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Abstract: The present study was conducted to investigate the beneficial effects of taurine (TAU) on glucose and lipid metabolism and 
its positive roles in the correction of oxidative stress diabetes-related complications in STZ diabetic rats. Diabetic rats showed significant 
(P<0.05) increase in the levels of glucose, HbA1c, AST, ALT, LDH, liver and kidney weights, urea, uric acid, creatinine and significant 
decrease in the levels of body and pancreas weights, insulin, pancreatic amylase, hexokinase, liver and muscle glycogen, total protein, 
albumin, antioxidant enzymes and HDL-C. Also, higher levels of cholesterol, TG, total lipids, LDL-C and MDA were noticed in diabetic 
rats. The taurine administration (50 mg/kg) showed antihyperglycemic effect as indicated by reduced glucose levels, HbA1c and 
improved insulin level and carbohydrate hydrolyzing enzymes. In addition, taurine supplementation normalized liver function and 
inhibited lipid prfile alterations while, kidney weight, urea, creatinine, uric acid, total protein and albumin levels were partially 
improved. The obtained results revealed that taurine exhibited an inhibitory effect on oxidative stress indices (MDA) and partially 
improved antioxidantlevels. Taurine could have potential as a pharmaceutical drug for diabetes mellitus (DM). Additional study is 
needed to investigate whether taurine has the same beneficial effects in human diabetic patients. 
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1. Introduction 
 
Diabetes is a complex, chronic illness that requires 
consistent medical care and treatment to help control 
blood sugar levels and prevent acute or long-term 
complications of the disease, such as kidney failure and 
amputations [1]. It is growing with a fast rate and is likely 
to affect 340 million people, which is expected to reach 
552 million in 2030 [2], consequently, diabetes presents a 
major challenge to healthcare systems around the world. 
 
Concerning the terrible increase in the worldwide diabetic 
population, there is a need for new therapies that are more 
effective with minimum adverse effects [3]. Many oral 
antihyperglycemic agents have significant side effects and 
some are ineffective in chronic diabetic patients [4]. In 
spite of the introduction of hypoglycemic drugs, diabetes 
and related complications continue to be a major medical 
problem [5]. Thus, there is an increasing need of new 
natural antihyperglycemic products especially 
nutraceuticals with less side effects, safe, and high 
antihyperglycemic potential. 
 
Taurine (2-aminoethylsulphonic acid, TAU) is a non-
protein amino acid present in nearly all animal tissues and 
the most plentiful free intracellular amino acid in human 
cells [6]. The main source of taurine in vivo is dietary 
intake and biosynthesis. Endogenous production of taurine 
is insufficient, so that it needs to be provided through the 
diet. Taurine, the end product of L-cysteine metabolism 
has shown capacity in protecting from various free 
radicals associated with pathological conditions. It exerts 
anti-inflammatory, neuromodulator [7], immunomodulator 
[8] and it has been used as a treatment for alcoholism [9]. 
In addition, this conditionally essential aminoacid is also 

an authenticated potent scavenger of the hydroxyl radical, a 
membrane stabilizing agent and as a detoxifying agent [10]. 
Taurine is now thought to play a more important role in human 
nutrition, and dietary intake of taurine has been linked to 
several beneficial health outcomes in various diseases and 
medical conditions [11].  
 
In the present study, we have evaluated taurine antidiabetic 
activity and its positive roles in the correction of oxidative 
stress diabetes-related complications in STZ diabetic rats.  
 

2. Materials and Methods 
 
2.1. Animals 

 
Male Wistar rats (200-250 g), were obtained from the Faculty 
of Medicine, Alexandria University, Egypt. The animals were 
held in an air conditioned room (22 ± 3°C) with 55 ± 5% 
humidity and a 12-hour light/dark cycle. They were fed with a 
standard diet and had free access to water. The local 
committee approved the design of the experiments and the 
protocols were carried out according to the guidelines of the 
National Institutes of Health (NIH).  
 
2.2. Chemicals 

 
Streptozotocin (STZ) and taurine (TAU) were purchased from 
Sigma–Aldrich Chemical Company (St. Louis, MO, USA). All 
other chemicals and reagents used were of analytical grade. 
 
2.3. Induction of Diabetes:  
 
Diabetes was induced by administration of a single 
intraperitoneal injection of 40 mg/kg body weight STZ which 
was prepared freshly. Three days after administration of STZ, 
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serum glucose levels were determined. Only rats with 
fasting blood glucose over 250 mg/dl [13] were 
considered diabetic and included in the experiments. 
 
2.4. Experimental Design 

 
40 male rats were randomly divided into four groups (10 
rats/group) as follows: 
Group 1: Animals of this group were injected with 0.1ml 

of citrate buffer (pH: 4.5). 
Group 2: Animals of this group were injected 

intraperitoneally with TAU at dose 50 mg/kg 
body weight for 15 days [14].  

Group 3: Animals of this group were injected 
intraperitoneally with STZ at single dose 40 
mg/kg body weight [15]. 

Group 4: Animals of this group were injected 
intraperitoneally with STZ at a single dose 
(40 mg/kg body weight) and after 3 days 
they were injected with TAU at a dose (50 
mg/kg body weight) for 15 days.  

At the end of experiment body, liver, kidney and pancreas 
weights were recorded.  
 

2.5. Preparation of Plasma 

 
The heparinized blood samples were centrifuged at 3000 g 
for 15 min. Plasma was separated and then stored at -20 
°C until biochemical analysis. 
 

2.6. Preparation of Liver and Pancreas Homogenates: 

 

Whole tissues of the liver and pancreas were obtained by 
dissection, cleaned from adhering matters, washed with 
physiological saline. Then a portion of the liver and 
pancreas tissues from each rat was minced and 
homogenized in 5-10 ml cold buffer (i.e. 50 mM 
potassium phosphate, pH 7.4, 1mM ethylene diamine 
tetracetic acid, EDTA). Homogenates were centrifuged at 
10,000g for - 20 minutes at 4 C and the clear 
supernatants were separated for antioxidant determination 
and lipid peroxidation.  
 

2.7. Biochemical Studies 

 
Glucose level was measured as reported by Trinder [16] 
method. Glycosylated hemoglobin (HbA1c) was estimated 
by fast ion – exchange resin separation method [17]. 
Insulin, pancreatic amylase and hexokinase were 
determined according to the methods of Finlay and Dillard 
[18], Pulse and Schmidt [19] and Gubern et al. [20], 
respectively. Liver and muscle glycogen contents were 
determined by the method of Huijing [21]. Enzymatic 
activities of aspartate transaminase (AST), alanine 
transaminase (ALT) and lactate dehydrogenase (LDH) 
were determined according to Tietz [22] and Henry (1974) 
[23] methods. Total protein was determined by Gornall et 
al. [24] method. Determination of total cholesterol, low 
density lipoprotein (LDL) and high density lipoprotein 
(HDL) were estimated by the methods of Allain et al. [25] 
and Burstein et al. [26]. Triglycerides and total lipids were 
determined according to Wahlefeld and Bergmeyer [27] 
and Frings et al. (28) methods, respectively. Urea, 

creatinine and uric acid were estimated by using the method of 
Newman and Price [29]. Pancreas and liver lipid peroxidation 
end products, MDA, were measured according to Ohkawa et 
al. [30] method. Also, the levels of glutathione (GSH) [31] and 
the activities of the antioxidant enzymes, including superoxide 
dismutase (SOD) [32], the catalase enzyme (CAT) [323] and 
glutathione peroxidase (GPx) [34] were assayed in liver and 
pancreas homogenates. 
 
2.8. Data and Statistical Analysis 

 
Data were expressed as mean ±/standard error. The data were 
analyzed using SPSS Statistical Package Version 19 (Chicago, 
IL, USA). Statistical comparisons between all groups were 
performed by using ANOVA-1. The significant differences 
were considered at P<0.05.  
 

3. Results 
 
3.1. Effect of taurine on the body, liver, kidney and 

pancreas weights in STZ induced diabetic rats: 

 
The body weight of diabetic rats was significantly decreased 
from basal value of the control group. With respect to the liver 
and kidney weight changes, significant increase was observed 
in STZ treated rats in comparison with the control one. On the 
other hand, pancreas weight was decreased in the STZ group 
as compared with the control group. The TAU 
supplementation ameliorated these changes as compared to the 
STZ group (Table 1). 
 

Table 1: Effect of taurine supplementation on body, liver, 
kidney and pancreas weights in STZ induced diabetic rats. 

Parameters Experimental groups 
Control TAU STZ TAU+STZ 

Body weight  
(g) 

203.00 
15.556 

210.00 
5.944 

172.60± 
22.130a 

200.25 
10.210b 

Liver weight  
(g) 

6.110 
0.735 

6.042 
0.695 

7.630 
1.506a 

6.01 
1.712b 

Kidney weight  
(g) 

0.619 
0.127 

0.614 
0.175 

0.868 
0.173a 

0.703 
0.124ab 

Pancreas weight  
(g) 

0.422 
0.064 

0.423 
0.061 

0.319 
0.097a 

0.425 
0.067b 

-Values represent the mean  SE of 10 individual rats. 
-a-means significantly different from the control group. 
-b-means significantly different from the streptozotocin treated group. 
-P>0.05. 
 
3.2. Effect of taurine on serum glucose, insulin, HbA1c, α- 
amylase, hexokinase and glycogen in STZ-diabetic rats 
 
Injection of male rats with STZ induced a significant increase 
in glucose and HbA1c levels. The administration of TAU 
resulted in a significant reduction of glucose and HbA1c levels 
as compared to STZ treated group. STZ administration was 
associated with a highly significant decrease in insulin, α- 
amylase and hexokinase levels as compared to the control 
group. Administration of TAU improved the insulin, α- 
amylase and hexokinase levels in comparison with the STZ 
group (Table 2). Also, supplementation of TAU improved the 
decreased liver and kidney glycogen in STZ group.  
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Table 2: Effect of taurine supplementation on serum 
glucose, insulin, HbA1c, α- amylase, hexokinase and 

glycogen in STZ-diabetic rats 
Parameters Exerimental groups 

 Control  TAU  STZ TAU+ST
Z  

Glucose 
(mg/dl) 

89.200
 

9.935 

90.000
 

4.546 

321.500
 

6.520a 

94.600 
5.588b 

Insulin 
(mlU/ml) 

2.920 
0.879 

2.680 
0.936 

1.25 
0.918a 

1.860 
0.783b  

HbA1c 
(%) 

5.180 
0.766 

5.140 
1.197 

9.125 
0.793a 

7.260 
1.443b 

Amylase 
(U/L) 

8.280 
2.184 

8.940 
2.721 

4.100 
2.974a 

6.880 
2.660b 

Hexokinas
e (U/L) 

11.880
 

2.875 

10.60 
3.52 

4.375 
1.621a 

9.180 
1.911 b  

Liver 
glycogen 

(mg/g 
tissue) 

215.80
 

6.1757 

200.00
 

6.4884 

68.60 
7.0894 a 

144.40 
11.6086 b 

Kidney 
glycogen 

(mg/g 
tissue) 

156.20
± 

10.7256 

152.00
± 

4.7497 

73.60± 
7.3864 a 

122.00± 
7.1861 b 

-Values represent the mean  SE of 10 individual rats. 
-a-means significantly different from the control group. 
-b-means significantly different from the streptozotocin treated group. 
-P>0.05 
 
3.3. Effect of taurine on AST, ALT, LDH, total protein 

and albumin levels in STZ-diabetic rats 
 
AST, ALT and LDH levels were significantly increased in 
STZ treated rats as compared to the control value. The co-
administration of TAU with STZ resulted in significant 
reduction in liver function enzymes as compared to STZ 
treated group. Concentrations of total protein and albumin 
were significantly decreased after STZ injection compared 
to the control. Administration of TAU followed STZ 
injection for 15 days improved the total protein and 
albumin levels (Table 3). 
 

Table 3: Effect of taurine supplementation on AST, ALT, 
LDH, total protein and albumin levels in STZ-diabetic 

rats. 
Parameters Experimental groups 

Control TAU STZ TAU+STZ 
AST  

(U/dl) 
61.600 

9.072 
66.200 
19.854 

156.750 
17.233a 

96.600 
16.003b 

ALT  
(U/dl) 

32.800 
8.643 

31.200 
15.595 

88.250 
9.811a 

55.800 
15.287b 

LDH  
(U/dl) 

116.400 
28.059 

113.000 
29.155 

255.500 
18.141a 

191.800 
17.167b 

Total protein  
(g/dl) 

6.900 
0.778 

6.720 
0.581 

4.925 
0.222a 

6.660 
0.647b 

Albumin  
(g/dl) 

3.660 
0.541 

3.400 
0.539 

2.225 
0.602a 

3.120 
0.952b 

-Values represent the mean  SE of 10 individual rats. 
-a-means significantly different from the control group. 
-b-means significantly different from the streptozotocin treated group. 
-P>0.05  
 

 

 

 

3.4 Effect of taurine on serum lipid profile in STZ-diabetic 

rats 

 
STZ administration was associated with a significant increase 
in lipid profile [Total cholesterol (TC), total lipid (TL), 
triglycerides (TG), low density lipoproteins (LDL-C)] in the 
plasma except high density lipoprotein (HDL-C) as shown in 
table 5. TAU treatment in combination with STZ improved the 
hyperlipidemia of diabetic rats. Also, TAU treatment in 
combination with STZ improved the decrease in HDL (Table 
4).  

 

Table 4: Effect of taurine supplementation on serum lipid 
profile in STZ-diabetic rats. 

Parameters Experimental groups 
Control TAU STZ TAU+STZ 

Total Cholesterol 
(mg/dl) 

133.60 
23.298 

129.60 
32.921 

266.00 
58.839a 

174.40 
19.715b 

Total lipid 
 (mg/dl) 

457.00 
54.240 

464.20 
86.459 

1045.00 
224.767a 

631.40 
74.36b 

Triglyceride 
(mg/dl) 

82.40 
15.678 

84.00 
14.000 

234.00 
67.735a 

124.00 
25.49b 

HDL-C 
 (mg/dl) 

50.80 
8.349 

49.80 
4.382 

31.25 
7.932 a 

44.40 
10.286b 

LDL-C 
 (mg/dl) 

66.32 
21.180 

63.00 
31.664 

187.95 
48.638a 

106.00 
12.033b 

-Values represent the mean  SE of 10 individual rats. 
-a-means significantly different from the control group. 
-b-means significantly different from the streptozotocin treated groups. 
-P>0.05 
 
3.5 Effect of taurine on urea, creatinine and uric acid levels 

in STZ-diabetic rats 
 
STZ administration was associated with a highly significant 
increase in urea, creatinine and uric acid levels as shown in 
table 6. Injection of TAU following STZ administration 
partially improved these elevations since there was a 
significant difference between values of this group and the 
control group (Table 5). 
 
Table 5: Effect of taurine supplementation on urea, creatinine 

and uric acid levels in STZ-diabetic rats. 
Parameters Exerimental groups 

Control  TAU  STZ TAU+STZ  
Urea  

(mg/dl) 
28.000 
6.892 

28.400 
7.569 

38.250 
8.921a 

33.200 
6.791ab 

Creatinine 
(mg/dl) 

0.498 
0.151 

0.444 
0.129 

1.300 
0.392a 

0.704 
0.142ab 

Uric acid 
(mg/dl) 

1.500 
0.604 

1.400 
0.604 

4.000 
2.309a 

2.340 
0.627ab 

-Values represent the mean  SE of 10 individual rats. 
-a-means significantly different from the control group. 
-b-means significantly different from the streptozotocin treated group. 
-P>0.05 

 
3.6 Effect of taurine on malondialdhyde (MDA) in 

streptozotocin-diabetic rats 

 
Administration of TAU together with STZ partially improved 
the increased levels of MDA in liver and pancreas as compared 
to the untreated group (Table 6).  
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Table 6: Effect of taurine supplementation on 
malondialdhyde (MDA) in streptozotocin-diabetic rats. 

Parameters Experimental groups 
Control TAU STZ TAU+STZ 

MDA liver 
(nmol/mg) 

15.000 
3.606 

16.000 
6.000 

47.000 
11.136a 

32.333 
7.506ab 

MDA 
pancreas 

(nmol/mg) 

15.333 
5.132 

15.333 
2.887 

67.000 
9.165a 

39.333 
8.505ab 

-Values represent the mean  SE of 10 individual rats. 
-a-means significantly different from the control group. 
-b-means significantly different from the streptozotocin treated groups. 
-P>0.05 

 

3.7 Effect of taurine on some antioxidant enzymes activities 

in liver and pancreas homogenates 

 
A significant decrease was observed in liver and pancreas 
antioxidant enzyme levels (SOD, GPX and CAT) in rats 
treated with STZ comparing with the control group. TAU 
treatment in combination with STZ partialy improved these 
decreased levels as compared with untreated diabetic rats 
(Figures 1, 2 and 3).  
 

 
Figure 1: Effect of taurine supplementation on superoxide dismutase (SOD) activities in liver and pancreas homogenates 

 
Figure 2: Effect of taurine supplementation on glutathione peroxidase (GPX) activities in liver and pancreas homogenates 

 
Figure 3: Effect of taurine supplementation on Catalase (CAT) activities in liver and pancreas homogenates 
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3.8 Effect of taurine supplementation on non enzymatic antioxidant in liver and pancreas: 

 
GSH of liver and pancreas in STZ treated group were decreased as compared with the control group. Administration of TAU 
together with STZ partially improved these decreased levels as compared to STZ group (Figure 4). 
 

 
Figure 4: Effect of taurine supplementation on glutathione reduced (GSH) in liver and pancreas homogenates 

 

4. Discussion 
 
The reduction in the body weight of the diabetic animals 
has been linked to degradation of structural proteins and 
muscle wasting due to unavailability of carbohydrate for 
utilization as an energy source. The body weight loss 
came accordance with the finding of Oyedemi et al. [35]. 
Lee et al. [36] found that the animal treated with STZ 
appeared ill-looking with the loss of their body weights.  
 
The increase in the kidney weight may be due the cellular 
autophagy in the cells of proximal and distal convoluted 
tubules that due to the hypertrophic growth of kidney 
cortex [37] or may be due to tubulointerstitial fibrosis and 
fibronectin in diabetic rats [38]. The increment of liver 
weight may be due to increase triglyceride accumulation 
leading to enlarged liver which could be due to the 
increased influx of fatty acids into the liver induced by 
hypoinsulinemia and the low capacity of excretion of 
lipoprotein secretion from the liver [37]. The decrease in 
the pancreas weight agrees with the results of Heidari et 
al. [39] who stated that the loss of pancreas weight may be 
due to destruction of pancreatic islets and insulin-
producing cells. The amelioration effect of taurine on 
body, liver, kidney and pancreas weights suggesting that 
TAU exhibits a protective effect against cellular- stress as 
reported by Ito et al. [12]. 
 

The mechanism by which STZ brings about its diabetic 
state included selective destruction of pancreatic insulin 
secreting β-cells, which make cells less active, leading to 
poor glucose utilization by tissues. The present 
hyperglycemia was found consistent with the results 
obtained by Anusuya et al. [40]. Glycosylated hemoglobin 
(HbA1c) is useful in the demonstration of glycemic 
control in patients with DM [41]. HbA1c level was found 
to be increased in the untreated diabetic rats [42]. It is 
produced by non-enzymatic condensation of glucose 
molecules with free amino acid on the globin component 
of hemoglobin [43].  

It seemed that the initial drop in the α-amylase activity may be 
interpreted by the impaired pancreatic exocrine secretion due 
to a decrease in the insulin stimulatory action [44]. The present 
finding came accordance with Burski et al. [45] who stated 
that α-amylase activity in the rabbit serum, within the first 
three weeks of diabetes, was dropped to the levels below the 
half of the values noted in healthy controls. Hexokinase plays 
a central role in the maintenance of glucose homeostasis. The 
hexokinase activity was found to be decreased in diabetic rats 
which may be due to insulin deficiency [46]. The observed 
decrease in hepatic and muscle glycogen may be due to 
insufficient insulin and inactivation of the glycogen synthetase 
system in the diabetic state [47].  
 
Taurine exerts hypoglycemic effects by regulating the 
expression of genes required for the glucose-stimulated insulin 
secretion and enhancing insulin action [48], as well as by 
facilitating the interaction of insulin with its receptor [9]. On 
the other hand, TAU enhances glycogenesis, glycolysis and 
glucose oxidation [49]. Taurine has also demonstrated to have 
hypoglycemic effects producing a decrease in the 
concentrations of glucose and fructosamine as well as an 
increase in the contents of insulin, C-peptide, and glycogen in 
the liver [50]. Kim et al. [51] reported that taurine ameliorated 
hyperglycemia by improving insulin sensitivity in OLETF rats 
with long-term diabetes. Decreased HbA1c levels in the TAU 
treated diabetic rats could be due to an improvement in insulin 
secretion from the remnant pancreatic β-cells in diabetic rats, 
consequently, resulting in improvement in glycemic control 
[47]. 
 
The present elevations of AST, ALT and LDH observed in 
diabetic rats agree with Kumarappan et al. [52]. The increase 
in AST and ALT may be due to leakage of these enzymes from 
the liver cytosol into the blood stream and/or change in the 
permeability of liver cell membranes take place [53]. Ahn et 
al. [54] suggested that serum ALT concentrations were 
independently associated with type 2 diabetes in both sexes. 
They stated that increased AST, ALT, and GGT levels reflect 
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an excess deposit of fat in the liver, a condition known as 
non-alcoholic fatty liver disease (NAFLD). 
  
The present study disclosed a significant decrease in total 
protein concentration as a result of insulin deficiency 
which leads to increased catabolism of protein. The 
increased rate of proteolysis leads to elevated 
concentration of amino acids in plasma that serve as 
precursors for hepatic and renal glyconeogenesis, which 
further contributes to the hyperglycemia seen in DM [55]. 
Also, this decrease in total protein might be due to 
microproteinuria which was an important clinical marker 
of diabetic nephropathy. The present result coincided with 
the findings of Daisy et al. [56].  

The reversal of ALT and AST activities in TAU treated 
diabetic rats towards near normalcy indicate the liver 
protective nature. These results were in agreement with 
Turner and Wass [57] who reported marked reductions in 
proteinuria in STZ-induced diabetic rats with decreased 
renal lipid peroxidation after oral supplementation of 
taurine. Zhang et al. [58] reported that TAU improved 
hepatic enzymes in hepatotoxicity.  
Hyperlipidemia is a relatively common problem in 
patients with poorly controlled diabetes mellitus [59] and 
coexists with hyperglycemia and is characterized by 
increased levels of cholesterol, triglycerides and 
phospholipids, and also changes in lipoproteins. The 
diabetic hyperlipidemia was attributed to the disturbance 
of hormonal regulation of glucose metabolism. The 
present hyperlipidemia was in line way with a previous 
investigation of Bagri et al. [60].  
The hypolipidemic effect of TAU was partly due to the 
inhibition of cholesterol absorption in the intestine or 
increasing the conversion of cholesterol to bile acid. 
Futhermore, it has been suggested that TAU may be 
responsible for the increase of HDL or end balance of the 
serum lipoprotein fractions containing cholesterol [61]. 
Moreover, it is likely possible that drinking TAU 
increases serum cholesterol clearance and decreases 
hepatic TC level in high-fat/cholesterol dietary hamsters, 
which may be up due to regulations of the LDL receptor, 
thus increasing fecal TC and bile acids output [62]. Yang 
et al. [63] stated that TAU could alleviate blood lipids and 
hepatic damage induced by a high-fat/cholesterol-dietary 
diet. The data of Saleh [43] indicated that the treatment of 
diabetic rats with TAU induced decrease in lipid profile 
except HDL-cholestrol.  
 
The increase in urea and creatinine levels, recorded in 
STZ-diabetic rats, may be due to increase protein 
catabolism, glomerular injury and renal dysfunction. This 
finding was found in agreement with the results of 
Prangthip et al. [64]. Taurine administration prevented the 
occurrence and development of diabetic nephropathy by 
decreasing blood glucose, improving lipid metabolism and 
glomerular basement membrane metabolism [65]. Taurine 
in the drinking water of diabetic rats helped them recover 
from kidney damage [60]. The effects of taurine on 
diabetic nephropathy showed the results of improvements 
in oxidative stress [66].  
 

The present study revealed that the elevation in MDA level 
might be a reflection of a decrease in enzymatic and non-
enzymatic antioxidants of defense systems. Previous studies 
have reported that there was an increase in lipid peroxidation 
in liver, kidney, brain, heart [67], pancreas [60], and 
erythrocytes [68] of diabetic rats. Patel et al. [69] suggested 
this elevation in hepatic MDA level might be due to high 
concentration of lipid, which was found in liver of diabetic 
rats, and resulted in the activation of NADPH dependent 
microsomal lipid peroxidation in liver. 
 
The effects of long-term diabetes on the antioxidant enzymes 
in the rat liver have been reported. Selvan et al. [70] stated that 
hepatic SOD and CAT activities were decreased significantly 
in STZ-induced diabetic rats. Also, Chandramohan et al. [68] 
suggested that the decrease in the activities of hepatic SOD 
and CAT in diabetic rats may result in a number of deleterious 
effects due to the accumulation of superoxide anion radical 
and hydrogen peroxide. Furthermore, the decrease in the 
activity of CAT could result from inactivation by superoxide 
radical and glycation of the enzyme [60]. 
 
In the present work, the decreased activity of GPx in liver 
during diabetes mellitus may be attributed to the production of 
reactive oxygen species (ROS) such as superoxide (O-

2), 
hydrogen peroxide (H2O2), and hydroxyl radical (OH-) [71]. 
Similarly, previous investigator indicated that the hepatic 
GSH-Px activity of STZ-induced diabetic rats decreased 
significantly as compared to the normal control group [72].  
 
The reduction in GSH was consistent with El-Shenawy and 
Abdel-Nabi [73] who reported that the hepatic and pancreas 
GSH decreased significantly in alloxan-diabetic mice. 
Chakraborty and Das [74] and Veerapur et al. [75] mentioned 
that the concentration of GSH  significantly decreased in the 
liver of STZ-diabetic rats, and this decrease represented an 
increase in the utilization due to the oxidative stress. Also, the 
decrease in GSH levels could probably be due to decreased 
synthesis or increased degradation of GSH by oxidative stress 
as reported by Saravanan and Ponmurugan [76]. A decrease in 
the level of GSH in the liver [77], plasma [78], cardiomyocyte 
[79] and pancreas [80] have been reported in diabetic rats.  
 
The prevention of oxidative stress by taurine was also reported 
in alloxan-induced type 1 diabetic [81]. Interestingly, taurine 
supplementation for 2 days later of STZ injection, prolonged 
survival in diabetic rats [82]. This observation indicates that 
taurine may confer resistance against some stresses induced by 
hyperglycemia, which may associate with the beneficial role 
against the complications. Administration of taurine protected 
the tissue damage produced by the acute sublethal dose of γ-
irradiation in rats by decreasing oxidative stress [83].  
 
The benefits of the taurine amino acid appears to be due to its 
various actions on cellular functions while toxicity seems 
relatively low, further studies are important to fill the gaps 
between animals and humans.  
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