Frn—r
n=>© Ly n—r lim —/————
n—-oo Fk,nfzr
1
= Fk,r+1 + Fk,r—l + -r
. ol
= Ft Fpoq t 1

Fk,r+1+Fk,r—1+—1'
Fk,r+1+Fk,r71+T
Also if r is even, then we get

Fen -1
- Fk,r+1 + Fk,r—l +

Fk,n—r Fk,n—r/Fk,n—Zr.
In this case we manipulate further. We write it as

Fk,n _ — — 71
Fk,n—r - (Fk'r+1 + Fk'r_l 1) + 1 Fk,n—r/Fk,n—Zr ’
Now,

1— 1 _ Fk,n—r - Fk,n—Zr
Fien—r Fk,n—r
Fk,nfzr
1
B Fk.n—r/(Fk,n—r - Fk,n—Zr)
1
((Fk,n—r -

Fk.n—Zr) + Fk.n—Zr)/(Fk,n—r - Fk,n—Zr)
1

B 1+ (Fk,n—Zr/(Fk,n—r - Fk,n—Zr))
1

"1+ /(P —1Fk,n_zT)/Fk,n_2r))

" 14 U/ ((Foner /Finzr) = D)

F
Thust’;":r =(Frp + Frro1— 1)

+

14/ ((Fien—r/Fren—2r)=1))
Taking the limit as n — oo, we get
. Fra
¢i = lim k:_r =Ferp1t Fpog — 14
Pk = Fpp + Fpoq =1
1
+ T

1+ T
Frr1t Fk,r—1—2+1+ T

1

— .
1 R
+(<¢£—1>)

Flr+1t Fler—1-2+

Finally the continued fraction of ¢} follows easily.

4. Conclusion

e The techniques developed in this paper have allowed us to
determine closed form expressions for the continued
fraction expansion of some special quadratic numbers.

e We have been able to prove the structure of the continued
fraction of a sizeable class of numbers. Although it was
pretty clear at the outset that was a nice structure to this
class, we have successfully proven it, and can now use

these results to possibly derive similar results for other
classes.
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