A Study on Use of Recycled Polyethylene Terephthalate (PET) as Construction Material

Brajesh Mishra

M. Tech., Assistant Engineer, U.P. Cane Development Department, Lucknow, India

Abstract: The trend of annual consumption of various types of plastics is increasing tremendously all over the world. Huge quantities of plastic wastes are generated as a result of various manufacturing processes, industries and municipal solid wastes (MSW). This has created an alarming situation for disposal of plastic wastes in an eco-friendly way to protect the environment. In present scenario the management of disposal of solid wastes has become an important and vital issue across the world. It is due to scarcity of landfills and also increasing cost of disposal of waste plastic materials, has compelled to utilize the waste plastics in construction activities for its safe disposal. This study summarizes the experimental efforts on use of polyethylene terephthalate (PET) in road construction and cement concrete projects. Studies reveal that use of waste polyethylene terephthalate (PET) in bituminous concrete and cement concrete mixes resulted in improvement of certain properties and also in the economy of the cost. The use of new polymeric materials can be reduced by using polyethylene terephthalate (PET) in building materials avoiding adverse effect on environment.

Keywords: Bituminous concrete, building materials, cement concrete, polyethylene terephthalate (PET), recycling.

1.Introduction

Plastics play very important role in every aspect of our life. The waste generated from plastic articles has to be disposed in an eco-friendly way to avoid any environmental pollution. The highest content of plastic is present in containers and packaging material i.e. bottles, packaging, cups etc. Plastics are also present in articles like tires, building materials, furniture etc. and disposable medical devices. The use of plastic material is dependent on its specific properties mentioned as below;

- Low density, easy processing,
- Excellent thermal and electrical insulating properties,
- Good mechanical properties and chemical resistance,
- Low cost in comparison to other materials.

Waste plastic can be utilized in many ways. However, the two main direction should be mentioned:

- Using of plastic waste as alternate fuel in cement kilns and power plants and
- Material recycling of waste polymers

The municipal solid waste (MSW) generated in U.S. is about 200 Mega tons per year by U.S. Environmental Protection Agency (USEPA 1992) consists of about 38% paper product, 8% plastic and 5% carpet and textiles. In 1996 content of plastic raised to 12% in MSW. The world’s annual consumption of plastic material has increased from 204 million tons in the year 2002 to around 300 million tons in 2013. Moreover, production and consumption of polymers and plastics will be constantly growing in next year. The details are given in table-1.

Table 1: Types and quantity of plastics in MSW in U.S.A

<table>
<thead>
<tr>
<th>Type of plastic</th>
<th>Quantity in tons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low density polyethylene (LDPE)</td>
<td>5010000</td>
</tr>
<tr>
<td>High density polyethylene (HDPE)</td>
<td>4120000</td>
</tr>
<tr>
<td>Polypropylene (PP)</td>
<td>2580000</td>
</tr>
<tr>
<td>Polyethylene terephathalate (PET)</td>
<td>1700000</td>
</tr>
<tr>
<td>Others</td>
<td>3130000</td>
</tr>
</tbody>
</table>

The generation of municipal solid waste (MSW) in India is around 45 million tons annually with an average increase of around 2% every year. Plastic content is of the order of around 12% of the weight of MSW. The most plastics utilization are packaging products which are made of PET. The plastics which are used for modification of bituminous concrete can be divided into two types depending on their behavior on exposure to heat: 1) Thermoplastic polymers 2) Thermosetting polymers

The following polymers (e.g. resins, elastomers) which are used for modification of bituminous concrete are are classified as thermoplastic and thermosets.

Table 2: Thermosetting and Thermoplastic materials

<table>
<thead>
<tr>
<th>Thermoplastic</th>
<th>Thermosetting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyethylene terephthalate (PET)</td>
<td>Bakelite</td>
</tr>
<tr>
<td>Polypropylene (PP)</td>
<td>Epoxy resin</td>
</tr>
<tr>
<td>Polyvinyl acetate (PVA)</td>
<td>Melamine resin</td>
</tr>
<tr>
<td>Polyoxyethylene (PVC)</td>
<td>Polyester</td>
</tr>
<tr>
<td>Polystyrene (PS)</td>
<td>Polyeutathene</td>
</tr>
<tr>
<td>Low density polyethylene (LDPE)</td>
<td>Urea- Formaldehyde</td>
</tr>
<tr>
<td>High density polyethylene (HDPE)</td>
<td>Alkyd resin</td>
</tr>
</tbody>
</table>

The study presents a detailed review about use of waste PET in bituminous concrete mix of flexible pavement and in building concretes.

2. Polyethylene Terephthalate (PET)

Polyethylene terephthalate (PET) is thermoplastic in nature. It is also known by “polyester,” which often causes confusion, because polyester resins are thermosetting...
Utilization of Recycled Polyethylene Terephthalate (PET) in Engineering Materials: A Review

International Journal of Environmental Science and Development (volume 7, no. 2), 2016

Paper ID: NOV152906

Waste PET source can be categorized into three main streams:

a) Bottles - small problems with material recycling; problems related with impurities (e.g. glue on labels), different types additives used during production (e.g. stabilizers, pigments), molecular weight of PET, etc., which are affecting on repeatability of obtained products.

b) Foils - small problems with material recycling; problems related with additives used during production (e.g. stabilizers, pigments), molecular weight of PET, etc., which are affecting on repeatability of obtained products.

c) Cord from tires – huge problem with material recycling. Currently, this fraction of waste PET is used as alternative fuel. Example of waste tire cord is presented in Fig. 1 and its composition in Table III. While the cord can be significant and cheap source of valuable poly (ethylene terephthalate). The main problems during material recycling of waste tire cord are contaminations of ground tire rubber and metals.

PET with asphalt binders as a modifier for asphalt used at road constructions and as reinforcement material for concrete and other building materials by partial substitution for the fine aggregates (i.e. sand). These approaches are usually intended to improve the engineering properties and increase the service life of modified materials. In this way, it appears that it is a viable route contribution to both achieving economical benefits, and to decrease the environmental impact of waste tire cord.

Table 3: Composition of waste tire cord

<table>
<thead>
<tr>
<th>Compositions</th>
<th>Weight %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyethylene terephthalate (PET)</td>
<td>77.60</td>
</tr>
<tr>
<td>Polyamide (PA)</td>
<td>18.70</td>
</tr>
<tr>
<td>Polypropylene (PP)</td>
<td>3.70</td>
</tr>
</tbody>
</table>

4. Structure and Properties of PET

The properties and structure of Polyethylene terephthalate (PET) are as under:

- **Properties**

PET is hygroscopic, meaning that it absorbs water from its surroundings. However, with this "damp" PET is then heated, the water hydrolyzes PET, decreasing its resilience. Thus, before the resin can be processed in a molding machine, it must be dried. Drying is achieved through the use of a desiccant or dryers before the PET is fed into the processing equipment.

- **Molecular Structure**

Polyethylene terephthalate (sometimes written poly(ethylene terephthalate)), commonly abbreviated PET, is the most common thermoplastic polymer resin of the polyester family and is used in fibers for clothing, containers for liquids and foods, thermoforming for manufacturing, and in combination with glass fiber for engineering resins. Its chemical formula is denoted as (C10H8O4)n.
5. Utilization of PET in Flexible Pavements

Recycling of waste PET plastics can make significant contribution to the environment and economy from different aspects. It helps to reduce the exploitation of natural resources to reduce the environmental pollution level, saving energy and money, and it contributes to modifying the physical and engineering properties of construction materials such as asphalt and building concrete. Asphalt has been widely used in road pavement construction as the binder of aggregates. However, it is well recognized that asphalt mixture or coating layer shows severe temperature susceptibility such as high temperature rutting, medium temperature fatigue and low temperature cracking damage (Fig. 2). Therefore, asphalt mixture modification is sometimes used to improve its further application.

![Figure 4: (a) Rutting; (b) Fatigue cracking](image)

Improvements in asphalt properties sometimes can be achieved by either selecting the proper starting crude oil or by controlling the refinery processes aimed at making desired asphalts, which are both unfortunately very difficult to attain. Therefore, the popular method for improvement of asphalt quality is its modification. Air blowing makes asphalt harder. Fluxing agents or diluents oils are sometimes used to soften the asphalt. Another method that can significantly improve asphalt quality is the addition of polymers. Asphalt modification with polymers is a common method for improvement of rheological properties of asphalt. One very important property of the asphalt mixture is its ability to resist shove and rutting under long-lasting static and traffic loading repetitions. Therefore, asphalt stability should be suitable enough to handle traffic adequately. The lack of stability in an asphalt mixture means unraveling and flow of the road surface. Flow is the ability of hot mixture asphalt (HMA) pavement to resist gradual settlements and movements in the asphalt without cracking. The viscoelastic properties of asphalt are significantly affected by the chemical composition and hence they have a direct effect on asphalt performance. Pavements defects such as rutting at high temperatures, cracking at low temperature region and others are due not only to traffic loads but also to the capability of the asphalt concrete to sustain temperature changes. Increased traffic factors such as heavier loads, higher traffic volume, and higher tire pressure demand higher performance of road pavements. A higher performance pavement requires asphalt that is less susceptible to high temperature rutting or low temperature cracking, and has excellent bonding to stone aggregates. The uses of virgin polymers in asphalt to improve the characteristics of the resulting polymer modified asphalt have been accomplished for many years. Nevertheless, recently there is an interest in the substitution of commercial virgin material by recycled polymers e.g. shredded waste plastic containers made of PET. Reclaimed rubber obtained from waste tires has been also used with positive effects in pavements. Substitutions technique for asphalt in pavements, including the hot mix and the cold mix by polymers such as PET, is put into practice for the improvement of rutting resistance, thermal cracking, fatigue damage, stripping, and temperature susceptibility. They are used when extra performance and durability are desired. In many cases, they are selected to reduce life cycle costs. Polymer modified binders also show improved adhesion and cohesion properties. The high cost of polymers compared to asphalt means that the amount of polymer necessary for improved pavement performance should be as small as possible. From an environmental and economic point of view, it is possible to imagine the possibility of disposing of waste plastics such as PET bottles within road asphalts because similarity in performance has been found between recycled polymers and virgin polymers modified asphalt. Thus, the use of CR (crumb rubber) from used tires or thermoplastic polymers such as PET, PE, or EVA, as an asphalt-modifying agent may contribute to solve a waste disposal problem and to improve the quality of road pavements. Many polymers have been used as binder modifiers, and they can be classified into a number of groups, with advantages and disadvantages as asphalt modifiers. The main reasons for using asphalts with plastics are:

- Obtaining improved blends at low service temperatures and reducing cracking.
- Obtaining improved blends at high temperatures and reducing rutting.
- Increasing viscosity,
- Improving the stability and the strength of mixtures,
- Improving the abrasion resistance and fatigue resistance of roads, and oxidation and aging resistance,
- Reducing structural thickness and life costs of pavements.

It is well known that polymers can successfully improve the performance of asphalt pavements at almost all temperatures by increasing mixture resistance to fatigue cracking, thermal cracking and permanent deformation.

Use of PET in Flexible Pavements: Utilization of waste polymers in bituminous mixes of flexible pavements was carried out by Vasudevan et al. The methodology was simple. The author coated the stone aggregates with molten plastics. They concluded that due to plastic coating over aggregates reduced the porosity, moisture absorption and soundness got improved. It was further concluded by them that use of waste plastics in construction of flexible pavements was the right choice and has given a safe passage for disposal of waste polymers. The polymers which were used in modification of bituminous mixes as referred in literature are mainly low density polyethylene (LDPE), high density polyethylene (HDPE), polypropylene (PP), ethylene-vinyl acetate (EVA), acrylonitrile-butadiene-styrene (ABS), Polyethylene terephthalate (PET) and Polyvinyl Chloride (PVC). In 2007 improvement of bituminous concrete was investigated by Awwad and Hbeeb with use of polyethylene (PE). From their studies it was concluded that the best type of polyethylene to be used in bituminous mixes to coat the stone aggregates was low density polyethylene (LDPE), and high density
polyethylene (HDPE). The analysis of data showed that better engineering properties were achieved by use of grinded high density polyethylene (HDPE) in modification of bituminous mixes. The recommended percentage of additive was 12% by weight of bitumen content. The stability value was increased, density was slightly reduced and there was a slight increase in air voids and the voids of mineral aggregate. Polyethylene is the most popular and suitable material in the world and is used as additives for bituminous mixes. It possesses excellent chemical resistance, good wear resistance, good fatigue and economical as well. Fuente-Audén et al, have concluded that incorporation of polyethylene in bituminous mix should not exceed 5% by weight of bitumen content because the resulting viscosity will reduce the process-ability of the mixture. Addition of recycled PE improves the resistance to rutting, cracking and thermal fatigue. García-Morales et al., in their work, have used recycled EVA which was studied varying from 0 to 9% by weight of bitumen content. Results have indicated that the binder viscosity was increased at higher service temperatures improving road performance like resistance to rutting. Casey et al, have demonstrated that waste HDPE and LDPE were the most suitable and promising recycled materials as compared to recycled PET, PVC and ABS to be used in modification of bituminous mixes. They showed better results can be obtained by using ABS and also concluded that use of recycled HDPE and LDPE at 4% by weight of bitumen content is more suitable concentration for binder modification. A comparative study was performed by Cole et al, for modification of asphalt binder by using different plastic wastes like HDPE, LDPE, ABS, EBS and crumb rubber(CR) to achieve better results for asphalt binder. A number of researchers have investigated about use of PET, the most abundant waste plastic material collected from recycling from the household wastes can be used for additive for bituminous binder. The report of the study was also published in various publications during recent years. The application of PET in the form of granules pellet of 3 mm size was carried out by Hasseen et al. In this work PET granules pellet was blended as partial fine aggregate with 60/70 penetration grade bitumen and 12.5 mm aggregate grading at a temperature of 140-180°C. Final compaction was made by using Marshall Hammer with 50 blows on each side. The results obtained in the tests showed that aggregate replacement of 20% fine aggregates (2.36-4.75 mm) by volume with PET granules pellets as effective use to get the highest Marshall Quotient with lowest flow and higher stability value. In addition, PET has been found to be the most effective as asphalt additives due to its low glass transition temperature and semicrystallinity. A number of investigations were focused on the influence of fiber additives on the engineering properties of asphalt binder or asphalt mixture. The studies reveal that the mechanical properties of asphalt mixes that include various percentages of PET ranging from 0% to 10% with an increment of 2% were calculated and assessed with laboratory tests. The results showed that the optimum amount of PET was found to be 6% by weight of bitumen. Additionally, the incorporation of PET has also a significant positive effect on the properties of stone matrix asphalt (SMA) such as increasing viscosity and stiffness of asphalt at normal service temperatures. However, all applied amounts of PET additives did not increase the elasticity of asphalt significantly and on heating, they do not perform satisfactory. Plastic wastes can be used in flexible pavements either in form of aggregate replacement, binder modifier or as mixture reinforcement. The last option was selected by Moghaddam and Karim in their study when they investigated the effects of adding waste PET particles into the asphalt mixture. The results of the study showed that PET reinforced asphalt mixtures had higher stability value in comparison with the virgin mixture. In terms of the convenient quantity of the PET to be added, it was noted that the optimum value in case of stability was 0.4% PET. Moreover, adding higher amounts of PET into the mixture increased the flow values. In contrast, stiffness of the mixture was decreased, yet fatigue life was increased by adding higher amount of PET. Kalantar et al. (2010), have investigated the possibility of using polyethylene terephthalate as polymer additives in Bituminous Mix. The binders were prepared by mixing the PET in amount of 2%, 4%, 6%, 8%, and 10% by the weight of optimum bitumen at 150°C. Results showed better resistance against permanent deformations and rutting when compared to conventional binders. The result also showed that the addition of PET to bitumen increases the softening point temperature, and as the higher PET content increases the softening point temperature increases. This phenomenon indicates that the resistance of the binder to the effect of hot weather is increased and it will reduce the tendency of asphalt to soften in hot weather. Low Density Polyethylene (LDPE) was also used in asphalt mixes as an aggregate cement modifier. It was reported that Marshall Stability was increased by 60% and mix density was reduced by 15% with the replacement of 30% LDPE in form of 3.75-7.5mm particles with the size of 2.36-5mm.

Utilization of PET in Concrete

Concrete is the most frequently used construction material worldwide. However, it is weak in tensile strength, low durability, heavy weights, and low energy absorption. These points have prompted civil engineers to make use of conventional reinforcement to better the tensile strength and ductility of concrete. The addition of fibers to concrete would act as crack inhibitors and substantially improve the tensile strength, cracking resistance, impact strength, wear and tear, fatigue resistance and ductility of the modified concrete. The concept of using fibers in concrete as reinforcement is not new one. For last three decades numerous studies were performed on Fiber Reinforced Concrete (FRC). In the early 1960's only straight steel fibers were used and the major improvement occurred in the areas of ductility and fracture toughness, the flexural strength increases were also reported. In the beginning fiber reinforced concrete was primarily used for pavements and industrial floors. Currently, the fiber reinforced cement composite is being used for wide variety of applications including bridges, tunnels, canal linings, hydraulic structures, pipes, explosion resistance structures, safety valves, cladding and rolled compacted concrete.

Use of PET in Concrete: Studies reveal that the toughness of concrete can be improved by addition of a small fraction usually 0.5-2% by volume of short fibers to concrete mix during mixing. In the fracture process of fiber reinforced concrete (FRC), fibers stimulates the bridging between cracks in the matrix and thus provide resistance to crack propagation and crack opening before being pulled out or stressed to...
rupture. After extensive studies it is accepted that fiber reinforcement is responsible for improvement in tensile properties of concrete. Some other benefits of FRC are as under:

- Improved fatigue strength
- Wear resistance and
- Durability
- Reduced section thickness
- Cracking can be effectively controlled
- Lighter structure
- Longer life

It has become a common practice to use FRC in various applications like buildings, highway overlays, bridges and airport runways. It is used with traditional steel in load bearing structures. Small quantities of synthetic fibers are generally used in reinforcement for floor slabs in building construction. Many fibers have been used for concrete reinforcement and some are widely available for commercial applications. They include steel, glass, carbon, nylon, polypropylene and others. Studies have indicated that many forms of fibers recovered from various MSW streams are suitable for concrete reinforcement. The recycled fibers are of lower cost as compared to virgin fibers. In addition to the advantages of recycling MSW such as plastics, the incorporation of plastics such as PET wastes in concretes is sometimes essential for the creation of construction building materials with a number of characteristics. In present scenario the role of light weight aggregate has become very important. The reduction in unit weight of concrete is one of the prime goal of concern for earthquake resistant structures. However, the cost of artificial lightweight aggregate production is high due to requirement of high incineration temperature or thermal treatment. Studies have shown that plastic wastes used in lightweight concrete were PP, PE, PET and PS. The PET bottles were ahead of the wastes with its high increasing speed of consumption. In order to avoid a lot of experimental studies were conducted by researchers. The PET bottles in concrete reinforcement, new ways of construction engineers intend to utilize synthetic concrete which is produced by partially replacing of cement based binder with polymer resins. Comparatively, the cost of polymer concrete is still high because of high cost of polymer resins. However, waste PET bottles recycling combined with production of polyester resin decreases the cost of new manufacture when compared to conventional polyester resin production. Unsaturated polyester resin have been used to produce a good-quality synthetic concrete. However, the cost of producing polymer concrete from waste plastic is still high. The other alternative method reported by Silva et al. in 2005 and Ochi et al. in 2007 propose the use of waste PET bottles in the form of PET fibers to produce a lower-in-cost fiber reinforced concrete. The disadvantage of such method is the small volumetric amount of fiber content in the fiber reinforced concrete which is between (0.3 - 1.5%). In this way, only small of such waste may be utilized. Using of shredded waste PET bottles directly as aggregate in the concrete or mortar production is considered the most economical use of waste PET bottles in concrete, thus, provide benefits in waste disposal and reduce pollution of environment since natural mineral aggregates resources remain unused. Limited research has been carried out on using waste PE granules as aggregate in concrete or mortar. In these studies, PET and the other plastic wastes (PE and PP) were used together by partially replacing of mineral aggregates. Marzouk et al. (2007) used waste PET granules as aggregate in lightweight concrete. Authors concluded that, plastic bottles shredded into small PET particles may be used successfully as substitution of aggregates in cement concrete composites. Reuse of PET and other plastics as well as of CR wastes in building industry is an effective approach in both preventing environmental pollution and designing economical buildings. The increase in acknowledging and utilizing environmentally friendly, low cost and lightweight construction materials in building industry call for the need for searching more novel, flexible and versatile composites; as it was proposed in the work. Some researchers found that the most important aspects of novelty might be the development of integrated insulation products such as waste polymer added mortars, concretes and bricks. As a part of this interest, establishment of an appropriate thermal test technique is also a challenge for developing and manufacturing of such products. Some of the popular applications concerning the concrete reinforcement particularly for the Portland cement concrete in the last few decades is the incorporation of crumb rubber from used tires admixture. Works presented excellent overviews of such studies. Waste PET bottles have been earlier been used in making lightweight concrete to improve mechanical properties. Recycling for forming thermal-insulating materials in the building industry has been another feasible solution which related to enhancement of concrete’s thermal insulation performance was carried out using waste shredded PET bottle and pieces of CR. They are added into ordinary concrete mix. Five different concrete samples (one neat concrete, one concrete with scrap rubber pieces and three concretes with waste PET bottle pieces were considered. Thermal insulation performances of these samples were examined by the adiabatic hot-box technique, recently proposed by the authors. The results revealed that proper addition of selected waste materials into concrete can significantly reduce heat loss or improve thermal insulation performance. The degree of improvement in thermal insulation is found to vary with the added waste material and geometry of shredded-pieces. Flexural strength of concrete is another property of concrete which was an aim of a study by Venu and Rao. They have conducted an experimental investigation on flexural strength of fiber reinforced concrete slabs and compared to plain concrete slabs. They involved the examination of five different slabs two contained steel fibers, two with synthetic macro fibers, namely waste PET and waste HDPP and one plain concrete slab. They were (2.2 x 2.2)m in size and nominal thickness of 127 mm after being casted. The authors found that ultimate load carrying capacity of concrete increased by 4.62% with 1% HDPP fiber and by 9.11% with 1% PET fiber; the compressive strength of concrete increased by 4.2% with 1% HDPP fiber and 5.63% with 1% PET fiber, and load carrying capacity of concrete in flexure was increased by using both fibers when compared to plain concrete slabs. In a similar issue, flexural behavior of small steel fiber reinforced concrete slabs studied by Ali and Majid. They found that the addition of steel fibers in the concrete improves the energy absorption capacity of slabs. In addition to the aforementioned, Shaikh Faiz Uddin Ahmed et
al. investigated strain hardening and multiple cracking behavior of hybrid fiber reinforced cement composites containing different hybrid combinations of steel and polyethylene (PE) fibers under four point bending. Consequently, hybrid combination of 1.5% steel and 1.0% polyvinyl alcohol (PVA) exhibited best performance in terms of higher flexural strength, 0.5% steel and 2.0% PE exhibited highest deflection and highest energy absorption capacities. The behavior of glass fiber reinforced concrete slabs was studied by Ombres et al. As a result, they found that the ultimate capacity of slabs increases with the amount of GFRP rebars while Andrea and Kanrod found that the compressive strength and ductility are increased by using fibers, when conducting experiments on concrete using different fibers like steel, glass, carbon and hemp.

Ms K. Ramadevi and Ms R. Manju have investigated the possibility of using the waste PET bottles as the partial replacement of aggregate in Portland cement. In their investigation, 0.5%, 1%, 2%, 4% and 6% volume of sand was replaced by PET bottle fibers. Based upon the experimental results of this study, the following conclusions were drawn:

- The compressive strength and split tensile strength were increased up to 2% replacement of the fine aggregate with PET bottle fibers and it gradually decreased for 4% and 6% replacements,
- The flexural strength increased up to 2% replacement in the fine aggregate with PET and it gradually decreased for 4% and remains the same for 6% replacements,
- The replacement of the fine aggregate with 2% PET bottle fibers was reasonable than other replacement percentages like 4% and 6% as the compression and split tensile strength reduces gradually.

Karim et al. studied the structural behavior of polymer concrete (PC) beams using PET in the concrete. Their result showed that the beams exhibited higher strength and more ductility than base concrete beams, also the weight of PC beams was reduced. Ms. K. Ramadevi and Ms. R. Manju have investigated the possibility of using the waste PET bottles as the partial replacement of coarse aggregate in Portland cement. In their investigation, 0.5%, 1%, 2%, 4% and 6% volume of sand was replaced by PET bottle fibers. Based upon the experimental results of this study, the following conclusions were drawn:

- The workability property of concrete was affected in WPFRC.
- The maximum percentage increase in compressive strength, split tensile strength and flexure strength at 1% of fiber content compared to control concrete.
- The dry density was reduced and made concrete light weight.
- The behavior of WPFRC was found ductile due inclusion of fibers.
- The optimum strength was observed at 1% of fiber content for all types of strengths.

7. Conclusions

The following points can be drawn from the information collected from various scientific literatures are as under:

1) Based on researches, experimental works and scientific reports proved that plastic wastes and especially recycled PET may be applied for modifications of bituminous concrete mix of flexible pavement and also in building concretes.
2) Research studies proved that the properties of flexible pavements were improved, resulting in better performance and stability of road pavement by use of PET in Bituminous concrete.
3) The addition of polymer fibers in concrete works as a reinforcement which in turn improves the performance and strength of concrete.
4) Last but not least the problem of safe disposal of waste plastic materials can be easily solved by utilizing them as a construction material in a eco-friendly way.

References

Author Profile

Brajesh Mishra received the B.E. and M. Tech. degrees in Civil Engineering from Madan Mohan Malviya Engineering College, Gorakhpur, India (Now- MMMUT) in 1988 and KNIT, Sultanpur, India in 2014 respectively. At present working with U.P. Cane Development Department, Lucknow, responsible for construction of road projects.
Utilization of Recycled Polyethylene Terephthalate (PET) in Engineering Materials: A Review

M. Sulyman, J. Haponiuk, and K. Formela

Abstract—In general, the quantity of plastics of all types consumed annually all over the world has been growing in a phenomenal way. The packaging, consumer products, construction, industries and municipal solid waste (MSW) generate numerous waste plastic materials. The increasing awareness about the environment has tremendously contributed to the concerns related with disposal of the generated wastes. It is believed that the management of PET waste is one of the major environmental concerns in the world. Due to limited space on landfills and increasing costs of plastics, utilization of waste plastics has become an attractive alternative for disposal. This paper presents a summary of experimental efforts on the utilization of polyethylene terephthalate (PET) in civil engineering projects, mainly in road pavement, cement and concrete. Presented data indicate that use of waste PET for modification of asphalt, cement and concrete improved their selected properties, which makes economical this approach. Furthermore, using of waste PET in building materials reduces usage of new polymeric materials, which has significant effect on environment pollution (e.g. emission of carbon dioxide, waste disposal problems, etc.).

Index Terms—Bitumen, building materials, concrete, PET, recycling.

I. INTRODUCTION

Plastics are commonly used substances which play an important role in almost every aspect of our lives. The widespread generation of plastic waste needs proper end-of-life management. The highest amount of plastics is found in containers and packaging’s (i.e. bottles, packaging, caps etc.), but they also are found in durbars (e.g. tires, building materials, furniture, etc.) and disposable goods (e.g. medical devices) [1]. Diversity of plastics applications is related with their specific properties, low density, easy processing, good thermal and electrical insulating properties and low cost (in comparison to other materials). Post-production and post-consumer plastics are utilized in a wide range of applications. However in this field two main direction should be mentioned: 1) using of plastic waste as alternative fuel (burning) to cement kilns and power plants and 2) material recycling of waste polyesters.

According to the U.S. Environmental Protection Agency (USEPA 1992), the municipal solid waste (MSW) generated in the United States is 260,000,000 tons/year, among them about 38% is being paper products, 8% are plastic, and 3% are

I. INTRODUCTION

Plastics are commonly used substances which play an important role in almost every aspect of our lives. The widespread generation of plastic waste needs proper end-of-life management. The highest amount of plastics is found in containers and packaging’s (i.e. bottles, packaging, caps etc.), but they also are found in durbars (e.g. tires, building materials, furniture, etc.) and disposable goods (e.g. medical devices) [1]. Diversity of plastics applications is related with their specific properties, low density, easy processing, good thermal and electrical insulating properties and low cost (in comparison to other materials). Post-production and post-consumer plastics are utilized in a wide range of applications. However in this field two main direction should be mentioned: 1) using of plastic waste as alternative fuel (burning) to cement kilns and power plants and 2) material recycling of waste polyesters.

According to the U.S. Environmental Protection Agency (USEPA 1992), the municipal solid waste (MSW) generated in the United States is 260,000,000 tons/year, among them about 38% is being paper products, 8% are plastic, and 3% are

carpet and textile [2]. In the year of 1996, content of plastics in MSW raised to 12% [3]. The world’s annual consumption of plastic materials has increased from around 204 million tons in the 2002 to nearly 300 million tons in 2013 [4]. Production and consumption of plastics and polymers will be constantly growing in next year. In Table 1 estimated data about types and quantities of polymers in MSW stream generated annually in United States are presented. As we can see main stream of plastic waste in MSW are thermoplastics polymers polyethylene, polypropylene, poly(vinyl chloride) and polyethylene terephthalate (PET).

<table>
<thead>
<tr>
<th>Type of plastic</th>
<th>Quantity (1000 tons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low density polyethylene (LDPE)</td>
<td>5000</td>
</tr>
<tr>
<td>High density polyethylene (HDPE)</td>
<td>4120</td>
</tr>
<tr>
<td>Polypropylene (PP)</td>
<td>2380</td>
</tr>
<tr>
<td>Polystyrene (PS)</td>
<td>1900</td>
</tr>
<tr>
<td>Polyethylene terephthalate (PET)</td>
<td>1700</td>
</tr>
<tr>
<td>Others</td>
<td>320</td>
</tr>
</tbody>
</table>

In India approximately 40 million tons of the municipal solid waste is generated annually, with evaluated increasing at a rate of 1.5 to 2% every year. Plastics constitute to around 12.3% of all MSW. It is worth to notice, that the most of plastics fraction are drinking bottles which are made mainly of PET [7].

Plastic (polymers) used for applications in bitumen modifications, can be subdivided into two main types depending on their behavior after exposure to heat. First type are thermosetting polymers (e.g. resins, elastomers) which are cured during heating. Three-dimensional structure of cross-linking bonds formed during curing unable softening of polymer mixture and its easy re-processing. Second type are thermoplastics polymers. This type of polymers can be shaped and designed in new shapes using heat. In contrary to thermosetting polymers this process is reversible. Examples of aforementioned materials are shown in the Table II [8]. The plastics used for bitumen modification may be also classified as thermoplastic and thermosets.

II. POLYETHYLENE TEREPhTALATE (PET)

Polyethylene terephthalate (PET) is the most commonly used thermoplastic polymer. It is often called just "polyester," which often causes confusion, because polyester resins are thermosetting materials. PET is a transparent polymer, with a good mechanical properties and good dimensional stability under variable load. Moreover, PET has good gas barrier properties and good chemical resistance [9].

A. Advantages are the properties of PET caused its widespread application in the form of bottles, thermally stabilized films (e.g. capacitors, graphics, film base and recording tapes etc.) and electrical components. PET is also used for production of fibers for a very wide range applications in textile industry.

PET belongs to thermoplastics with excellent physical properties [10]. It constitutes around 18% of the total polymers produced worldwide and over 60% of its production is used for synthetic fibers and bottles, which consume approximately 30% of global PET demand [11].

III. SOURCES OF PET WASTES

Waste PET source can be categorized into three main streams: a) Bottles - small problems with material recycling; b) Small problems with material recycling; and c) Small problems with material recycling. This paper presents a detailed review about using of waste PET in road pavement asphalt and also building concretes.

This paper presents a detailed review about using of waste PET in road pavement asphalt and also building concretes.

Table II: Compositions of wastes tire cord

<table>
<thead>
<tr>
<th>Compositions</th>
<th>Weight percent (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyethylene terephthalate (PET)</td>
<td>23</td>
</tr>
<tr>
<td>Polyethylene (PE)</td>
<td>18.7</td>
</tr>
<tr>
<td>Polypropylene (PP)</td>
<td>3.2</td>
</tr>
</tbody>
</table>

IV. UTILIZATION OF PET IN ASPHALT PAVEMENT

Recycling of waste PET plastics can make significant contribution to environment and economy from different aspects. It helps to reduce the exploitation of natural resources to reduce the environmental pollution level, saving energy and money, and it contributes to modifying the physical and engineering properties of construction materials such as asphalt and building concrete.

Asphalt has been widely used in road pavement construction as the binder of aggregates [15]. However, it is well recognized that asphalt mixture or coating layer shows severe temperature susceptibility such as high temperature rutting, medium temperature fatigue and low temperature cracking damage [2]. Therefore, asphalt mixture modification is commonly used to improve its further application.
asphalt quality is its modification. Air blowing makes asphalt harder. Flooding agents or deem oil are sometimes used to soften the asphalt. Another method that can significantly improve asphalt quality is the addition of polymers [17].

Asphalt modification with polymers is a common method for improvement of rheological properties of asphalt [18]. A very important aspect of the asphalt mixture is the ability to resist shearing and rutting under long-lasting traffic and traffic loading repetitions. Therefore, asphalt stability should be enhanced to enable traffic adequately. The lack of stability in an asphalt mixture means uneven settling and flow of the road surface. Flow is the ability of hot mixture asphalt (HMA), with recycled polymers, to gradually settle and movements in the subgrade without cracking [19].

The viscoelastic properties of the asphalt are significantly affected by the chemical composition and hence they have a direct effect on asphalt performance. Pavements defects such as rutting at high temperatures, cracking at low temperature region and others are due not only to traffic loads but also to the capability of the asphalt concrete to sustain temperature changes. Increased traffic factors such as heavier loads, higher traffic volume, and higher tire pressure demand higher performance of road pavements. A higher performance pavement requires asphalt that is less susceptible to high temperature rutting or low temperature cracking, and has excellent bonding to stone aggregates.

The use of virgin polymers in asphalt to improve the characteristics of the resulting polymer modified asphalt have been accomplished for many years [19]. Nevertheless, recent developments in the substitution of commercial virgin material by recycled polymers e.g. shredded waste plastic containers made of PET. Reclaimed rubber obtained from waste tires has been also used with positive effects in pavements [19].

Substitutions technique for asphalt in pavements, including the hot mix and the cold mix by polymers such as PET, is put into practice for the purpose of rutting resistance, thermal cracking, fatigue damage, striping, and temperature susceptibility. They are used when extra performance and durability are desired. In many cases, they are selected to reduce life cycle costs [17]. Polymer modified binders also show improved adhesion and cohesion properties [20].

The high cost of polymers compared to asphalt means that the cost of polymer needed for improved pavement performance should be as small as possible. From an environmental and economic point of view, it is possible to imagine the use of polymer binders plastics such as PET bottles within road asphalts because similarity in performance is found between recycled polymers and virgin polymers modified asphalt. Thus, the use of CR (contaminated rubber) used from tires or other thermoplastic polymers such as PE, PET, or EVA, as an asphalt-modifying agent may contribute to solve a waste disposal problem and to improve the quality of road pavements [18]. Many polymers have been used as binder modifiers, and they can be classified into a number of groups, each with advantages and disadvantages as asphalt modifiers [17].

The main reasons to modify asphalts with plastics are:
1. obtaining softer blends at low service temperatures and reducing cracking,
2. obtaining stiffer blends at high temperatures and reducing rutting, 3. reducing viscosity, 4. increasing the stability and the strength of mixtures, 5. improving the abrasion resistance and fatigue resistance of binders, and 6. oxidation and aging resistance, 6. reducing structural thickness and life costs of pavements [21].

It is well known that polymers can successfully improve the performance of asphalt at all temperatures by increasing mixture resistance to fatigue cracking, thermal cracking and permanent deformation [22].

A. Case Studies

Vasudevan et al. [23] studied the utilization of waste polymers at production of flexible pavements. In presented studies, authors coated the stone aggregates with melt waste plastics. They concluded that the coating of aggregates in asphalt mixes reduced the porosity, absorption of mixture and improved soundness. They found that the use of waste plastics for flexible pavement was one of the best methods for easy disposal of waste plastics.

Regarding the use of polymer (plastic) wastes for asphalt modification, those mentioned in the literature are mainly low density polyethylene (LDPE) [24], high density polyethylene (HDPE) [25], polypropylene (PP) [26], ethylene-vinyl acetate (EVA) [27], [28], acrylic-butadiene-styrene (ABS) [26], polyethylene terephthalate (PET) [29] and polyvinyl chloride (PVC) [30]. 2003, An interesting link between asphaltic materials were studied with use of the conventional asphalt and the one of a commercial modified binder. The characterization of the different asphalt modified with 5% of each one of the studied polymers demonstrated that it is possible to obtain similar properties, or even better, than those of commercial modified asphalt. In fact, it was observed that: SBS, HDPE and EVA are the most promising polymers to increase the softening point of the modified binder; HDPE and EVA are the polymers with higher influence in the penetration test results; SBS, EVA and SR (crackers) presented the best performance in relation to resistance; all modified asphalts, excluding those with ABS and CR, only reach the proper viscosity to produce asphalt mixes near or above 180°C; including polypropylene (PP), PET, ABS and EVA have a good dispersion in the asphalt, whereas SBS, ABS and CR are difficult to be mixed in the asphalt. This phenomenon was also observed with PE and PET, which are less able in affecting on their fluidity by dispersibility in asphalt matrix.

PET is the most abundant plastic waste material collected for recycling from the household waste stream as mentioned by Action Program (WRAP) survey [35], may be used as additive and modifier for asphalt binder. This was investigated by many researchers and many studies and scientific studies on this subject were published in the last years.

The application of waste PET; a thermoplastic polymer resin of the polyester family, in the form of granules pellet of 3 mm size was part of a study carried out by Hassanen et al. [36]. They blended the waste PET as a partial binder with a modified REA with an asphalt binder (from 0 to 30% penetration grade asphalt and 12.5mm aggregate grading) at (140 - 180) °C and then compacted it using a ballast stone with 50 blows on each side. A significant improvement was observed as the aggregate replacement of 20% (the aggregate (2.36 - 4.75 mm) by volume with PET granulates (5% total weight of the asphalt mix) was effective to get the highest Marshall Quotient with the lowest flow and the highest stability. In addition, PET has been found to be the most effective polymer additives due to its low glass transition temperature and smectocrystallinity [19].

A number of investigations were focused on the influence of fiber additives on the engineering properties of asphalt binder or asphalt mixture. In SMA, the hot asphalt is coated over hot stone aggregate mixture, laid and rolled. Asphalt acts as a binder. The significant disadvantages of SMA mixtures belong to the action of water, which penetrates and causes reflective cracks on the pavement, when standing over the roads. The use of anticracking agents has a limited use only and the process also increases the cost of road construction [37]-[40]. The use of virgin or waste plastics and plastic coated aggregates to improve the performance of asphalt against this defect has been studied. The improvements of the asphalt mixtures were done in a number of attempts by incorporating various types of asphalts binders, e.g., HDPE, LDPE, EVA, ABS and CR (crush rubber), in order to improve the properties of the resulting asphalt binders. The performance of recycled asphalt binders with recycled plastics was compared with that of the conventional asphalt and the one of a commercial modified binder. The characterization of the different asphalt modified with 5% of each one of the studied polymers demonstrated that it is possible to obtain similar properties, or even better, than those of commercial modified asphalt.
incorporation of PET has also a significant positive effect on the properties of SMA such as increasing viscosity and stiffness of asphalt at ambient and elevated temperatures. However, all added amounts of PET additives did not increase the elasticity of asphalt significantly and on heating, they do not perform satisfactorily [53].

Using plastic materials in road pavement can be either in form of aggregate replacement, binder modifier or mixture reinforcement. The last option was selected by Moghadam and Asadi [13] when they investigated the effects of adding waste PET particles into the asphalt mixture. The results of the study showed that PET-reinforced asphalt mixtures had higher stability value in comparison with the virgin mixture. In terms of the convenient quantity of the PET to be added, it was noted that the optimum value in case of stability was 0.4% PET. Moreover, adding higher amounts of PET into the mixture decreased the flow value. In contrast, stiffness of the mixture was decreased, yet fatigue life was increased by adding higher amount of PET.

Khalatbari et al. [20], have investigated the possibility of using polyethylene terephthalate as polymer additives in bituminous hot mix. The binders were prepared by mixing the PET in amount of 2%, 4%, 6%, 8% and 10% by the weight of optimum bitumen at 150°C. Results showed better resistance against permanent deformations and rutting when compared to conventional binders. The result also showed that the addition of PET to bitumen increases the softening point value, and at the higher PET content increases the softening point temperature of the asphalt. This phenomenon indicates that the thickness of the binder to the effect of these is increased and it will reduce its tendency to soften in hot weather.

Low Density Polyethylene (LDPE) was also used in asphalt mixtures as an aggregate replacement. It was reported that Marshall Stability was increased by 250%, and mix density was reduced by 13.4% in their study of 30% LDPE in form of aggregates together with the size of 2.36-5.5mm [13].

V. UTILIZATION OF WASTE PET IN CONCRETE

Concrete is a heterogeneous composite material made up of cement, sand, and coarse aggregate and water mixed in a desired proportion based on the strength requirements. Concrete is the most frequently used construction material worldwide. However, it is characterized with a number of defects such as low tensile strength, low ductility, heavy weights, and low energy absorption [54]. These main disadvantages have triggered civil engineers to use only conventional reinforcement to increase the tensile strength and ductility of concrete.

The addition of fibers to concrete would act as crack inhibitors and substantially improve the tensile strength, crack resistance, impact resistance, fatigue resistance and durability of the modified concrete. The concept of using fibers in concrete as reinforcement is not new one. For last three decades numerous studies were performed on Fiber Reinforced Concrete (FRC) and in the early 1960’s only straight steel fibers were used and the major improvement occurred in the areas of ductility and fracture toughness, the flexural strength increments were also reported. In the beginning fiber reinforced concrete was primarily used for precast concrete products and industrial floor. Currently, the fibrous reinforced cement composite is being used for wide variety of applications including bridges, tunnels, canal linings, hydraulic structures, pipelines, explosion resistance structures, safety valves, cladding and lined corrosive concrete [51].

A. Case Studies

A number of scientific reports [56-60] concluded that an effective way to improve the toughness of concrete is adding a small fraction (usually 0.5 – 3% by volume) of short fibers to the concrete mix during mixing. In the fracture process of fiber reinforced concrete (FRC), fibers stimulate the bridging between cracks in the matrix and thus provide resistance in crack propagation and crack opening before being pulled out or stressed to rupture. For extensive studies it is widely reported that such fiber reinforcement can significantly improve the tensile properties of concrete.

Other benefits of FRC include improved fatigue strength, wear resistance, and durability. Using FRC instead of conventional concrete, section thickness can be reduced and cracking can be effectively controlled, resulting in lighter structures with longer life expectancy. FRC is currently being used in many applications, including buildings, highways, railways, bridges, and dams [57-59]. In load bearing applications it is generally used along with traditional steel reinforcement [61]. In building construction it has become a more common practice to use small quantities of synthetic fiber reinforcement without steel reinforcement. This phenomenon indicates that the thickness of the binder to the effect of these is increased and it will reduce its tendency to soften in hot weather.

Low Density Polyethylene (LDPE) was also used in asphalt mixtures as an aggregate replacement. It was reported that Marshall Stability was increased by 250%, and mix density was reduced by 13.4% in their study of 30% LDPE in form of aggregates together with the size of 2.36-5.5mm [13].