
International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611 

Volume 5 Issue 1 January 2016 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Congestion Control Mechanism for TCP in Data 
Centered Networks Using Multithreading 

 
Tejashri P. Mane

1
, Snehal Kanade

2
 

 
1Computer Engineering Department, SKNSITS, Lonavala, India 

 
2Professor, Computer Engineering Department, SKNSITS, Lonavala, India 

 
 

Abstract: Transport Control Protocol (TCP) incast congestion happens in high-bandwidth and low-latency networks once multiple 

synchronized servers send data to identical receiver in parallel.TCP congestion could severely degrade the performance in many-to-one 

traffic pattern applications like MapReduce and search. The main limitation of TCP is that congestion in network which resulted into 

huge data loss, more waiting time etc. However existing methods focuses on either on the reduction of the waiting time for packet loss 

recovery using the faster retransmissions or controlling switch buffer occupation to prevent overflow with ECN as well as modified TCP 

on both the sender and receiver sides. This system is mainly focusing on presenting efficient solution which can be able to prevent 

packet loss before the incast congestion condition in network rather than packet loss recovery after actual packet loss in existing cases. 

This proposed method presented in this system is nothing but congestion avoidance in TCP based networks. The system presents Cloud 

Incast Congestion Control for TCP (CICT) scheme on the receiver side using the concepts of multi threading to manage parallelism 

concepts of data communication in data center networks. This method not only reduces the costs required for router or switch 

modifications but also minimizes the working on sender and receiver nodes. 

 
Keywords: TCP, Incast Congestion, Data Center Networks. 
 

1. Introduction 
 
TCP is a end-to-end protocol. To achieve the reliable 
transmission the retransmit timers are used: for the segments 
sent each time, the sender expects an ACK from the receiver 
before the timer expires. If ACK is not received within time, 
then some segments considered to be lost, due to the network 
congestion and will be retransmitted at some appropriate 
instant later. The Transmission Control Protocol (TCP) is 
used as the transport-layer protocol for reliable data transfer 
in data center networks, similar to the Internet. 
 
Todays, data center applications and web search generally 
having the Partition/Aggregate communication architecture. 
Whenever a request is arrived at the node, it is partitioned 
and sent to a number of worker nodes. And then, the 
response data is generated by the workers and transmitted to 
a common node for aggregation which is known as 
aggregator node. Such type of traffic may cause network 
congestion due to the multiple workers send the response 
data to the same aggregator at the same time. The data center 
networks commonly accommodate applications and web 
search that shows the incast communication pattern; multiple 
senders simultaneously transmit TCP data to a single 
aggregator.This pattern causes TCP performance degradation 
in terms of goodput and request completion time, as a result 
of the severe packet loss at Top of Rack (ToR) switches. The 
TCP senders aggressively transmit packets which causes 
throughput degradation even though the network capacity 
that is bandwidth-delay product, is very small. 

 

 
Figure 1: General Scenario of Data Centered Networks 

 

Reason for the congestion is many synchronized servers send 
data to one receiver in parallel.This performance degradation 
of many-to-one TCP connections is called TCP incast 
congestion [1].Sender side TCP uses a congestion window to 
do congestion avoidance. The congestion window has the 
vast amount of data which is to be sent out on a connection 
without acknowledgement.TCP knows the congestion when it 
doesn’t receive an acknowledgement for a packet within the 
expected timeout. 
 
TCP incast collapse occurs due to the highly bursty traffic of 
multiple TCP connections which overflows the Ethernet 
switch buffer in a short period of time, causing intense packet 
loss and thus TCP retransmission and timeouts. Previous 
solutions focused on either reducing the wait time for packet 
loss recovery with faster retransmissions [3], or controlling 
switch buffer occupation to avoid overflow by using ECN 
and modified TCP on both the sender and receiver sides. 

Paper ID: NOV153105 1554



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611 

Volume 5 Issue 1 January 2016 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

2. Literature Review 
 
The TCP incast problem was reported first by D. Nagle et al. 
in the design of a scalable storage architecture[2].They found 
that the concurrent traffic between a client and many storage 
devices overows the network as the number of storage 
devices increases. This results in multiple packet losses and 
timeout. To mitigate the incast congestion, they reduce the 
clients receive socket buffer size to under 64kB.They also 
suggest to tune at the TCP level such as reducing the 
duplicate ACK threshold and disabling the slow-start to 
avoid retransmission timeout. However, they do not address 
the fundamental incast problem. 
 
Two main approaches that address the incast problem have 
been proposed: 
1) The First approach reduces the RTOmin from a 

millisecond to a microsecond granularity. This solution is 
very effective for cluster-based storage systems where the 
main performance metric is to enhance TCP throughput[2]. 
Nonetheless, it is not adequate for soft real-time 
applications such as web search because it still induces 
high queuing delay. 

2) The second approach is to employ congestion avoidance 
before the buffer overflows. RTT is usually a good 
congestion indicator in a wide area network, so that a delay 
based congestion avoidance algorithm such that TCP 
Vegas[5] may be a good candidate. However,it is well 
known that the microsecond granularity of RTT in data 
centers may be too sensitive to distinguish the network 
congestion from the delay spikes caused by the 
packet/forwarding processing overhead. DCTCP[4] uses 
the Explicit Congestion Notification (ECN) to explicitly 
detect network congestion, and provides fine-grained 
congestion window based control by using the number of 
ECN marks. 

 
A. Phanishayee, E. Krevat, V. Vasudevan, D. Andersen,G. 
Ganger, G. Gibson, and S. Seshan,in their paper studied TCP 
Incast which occurs when a client simultaneously receives a 
short burst of data from multiple sources, overloading the 
switch buffers associated with its network link such that all 
original packets from some sources are dropped. When this 
occurs, the clients receives no data packets from those 
sources and so sends no acknowledgement packets, requiring 
the sources to timeout and then retransmit. Often, the result 
of these TCP timeouts is an order of magnitude decrease in 
goodput. This paper discusses various TCP implementations 
such as reduced duplicate ACK threshold, disabling TCP 
slow start and SACK(Selective Acknowledgement).But this 
cannot eliminate incast congestion. SACK overcomes the 
problem of detection of multiple lost packet. ACK has block 
which describes which segments are being acknowledged. It 
initializes the variable pipe to determine how much data is 
outstanding in network and set congestion window to half of 
the current window size. SACK is not provided by receiver 
and hard to implement. 
 
V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, 
D.Andersen, G Ganger, G. Gibson, and B. Mueller,in their 
method described the another method to avoid incast 

congestion in data center networks. This paper presents an 
effective solution which enables microsecond granularity 
timeouts. It is sender side only approach. Faster 
retransmission is possible. It focuses on only how to mitigate 
impact of packet loss. It doesnot avoid the packet loss that is 
it is reactive measure of congestion control. It reduces 
millisecond granularity to microsecond granularity. But this 
method doesnot provide satisfactory solution to avoid incast 
congestion. 
 
Data center TCP(DCTCP),TCP-like protocol for data center 
networks. DCTCP uses Explicit Congestion Notification 
(ECN), a feature already available in modern commodity 
switches. DCTCP combines Explicit Congestion Notification 
(ECN) with a novel control scheme at the sources. It extracts 
multibit feedback on congestion in the network from the 
single bit stream of ECN marks. Sources estimate the fraction 
of marked packets, and use that estimate as a signal for the 
extent of congestion. DCTCP operates with very low buffer 
occupancies while still achieving high throughput. The 
DCTCP algorithm has three main components: 
 Simple Marking at the Switch: 

DCTCP employs a very simple active queue management 
scheme. There is only a single parameter, the marking 
threshold, K. An arriving packet is marked with the CE 
codepoint if the queue occupancy is greater than K upon its 
arrival. Otherwise,it is not marked. This scheme ensures 
that sources are quickly notified of the queue overshoot. 

 ECN-Echo at the Receiver: 
The only difference between a DCTCP receiver and a TCP 
receiver is the way information in the CE codepoints is 
conveyed back to the sender.RFC 3168 states that a 
receiver sets the ECN-Echo flag in a series of ACK packets 
until it receives confirmation from the sender (through the 
CWR flag) that the congestion notification has been 
received. A DCTCP receiver, however, tries to accurately 
convey the exact sequence of marked packets back to the 
sender. The simplest way to do this is to ACK every 
packet, setting the ECN-Echo flag if and only if the packet 
has a marked CE codepoint. 

 Controller at the Sender: 
The sender maintains an estimate of the fraction of packets 
that are marked, which is updated once for every window 
of data (roughly one RTT). 

 
TCP Vegas is a TCP implementation which is a modification 
of Reno. It overcomes the problem of coarse grain timeouts 
by suggesting an algorithm which checks for timeouts at a 
very efficient schedule. Also it overcomes the problem of 
requiring enough duplicate acknowledgements to detect a 
packet loss, and it also suggest a modified slow start 
algorithm which prevent it from congesting the network. It 
does not depend solely on packet loss as a sign of congestion. 
It detects congestion before the packet losses occur. It does 
not use the loss of segment to signal that there is congestion. 
It determines congestion by a decrease in sending rate as 
compared to the expected rate, as result of large queues 
building up in the routers. Thus whenever the calculated rate 
is too far away from the expected rate it increases 
transmissions to make use of the available bandwidth, 
whenever the calculated rate comes too close to the expected 

Paper ID: NOV153105 1555



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611 

Volume 5 Issue 1 January 2016 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

value it decreases its transmission to prevent over saturating 
the bandwidth. 
 
ICTCP:Incast Congestion control for TCP in data center 
networks,this paper focuses on avoiding packet loss before 
incast congestion. It performs incast congestion avoidance at 
the receiver side by preventing incast congestion. The 
receiver side is a natural choice since it knows the throughput 
of all TCP connections and the available bandwidth[1].The 
receiver side can adjust the receive window size of each TCP 
connection, so the aggregate burstiness of all the 
synchronized senders are kept under control. This paper 
presented the design, implementation, and evaluation of 
ICTCP to improve TCP performance for TCP incast in data-
center networks. In contrast to previous approaches that used 
a fine-tuned timer for faster retransmission, they focussed on 
a receiver-based congestion control algorithm to prevent 
packet loss. ICTCP adjusts the TCP receive window based 
on the ratio of the difference of achieved and expected per-
connection throughputs over expected throughput and the 
available bandwidth. 
 
3. Motivation 
 

The many-to-one traffic pattern is common in today’s most of 
the data-center networks. Data centered networks may consist 
of applications like MapReduce and search, where many-to-
one traffic pattern is used. It uses distributed file systems, 
where the files are stored on multiple servers. When we want 
to use any file or access the data stored in files, it may be 
possible that multiple blocks of file are stored on multiple 
servers. When we are trying to fetch a multiple files of blocks 
stored on multiple servers at the same time, incast congestion 
happens. So it is essential to provide a congestion control 
mechanism to avoid the congestion. 
 
4. Proposed Approach 
 
Proposed system consist of mainly focusing on presenting 
efficient solution which can prevent packet loss before the 
incast congestion condition occurs in network rather than 
packet loss recovery after actual packet loss in existing cases. 
 
This proposed system is nothing but congestion avoidance in 
TCP based networks. This proposed approach presented to 
prevent incast TCP congestion over data center networks. We 
are presenting Cloud Incast congestion Control for TCP 
scheme on the receiver side using the concepts of multi 
threading to manage parallelism concepts of data 
communication in data center networks. This method not 
only reduces the costs required for router or switch 
modifications but also minimizes the working on sender and 
receiver nodes. Basically proposed method adjusts the TCP 
receive window proactively before packet loss occurs in 
network. The data center networks are independent TCP 
senders and receivers connected through the same ToR 
switch or cloud servers. 
 
In this system we are going to more real-time to claim the 
efficiency of proposed approach using the real time clouds 
through which TCP sender and receiver communicates. The 

performance of proposed approach is measured using 
goodput. 

 

 
Figure 2: System Architecture 

 
4.1 Algorithm 

 

Input 
k: No. of client's request 
n: No. of allowed request 
a[client][throughput]=[k=1 to k=n][throughput] 
p[client][priorities]=[k=1 to k=n][0] 

Algorithm 
Step-1. for(k=0;k<=n;k++) 

Server accept request from client 
Step-2. end for 
Step-3. Scheduling and serving by server to client 
Step-4. use sorting algorithm to set P[][] in 

descending order 
Step-5. for(i=0;i≤ lengthof(p);i++) 

server send data to receiver. 
Step-6. end for 
Step-7. Receiver send acknowledgement to server in 

response of data reception. 
Step-8. Halt. 

Algorithm explains the general steps of how the system 
works when there is possibility of congestion. First, multiple 
clients/senders send the data/request to the server/receiver. 
Server accepts these requests and apply multithreading to it 
such that one thread is assigned to each request. Whenever 
multiple request are there, one request is served at a time. So 
it avoids the congestion situation before it happens. System 
performance is measured in terms of goodput. Goodput is 
nothing but the application level throughput and calculated as 
no of useful information bits delivered by the network to a 
certain destination per unit of time. For solving the scalability 
issue data is stored at the cloud according to the priority and 
it is downloaded from the cloud server. 
 

5. Results 
 
Results show that goodput achieved in proposed system is 
better than the existing system. With no of senders 
increasing, goodput also increases. It drops for some 
connections due to the TCP timeout. Goodput is the 
application level throughput that is number of useful 

Paper ID: NOV153105 1556



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611 

Volume 5 Issue 1 January 2016 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

information bits delivered by the network to a certain 
destination per unit of time. As the amount of servers 

increasing, system achieves higher goodput. 

 

 
Figure 3: Result Graph 

 
6. Conclusion 
 
This system presents the congestion avoidance mechanism in 
TCP based networks. This proposed approach presented to 
prevent incast TCP congestion over data center networks. 
The system presents Cloud Incast Congestion Control for 
TCP (CICT)scheme on the receiver side using the concepts 
of multi-threading to manage parallelism concepts of data 
communication in data center networks. This method not 
only reduces the costs required for router or switch 
modifications but also minimizes the working on sender and 
receiver nodes. System achieves the better goodput or higher 
goodput with number of servers increasing. 
 
7. Acknowledgement 
 

The authors would like to thank the researchers as well as 
publishers for making their resources available and teachers 
for their guidance. We also thank the college authorities for 
providing the required infrastructure and support. Finally, we 
would like to extend a heartfelt gratitude to friends and 
family members. 
 

References 
 

[1] Haitao Wu,Zhenqian Feng, Chauanxiong Guo, 
Yongguang Zhang,”ICTCP:Incast congestion control 
for TCP in data center networks”,IEEE/ACM 
Transaction On Networking,Vol. 21,No. 2,April 2013.. 

[2] A. Phanishayee, E. Krevat, V. Vasudevan, D. Andersen, 
G. Ganger, G. Gibson, and S. Seshan, "Measurement 
and analysis of TCP throughput collapse in cluster-
based storage systems", inProc. USENIX FAST, 2008, 
Article no. 12. 

[3] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. 
Andersen, G. Ganger, G. Gibson, and B. Mueller, "Safe 

and effective fine-grained TCP retrainsmissions for 
datacenter communication", inProc. ACM SIGCOMM, 
2009, pp. 303-314. 

[4] M.Alizadeh, A.Greenberg, D.Maltz, J.Padhye ,P.Patel, 
B.Prabhakar, S. Sengupta, and M. Sridharan, "Data 
center TCP (DCTCP)", inProc. SIGCOMM, 2010, pp. 
63-74. 

[5] L. Brakmo and L. Peterson, "TCP Vegas: End to end 
congestion avoidance on a global internet",IEEE J. Sel. 
Areas Commun., vol. 13, no. 8, pp. 1465-1480, Oct. 
1995. 

[6] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. 
Chaiken, "The nature of data center traffic: 
Measurements analysis", inProc. IMC, 2009, pp. 202-
208. 

[7] E. Krevat, V. Vasudevan, A. Phanishayee, D. Andersen, 
G. Ganger, G. Gibson, and S. Seshan, "On application-
level approaches to avoiding TCP throughput collapse 
in cluster-based storage systems", inProc. 
Supercomput., 2007, pp. 14. 

[8] JC.Guo,H.Wu,K.Tan,L.Shi,Y.Zhang,andS.Lu,"DCell:A 
scalable and fault tolerant network structure for data 
centers", inProc. ACM SIGCOMM, 2008, pp. 75-86. 

[9] V. Jacobson, R. Braden, and D. Borman, `TCP 
extensions for high performance", RFC1323, May 
1992. 

[10] Y.Chen, R.Gri_th, J. Liu, R. Katz, and A. Joseph, 
"Understanding TCP incast throughput collapse in 
datacenter networks", inProc. WREN, 2009, pp. 73-82. 

[11] P. Mehra, A. Zakhor, and C. Vleeschouwer, "Receiver-
driven bandwidth sharing for TCP"', inProc. IEEE 
INFOCOM, 2003, vol. 2, pp.1145-1155. 

[12] Balveer Singh,"A Comparative Study of Different TCP 
Variants in Networks",in International Journal of 
Computer Trends and Technology(IJCTT),volume 4, 
Issue 8,August 2013. 

Paper ID: NOV153105 1557




