Acute Cerebral Infarct on Evolution in Middle Cerebral Artery Following Viper Snake Bite

Dungdung Ajit¹, Singh Gaurav Kumar²

Department of Medicine, RIMS, Ranchi, India

Abstract: Acute cerebral infarct on evolution is rare presentation of Viper snake bite. The clinical presentation depends on severity of envenomation and species of snake bite. We report a case of a 30-year-old female developed acute renal failure, disseminated intravascular coagulation followed by hemiplegia. CT scan revealed middle cerebral artery infarction on fourth day of snake bite. Cerebral infarct could be the differential diagnosis after viper snake bite.

Keywords: Cerebral Infarct, Viper snake bite, Hemiplegia.

1. Introduction

In India, more than 20 lakh snake bites are reported annually of which 35,000 to 50,000 people die. Viper bite is the most common snake bite in India. The clinical presentation includes local cellulitis, renal failure, disseminated intravascular coagulation, haemorrhagic manifestation and neurological manifestations. Coagulopathy when present is diagnostic of viper bite. In South Asia, viper bite have been rarely associated with cerebral infarct rather than haemorrhage.

2. Case Report

A 30-year-old female was brought to us, two days after an alleged history of snake bite on her right foot. The snake wasn’t identified. Initially she was treated at district hospital in first twenty four hour. During admission, at our hospital patient complained of decreased urine output, difficulty in speech along with deviation of mouth. (Fig-1). Local examination oedema, erythema, two fang marks visible on right foot without any bleeding from the site of bite. On neurological examination pupil bilateral reactive and bilaterally symmetrical. Patient was conscious and oriented, she had motor aphasia along with deviation of mouth left side. No evidence of motor weakness and bleeding manifestation.

Figure 1: Deviation of angle of mouth to left
Figure 2: C.T. brain showing massive infarct in the left MCA territory
On investigation clotting time was prolonged to 20 minutes, microscopic haematuria were absent fibrin degrading factor more than 2700 ng/ml [normal 8 -135ng/ml] thrombocytopenia [75000/cmm²] with serum creatinine 1.6mg electro cardiographs, echocardiography, Doppler ultrasounds of both carotid artery were normal. The patient received 20 vials polyvalent anti snake venom (ASVS) over 24 hrs. and four units of fresh frozen plasma, higher antibiotics, and injectable diuretics. However over next 2 days, she became confused developed with hemiplegia on right side. Her CT- scan revealed big infarct in left front-tempo-parietal regions affecting the lateral ventricle (figure-2). Thus, it was a diagnosed as a case of viper snake bite with stroke on evolution which follows disseminated intravascular coagulation and acute renal failure. Mannitol was added to above treatment regimen for 4-5 days, antiplatelet and anticoagulant were not started in view of deranged coagulation profile. Patient came to follow up after 1 week of discharge with residual motor aphasia persist but neurological deficit improved remarkably, fibrinogen degradation product was 40.5ng/ml blood urea 34mgm% and serum creatinine became 0.6mgm%.

3. Discussion

Viper bite is most common snake bite. The envenomation of viper bite commonly present with local cellulitis followed by abnormal coagulation Both procoagulation and anticoagulation effect of venom present in viper bite.

Very few case of cerebral infarction have been reported resulting from viper bite. Mosquario et al, reported only 2.6% cases that is 8 patients in 309 cases of viper bite studied. Bashir and jinkin reported patient in whom envenomation with Russell viper bite resulted in hemiplegia and aphasia. The possible cause of infarct in our patient may be due to toxic vasculitiesby endothelial damage by viper snake bite. Better outcome have been reported by early ASVS treatment by Thomas et al.

Viper venom contains complex toxin affecting haemostatic mechanism. In large doses it can cause massive intravascular coagulation leading to small and large vessel occlusion resulting in infarction. Direct action of venom on endothelial cell as reported by bashir. Haemorrhagin the complement mediated toxic component leading to vascular spasm, endothelial damage and increased vascular permeability resulting in vascular occlusion. Hypercoagulation due to procoagulation in venom such as arginine, esterase and hydrolase. hyper viscosity is mainly caused by hypo volume and hypoperfusion secondary to hypo perfusion contributes to vascular occlusion. The infarction is not related to inherent deficiency of protein c, s and antithrombin III.

4. Conclusion

Cerebral infarction can be one of the differential diagnoses of early neurological deficit after viper bite and better outcome can be expected by early ASVS treatment.

References


[6] Faridi TM, Tu AT, el-Asmar MF. Effect of cerastobin, a thrombinlike enzyme from Cerastes viper (Egyptian sand snake) venom, on human platelets. Haemostasis


Author Profile

Ajit Dung is Assistant Professor (medicine) R.I.M.S Ranchi, 834003

Gaurav Krsingh is Second year postgraduate (medicine)