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Abstract: Imagine if the data set provided for training an artificial neural network turns out to be corrupted. This paper presents a 

method that can be used to rectify the said neural network after it has been trained but on some corrupted data. In order to rectify the 

neural network we are provided with a replacement data set for the corrupted data. The proposed method uses the old weights of the 

corrupted neural network to determine the new weights of the rectified neural network model. Moreover, the proposed method is 

compared with the present typical method for solving the above stated problem. 
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1. Introduction 
 
Consider a simple example of statistics. Assume that there 
are 10 numbers in a set that have a mean value of x. But now 
we are informed that a number in the set was incorrect and 
should have been something else. Now we need to find a new 
mean. There is a typical way to find way the new mean. We 
replace the incorrect number with the correct number. Then 
we find the mean. But there is a much smarter way to do it. 
We could use the formula below: 

 
New mean = (Old mean*number of elements in the set – 
incorrect number + correct replacement number)/ number of 
elements in the set 

 
Now imagine this problem in an artificial neural network. 
Consider that we have already trained a neural network. After 
that, we realize (or come to know of) that some of the outputs 
in the data were incorrect. Later, we are given the 
replacement output values and asked to find the new correct 
weights for the neural network model. For example, consider 
the MNIST database of handwritten digits that has a training 
set of 60,000 examples, and a test set of 10,000 examples. It 
is a subset of a larger set available from NIST [1]. The digits 
have been size-normalized and centred in a fixed-size image. 
Now assume that about 1000 images in the training data 
turned out to be incorrectly classified (the output values were 
incorrect or the images were incorrectly labelled). A typical 
way to solve this problem is to simply replace the incorrectly 
classified output data with correctly classified output data 
and then train the neural network from the beginning (re-
initialize the parameters) [2].  
 
In this paper, a method is explained where we don’t need to 
apply the above typical method in order to get correct 
weights for the neural network. A new method is proposed 
that takes lesser computation to achieve the rectified neural 
network. The paper is organised as follows. Section 2 
explains the typical method that is usually used to solve the 
above stated problem. Section 3 explains the proposed 
method. Section 4 gives a brief about the implementation and 
analysis of the proposed method explianed in Section 3. 
Section 5 briefs about the applications of proposed method 
on different types of problems. Finally, section 6 compares 
the proposed method to the typical method used. 
 

2. Typical Solution 
 
Since we have already trained the artificial neural network 
before realizing that some of the data is corrupted, the typical 
method suggests that we need to train the neural network 
from the beginning (re-initialize the parameters) [2]. 
Consider an example of the MNIST data set [1] (say an 
image that displays the digit 7 but its output data shows that 
the image is a hand-written digit 1). Now this example is 
corrupted. Assuming that the neural network has already 
been trained on the data set that has some corrupted data 
examples (or examples with incorrect output value), we 
should know that our neural network has been corrupted. It 
means that the weights of each node of each layer have been 
corrupted. There is a typical way to solve this problem. After 
we are provided with the correct data set, we need to re-
initialize the parameters (or weights) of the neural network. 
Then we have to apply forward propagation [3] and back-
propagation [4] [5] method in order to train the neural 
network. In this method, the corrupted data set and the 
weights are discarded and replaced. This method requires the 
same amount of computation as required when the data set 
was corrupted. 

 
The accuracy and time required for this method and the 
proposed method (discussed in section 3) are compared in 
Section 6. 
 
3. The Proposed Method 
 

The proposed method can be explained by taking examples 
from MNIST data set [1]. We have to assume that some of 
the examples in the data set have incorrect output values like 
an image of a digit 7 has output value of 1. In the previous 
section, we have explained that the method requires the cost 
function values of the corrupted neural network in order to 
reverse the effects of the incorrect examples with the new 
correct examples. 

 
The proposed method can be explained in the following 
steps: 
 
1. Storing the corrupted data 

The corrupted data is the data set containing some examples 
that have incorrect output values (some images are 
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incorrectly labelled). The weights created while training the 
neural network with the corrupted data set are also stored so 
they can be used during the rectification process. Corrupted 
data set is compared with the new data set in order to check 
which examples have incorrect output values. Then these 
corrupt data set examples are stored along with their 
respective correct output values and their respective indices 
from the original data set (corrupt) in a separate file. This 
creates an incorrect-correct data set (i.e., the output values). 
This data set is then used further in the proposed method to 
reverse the effects on the corrupted neural network. 

 
2. Modified Back Propagation 

For the proposed method we have modified the back 
propagation algorithm. In the modified back propagation 
algorithm the error term for the first iteration is calculated as 
the difference in the incorrect and correct output values of 
the new (not corrupt) and courrpted dataset respectively. 
Then we follow the usual back propagation algorithm to 
update the weights. We use forward propagation to find the 
hypothesis term and subtract it from the output value (given) 
to find the error term δ. Then using the traditional back 
propagation algorithm we calculate the error terms of the 
previous layers. Then we calculate the numerical gradients of 
the respective layers using the respective error terms 
(denoted by δ). Following that we update the weights of the 
neural network using the respective numerical gradients. 

 
In short we can say that we backpropagate only once with the 
error term as the difference in the incorrect and correct 
output values.[6] Then we follow the usual back propagation 
algorithm to update the values. Usually the data set 
(incorrect-correct output data set) is much smaller than the 
original dat set it takes much lesser time to rectify the data 
set.[7] This can be seen from the results presented in the next 
section. 

 
In the proposed method, we use the saved incorrect-correct 
data set to create an array of respective error terms. For 
example, the hypothesis predicts the image as digit 7 and the 
incorrect ouput value is 9 whereas the correct output value is 
1. The error term of this example will be a vector δ = [-1 0 0 
0 0 0 1 0 -1 0]T. In the vector above, the values are assumed 
to be either 0 or 1 or -1. But in actual implementation, these 
values are usually floating-point values varying between -1 
and 1 and are usually very near to either -1, 0 or 1. After that, 
we can run a series of back-propagation and forward 
propagations (as explained above) to update the old 
weights.[8] We would just need the last updated weights of 
the neural network. Here the number of iterations required 
need not be equal to when originally training the neural 
network. Since the incorrect-correct example pair data set is 
smaller than the original data set, we can reduce the number 
of iterations because the smaller data set will require less 
amount of tuning and hence less number of iterations.[9] 

 

  
Figure 1: Proposed method 

 
4. Implementation and Analysis 
 
The proposed method was tested on several data sets. All the 
data sets were corrupted by replacing original values with 
random (output values within the range of the original set) 
values at random positions in the data sets. One of the results 
of our implementation have been shown below. These are the 
results are of the popular MNIST data set for Hand-written 
digit recognition problem. There were 5000 examples in the 
original data set and out those examples, 200 random 
examples were corrupted (incorrect output values). As you 
can see from the table below, the percentage accuracy 
dropped by nearly 5% when 4% examples were corrupted. It 
means that the weights in the neural network got corrupted. 
After rectification process the accuracy wasn’t exactly 
restored when the neural network was trained on the original 
(no incorrect outout values) data set but the accuracy 
increased by nearly 4% when the corrupted neural network 
(corrupted weights) was tested. 

 
Table 1: Percentage accuracies in different cases 

 Rectification 

Data set 

Before 

Rectification 

After 

Rectification 

Corrupted Dataset 90.56% 94.31% 
New Data set 
(original) 

95.7% ____ 

 
As the number of corrupted examples were increased, the 
accuracy of the corrupted neural network also decreased. 
Moreover after rectification the accuracy also increased from 
the corrupted neural network case but not in a linear fashion 
as expected. The reason might be due to random examples 
being chosen everytime the original output values were 
replaced with random values in order to make corrupted data 
set. 
 
Moreover, the relation between the time elapsed for the 
neural network to rectify and the number of examples being 
corrupted wasn’t linear either. This might also be due to the 
random examples being chosen everytime the original output 
values were replaced with random values in order to make 
corrupted data set. 
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5. Applications 
 
The proposed method is a solution to the problem when an 
artificial neural network is trained over a data set that 
consists of some examples that have incorrect output values. 
This improved backpropagation algorithm [10][11] can be 
applied to similar types of problems. For example, we have a 
data set that consists of a million images of very small 
number of people (say 20). And after training the network we 
realise that some of those images were incorrectly classified 
due to incorrect output values. Later we are provided with a 
correct data set. Rather than re-training the neural network 
from the beginning (re-initialising the parameters), we can 
simply apply the above proposed method to train the neural 
network. This method can be applied to almost any neural 
network that faces the above stated problem. Neural network 
can be for object images, hand-written images, data sets that 
require complex neural networks to learn, etc. 
 
The proposed method can be modified and used in Software 
Re-Engineering and Reverse Enginering problems. Where, if 
we need to change the testing data, we might not actually be 
required to compute all the values from the scratch typically 
and use the new method similar to the above discussed 
improved back propagation [10][11] to get the new values. 
For example, lets take the concept of black box testing. We 
don’t know what code lies inside the software but what we 
want is to test out a lot of values to see if any error comes out 
or not. Now assume that an error does come. What can we do 
in such a situation. We can use the basic approach of the 
above proposed method and modify the software without 
going too deep into the code of the software.  
 
6. Comparison between Typical and Proposed 

Method 
 
As explained in Section 2, the typical method involves the 
replacement of incorrect examples with correct examples and 
then trains the neural network from the beginning. And as 
explained in previous sections, the proposed method uses 
stored values of old neural network weights to rectify it using 
the new correct examples. As we can see from the 
explanations provided in above sections, the typical method 
uses slightly less memory usage because it doesn’t prefer to 
store the old weights of the neural network (corrupted). But 
the proposed method requires less computation. Firstly, it 
doesn’t calculate the cost function values of all the elements. 
It simply calculates cost function of the incorrect examples 
and the replacement correct examples. Moreover, while 
training the neural network, only the incorrect-correct 
example pairs are trained rather the complete data set. 
Suppose that we have a MNIST data set that consists of 
60000 images for training. Out of these we have 1000 
examples with incorrect output values. We can simply 
observe that the size of the array used for training the neural 
network (especially when using a vectorized implementation 
approach [5]). Moreover, there wasn’t any relation found 
between the number of examples being corrupted and the 
percentage increase in the accuracy after rectification, 
probably due to the randomness of the selection process. 
 

References 

 
[1] LeCun, Yann; Corinna Cortes; Christopher J.C. Burges. 

"MNIST handwritten digit database, Yann LeCun, 
Corinna Cortes and Chris Burges". Retrieved 17 August 
2013. 

[2] Handwritten Digit Recognition by Neural Networks with 
Single-Layer Training. S. KNERR, L. PERSONNAZ, G. 
DREYFUS, Senior Member, IEEE. IEEE 
TRANSACTIONS ON NEURAL NETWORKS, vol. 3, 
962 (1992). 

[3] Introduction to multi-layer feed-forward neural 
networks. Daniel Svozil, Vladimir KvasniEka, JiE 
Pospichal. Chemometrics and Intelligent Laboratory 
Systems 39 (1997) 43-62. 

[4] Rumelhart, David E.; Hinton, Geoffrey E.; Williams, 
Ronald J. (8 October 1986). "Learning representations 
by back-propagating errors". Nature 323 (6088): 533–
536. doi:10.1038/323533a0 

[5] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. 
Leaning Internal Representaions by Ewvr Propagation in 
Rumelhart, D. E. and McClelland, J. L., Pamllel 
Distributed Processing: Explorations in the 
Microstructure of Cognition. MIT Press, Cambridge 
Massachusette, 1986. 

[6] A. Olaru, S. Olaru, L. Ciupitu, "Research of the Neural 
Network by Back Propagation Algorithm", Advanced 
Materials Research, Vols. 463-464, pp. 1151-1154, Feb. 
2012 

[7] Kuldip Vora and Shruti Yagnik and Mtech Scholar, “A 
Survey on Backpropagation Algorithms for Feedforward 
Neural Networks”, International Journal of Engineering 
Development and Research, ISSN: 2321-9939 

[8] Md Nasir Sulaiman and Maslina Darus. "An improved 
error signal for the backpropagation model for 
classification problems."International Journal of 
Computer Mathematics. 01/2001; 76(3):297-305. DOI: 
10.1080/00207160108805026 

[9] Tasos Falas and A-G Stafylopatis, “The impact of the 
error function selection in neural network-based 
classifiers”, IJCNN'99. International Joint Conference on 
Neural Networks, 1999. Volume 3 Pges 1799-1804. 

[10] M C Bossan, “A modified backpropagation algorithm 
for neural classifiers.” Proceedings of the 38th Midwest 
Symposium on Circuits and Systems (1995). 

[11] J Lv, Z Yi, “An Improved Backpropagation Algorithm 
Using Absolute Error Function (2005)”, ISNN 2005, 
LNCS 3496. 

 
Author Profile 
 

Prakhar Dogra is an undergraduate student (B.Tech) 
in Computer Engineering at Delhi Technological 
University (formerly as Delhi College of Engineering). 
He has till date published 2 other research papers both 
in the field of Compter Science and Engineering. 

Paper ID: NOV152900 934




