
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 5 Issue 1 January 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Rectification of Corrupted Neural Networks

Prakhar Dogra

1Delhi Technological University, Department of Computer Science and Engineering, Shahbad, Bawana Road, Delhi – 110042, India

Abstract: Imagine if the data set provided for training an artificial neural network turns out to be corrupted. This paper presents a

method that can be used to rectify the said neural network after it has been trained but on some corrupted data. In order to rectify the

neural network we are provided with a replacement data set for the corrupted data. The proposed method uses the old weights of the

corrupted neural network to determine the new weights of the rectified neural network model. Moreover, the proposed method is

compared with the present typical method for solving the above stated problem.

Keywords: Neural network, error, corrupted, Cost function, weights

1. Introduction

Consider a simple example of statistics. Assume that there
are 10 numbers in a set that have a mean value of x. But now
we are informed that a number in the set was incorrect and
should have been something else. Now we need to find a new
mean. There is a typical way to find way the new mean. We
replace the incorrect number with the correct number. Then
we find the mean. But there is a much smarter way to do it.
We could use the formula below:

New mean = (Old mean*number of elements in the set –
incorrect number + correct replacement number)/ number of
elements in the set

Now imagine this problem in an artificial neural network.
Consider that we have already trained a neural network. After
that, we realize (or come to know of) that some of the outputs
in the data were incorrect. Later, we are given the
replacement output values and asked to find the new correct
weights for the neural network model. For example, consider
the MNIST database of handwritten digits that has a training
set of 60,000 examples, and a test set of 10,000 examples. It
is a subset of a larger set available from NIST [1]. The digits
have been size-normalized and centred in a fixed-size image.
Now assume that about 1000 images in the training data
turned out to be incorrectly classified (the output values were
incorrect or the images were incorrectly labelled). A typical
way to solve this problem is to simply replace the incorrectly
classified output data with correctly classified output data
and then train the neural network from the beginning (re-
initialize the parameters) [2].

In this paper, a method is explained where we don’t need to
apply the above typical method in order to get correct
weights for the neural network. A new method is proposed
that takes lesser computation to achieve the rectified neural
network. The paper is organised as follows. Section 2
explains the typical method that is usually used to solve the
above stated problem. Section 3 explains the proposed
method. Section 4 gives a brief about the implementation and
analysis of the proposed method explianed in Section 3.
Section 5 briefs about the applications of proposed method
on different types of problems. Finally, section 6 compares
the proposed method to the typical method used.

2. Typical Solution

Since we have already trained the artificial neural network
before realizing that some of the data is corrupted, the typical
method suggests that we need to train the neural network
from the beginning (re-initialize the parameters) [2].
Consider an example of the MNIST data set [1] (say an
image that displays the digit 7 but its output data shows that
the image is a hand-written digit 1). Now this example is
corrupted. Assuming that the neural network has already
been trained on the data set that has some corrupted data
examples (or examples with incorrect output value), we
should know that our neural network has been corrupted. It
means that the weights of each node of each layer have been
corrupted. There is a typical way to solve this problem. After
we are provided with the correct data set, we need to re-
initialize the parameters (or weights) of the neural network.
Then we have to apply forward propagation [3] and back-
propagation [4] [5] method in order to train the neural
network. In this method, the corrupted data set and the
weights are discarded and replaced. This method requires the
same amount of computation as required when the data set
was corrupted.

The accuracy and time required for this method and the
proposed method (discussed in section 3) are compared in
Section 6.

3. The Proposed Method

The proposed method can be explained by taking examples
from MNIST data set [1]. We have to assume that some of
the examples in the data set have incorrect output values like
an image of a digit 7 has output value of 1. In the previous
section, we have explained that the method requires the cost
function values of the corrupted neural network in order to
reverse the effects of the incorrect examples with the new
correct examples.

The proposed method can be explained in the following
steps:

1. Storing the corrupted data

The corrupted data is the data set containing some examples
that have incorrect output values (some images are

Paper ID: NOV152900 932

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 5 Issue 1 January 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

incorrectly labelled). The weights created while training the
neural network with the corrupted data set are also stored so
they can be used during the rectification process. Corrupted
data set is compared with the new data set in order to check
which examples have incorrect output values. Then these
corrupt data set examples are stored along with their
respective correct output values and their respective indices
from the original data set (corrupt) in a separate file. This
creates an incorrect-correct data set (i.e., the output values).
This data set is then used further in the proposed method to
reverse the effects on the corrupted neural network.

2. Modified Back Propagation

For the proposed method we have modified the back
propagation algorithm. In the modified back propagation
algorithm the error term for the first iteration is calculated as
the difference in the incorrect and correct output values of
the new (not corrupt) and courrpted dataset respectively.
Then we follow the usual back propagation algorithm to
update the weights. We use forward propagation to find the
hypothesis term and subtract it from the output value (given)
to find the error term δ. Then using the traditional back
propagation algorithm we calculate the error terms of the
previous layers. Then we calculate the numerical gradients of
the respective layers using the respective error terms
(denoted by δ). Following that we update the weights of the
neural network using the respective numerical gradients.

In short we can say that we backpropagate only once with the
error term as the difference in the incorrect and correct
output values.[6] Then we follow the usual back propagation
algorithm to update the values. Usually the data set
(incorrect-correct output data set) is much smaller than the
original dat set it takes much lesser time to rectify the data
set.[7] This can be seen from the results presented in the next
section.

In the proposed method, we use the saved incorrect-correct
data set to create an array of respective error terms. For
example, the hypothesis predicts the image as digit 7 and the
incorrect ouput value is 9 whereas the correct output value is
1. The error term of this example will be a vector δ = [-1 0 0
0 0 0 1 0 -1 0]T. In the vector above, the values are assumed
to be either 0 or 1 or -1. But in actual implementation, these
values are usually floating-point values varying between -1
and 1 and are usually very near to either -1, 0 or 1. After that,
we can run a series of back-propagation and forward
propagations (as explained above) to update the old
weights.[8] We would just need the last updated weights of
the neural network. Here the number of iterations required
need not be equal to when originally training the neural
network. Since the incorrect-correct example pair data set is
smaller than the original data set, we can reduce the number
of iterations because the smaller data set will require less
amount of tuning and hence less number of iterations.[9]

Figure 1: Proposed method

4. Implementation and Analysis

The proposed method was tested on several data sets. All the
data sets were corrupted by replacing original values with
random (output values within the range of the original set)
values at random positions in the data sets. One of the results
of our implementation have been shown below. These are the
results are of the popular MNIST data set for Hand-written
digit recognition problem. There were 5000 examples in the
original data set and out those examples, 200 random
examples were corrupted (incorrect output values). As you
can see from the table below, the percentage accuracy
dropped by nearly 5% when 4% examples were corrupted. It
means that the weights in the neural network got corrupted.
After rectification process the accuracy wasn’t exactly
restored when the neural network was trained on the original
(no incorrect outout values) data set but the accuracy
increased by nearly 4% when the corrupted neural network
(corrupted weights) was tested.

Table 1: Percentage accuracies in different cases

 Rectification

Data set

Before

Rectification

After

Rectification

Corrupted Dataset 90.56% 94.31%
New Data set
(original)

95.7% ____

As the number of corrupted examples were increased, the
accuracy of the corrupted neural network also decreased.
Moreover after rectification the accuracy also increased from
the corrupted neural network case but not in a linear fashion
as expected. The reason might be due to random examples
being chosen everytime the original output values were
replaced with random values in order to make corrupted data
set.

Moreover, the relation between the time elapsed for the
neural network to rectify and the number of examples being
corrupted wasn’t linear either. This might also be due to the
random examples being chosen everytime the original output
values were replaced with random values in order to make
corrupted data set.

Paper ID: NOV152900 933

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 5 Issue 1 January 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

5. Applications

The proposed method is a solution to the problem when an
artificial neural network is trained over a data set that
consists of some examples that have incorrect output values.
This improved backpropagation algorithm [10][11] can be
applied to similar types of problems. For example, we have a
data set that consists of a million images of very small
number of people (say 20). And after training the network we
realise that some of those images were incorrectly classified
due to incorrect output values. Later we are provided with a
correct data set. Rather than re-training the neural network
from the beginning (re-initialising the parameters), we can
simply apply the above proposed method to train the neural
network. This method can be applied to almost any neural
network that faces the above stated problem. Neural network
can be for object images, hand-written images, data sets that
require complex neural networks to learn, etc.

The proposed method can be modified and used in Software
Re-Engineering and Reverse Enginering problems. Where, if
we need to change the testing data, we might not actually be
required to compute all the values from the scratch typically
and use the new method similar to the above discussed
improved back propagation [10][11] to get the new values.
For example, lets take the concept of black box testing. We
don’t know what code lies inside the software but what we
want is to test out a lot of values to see if any error comes out
or not. Now assume that an error does come. What can we do
in such a situation. We can use the basic approach of the
above proposed method and modify the software without
going too deep into the code of the software.

6. Comparison between Typical and Proposed

Method

As explained in Section 2, the typical method involves the
replacement of incorrect examples with correct examples and
then trains the neural network from the beginning. And as
explained in previous sections, the proposed method uses
stored values of old neural network weights to rectify it using
the new correct examples. As we can see from the
explanations provided in above sections, the typical method
uses slightly less memory usage because it doesn’t prefer to
store the old weights of the neural network (corrupted). But
the proposed method requires less computation. Firstly, it
doesn’t calculate the cost function values of all the elements.
It simply calculates cost function of the incorrect examples
and the replacement correct examples. Moreover, while
training the neural network, only the incorrect-correct
example pairs are trained rather the complete data set.
Suppose that we have a MNIST data set that consists of
60000 images for training. Out of these we have 1000
examples with incorrect output values. We can simply
observe that the size of the array used for training the neural
network (especially when using a vectorized implementation
approach [5]). Moreover, there wasn’t any relation found
between the number of examples being corrupted and the
percentage increase in the accuracy after rectification,
probably due to the randomness of the selection process.

References

[1] LeCun, Yann; Corinna Cortes; Christopher J.C. Burges.

"MNIST handwritten digit database, Yann LeCun,
Corinna Cortes and Chris Burges". Retrieved 17 August
2013.

[2] Handwritten Digit Recognition by Neural Networks with
Single-Layer Training. S. KNERR, L. PERSONNAZ, G.
DREYFUS, Senior Member, IEEE. IEEE
TRANSACTIONS ON NEURAL NETWORKS, vol. 3,
962 (1992).

[3] Introduction to multi-layer feed-forward neural
networks. Daniel Svozil, Vladimir KvasniEka, JiE
Pospichal. Chemometrics and Intelligent Laboratory
Systems 39 (1997) 43-62.

[4] Rumelhart, David E.; Hinton, Geoffrey E.; Williams,
Ronald J. (8 October 1986). "Learning representations
by back-propagating errors". Nature 323 (6088): 533–
536. doi:10.1038/323533a0

[5] D. E. Rumelhart, G. E. Hinton, and R. J. Williams.
Leaning Internal Representaions by Ewvr Propagation in
Rumelhart, D. E. and McClelland, J. L., Pamllel
Distributed Processing: Explorations in the
Microstructure of Cognition. MIT Press, Cambridge
Massachusette, 1986.

[6] A. Olaru, S. Olaru, L. Ciupitu, "Research of the Neural
Network by Back Propagation Algorithm", Advanced
Materials Research, Vols. 463-464, pp. 1151-1154, Feb.
2012

[7] Kuldip Vora and Shruti Yagnik and Mtech Scholar, “A
Survey on Backpropagation Algorithms for Feedforward
Neural Networks”, International Journal of Engineering
Development and Research, ISSN: 2321-9939

[8] Md Nasir Sulaiman and Maslina Darus. "An improved
error signal for the backpropagation model for
classification problems."International Journal of
Computer Mathematics. 01/2001; 76(3):297-305. DOI:
10.1080/00207160108805026

[9] Tasos Falas and A-G Stafylopatis, “The impact of the
error function selection in neural network-based
classifiers”, IJCNN'99. International Joint Conference on
Neural Networks, 1999. Volume 3 Pges 1799-1804.

[10] M C Bossan, “A modified backpropagation algorithm
for neural classifiers.” Proceedings of the 38th Midwest
Symposium on Circuits and Systems (1995).

[11] J Lv, Z Yi, “An Improved Backpropagation Algorithm
Using Absolute Error Function (2005)”, ISNN 2005,
LNCS 3496.

Author Profile

Prakhar Dogra is an undergraduate student (B.Tech)
in Computer Engineering at Delhi Technological
University (formerly as Delhi College of Engineering).
He has till date published 2 other research papers both
in the field of Compter Science and Engineering.

Paper ID: NOV152900 934

