On Generalized Semi-I-Open Sets

H. K. Tripathi¹, J. K. Maira²

¹Govt.Women's Polytechnic College, Jabalpur, India

²Department of Mathematics and Computer Science, Rani Durgawati University, Jabalpur, India

Abstract: In this paper we have introduced the notion of g-semi-I-open sets in generalized ideal topological spaces and obtained its significant properties. We have also investigated the concept of the generalized closure operator c_g^* and observed useful results

Keywords: Ideal topological space, Generalized ideal topological space, Local function, g-semi-open set.

1. Introduction

The notion of generalized topology was introduced by Csaszar [1] in 2002. Jancovic and Hamlett [4] have studied the concept of local function in Ideal topological spaces. Using the concepts of local function, Hatir and Noiri [3] have introduce the notion of semi-I-open sets. Maitra and Tripathi [6] have studied the concept of local function in generalized ideal topological spaces.

In this paper we have introduced the notion of g-semi-I-open sets and obtained its several properties. Further we have introduced c_g^* operator on a subset of generalized ideal topological spaces and obtained significant results.

2. Preliminaries

First we recall definition of generalized topological space.

Definition 2.1 [1]: Let X be a non-empty set and let τ_g be a family of subsets of X. Than τ_g is said to be **generalized topology** on X if following two conditions are satisfied viz,; (i) $\emptyset, X \in \tau_a$,

(ii) If $G_{\lambda} \in \tau_g$ for $\lambda \in \Lambda$ then $\bigcup_{\lambda \in \Lambda} G_{\lambda} \in \tau_g$.

The pair (X, τ_g) is called **generalized topological space**. The elements of family τ_g are called **g-open sets** and their complements are called **g-closed sets**.

Example 2.1: Let us consider set $X = \{x_1, x_2, x_3\}$. Then we see that $\tau_g = \{\emptyset, X, \{x_1, x_2\}, \{x_2, x_3\}\}$ is a generalized topology on *X*.

Proposition 2.1: Let (X, τ_g) be a generalized topological space. Then the following conditions are satisfied:

(i) ϕ and X are g-closed sets in X.

(ii) Arbitrary intersection of g-closed sets is a g-closed set in X.

Remark: We note that union of two g-closed sets in X may not be a g-closed set in X.

Definition 2.2 [1]: Let X be a generalized topological space and $A \subseteq X$. Then the **g-closure** of A is defined as the intersection of all g-closed sets in X containing A. The gclosure of A is denoted by $c_a(A)$. **Remark:** In a generalized topological space X we note that a set A is g-closed iff $c_g(A) = A$. Further we note that $c_g(A)$ is the smallest g-closed set in X containing A.

Proposition 2.2: Let X be a generalized topological space and let $\{A_{\alpha}\}_{\alpha \in \Lambda}$ be a family of subsets of X. Then

(i) $\bigcup_{\alpha \in \Lambda} c_g (A_{\alpha}) \subseteq c_g (\bigcup_{\alpha \in \Lambda} A_{\alpha})$, and

(ii) $c_g (\bigcap_{\alpha \in \Lambda} A_{\alpha}) \subseteq \bigcap_{\alpha \in \Lambda} c_g (A_{\alpha}).$

Definition 2.3 [1]: Let X be a generalized topological space and $A \subseteq X$. Then the **g-interior** of A is defined as the union of all g-open sets in X contained in A. The g-interior of A is denoted by $i_a(A)$.

Remark: In a generalized topological space X we note that a set A is g-open iff $i_g(A) = A$. Further we note that $i_g(A)$ is the largest g-open set in X contained in A.

Proposition 2.3: Let X be a generalized topological space and let $\{A_{\alpha}\}_{\alpha \in \Lambda}$ be a family of subsets of X. Then (i) $\bigcup_{\alpha \in \Lambda} i_g (A_{\alpha}) \subseteq i_g (\bigcup_{\alpha \in \Lambda} A_{\alpha})$, and (ii) $i_g (\bigcap_{\alpha \in \Lambda} A_{\alpha}) \subseteq \bigcap_{\alpha \in \Lambda} i_g (A_{\alpha})$.

Proposition 2.4: Let X be a generalized topological space and $A \subseteq X$. Then

(i) $i_g (X - A) = X - c_g(A)$, and (ii) $c_g (X - A) = X - i_g (A)$.

3. Generalized Closure Operator on Subsets of X

In this section we have introduced the notion of c_g^* , the generalized closure operator on the family of all subsets of *X*, where X is a generalized topological space. We have obtained significant results of the c_g^* operator. We begin with the definition of Ideal on a generalized topological space.

Definition 3.1 [6]: Let (X, τ_g) be a generalized topological space and let *I* be a family of subsets of *X*. Then *I* is said to be an **Ideal** on X if following two conditions are satisfied viz,;

(i) Hereditary property: If $A \in I$ and $B \subseteq A$ then $B \in I$.

(ii) Finite additivity: If $A, B \in I$ then $A \cup B \in I$.

The triplet (X, τ_g, I) is called **generalized ideal topological** space.

Volume 5 Issue 1 January 2016 <u>www.ijsr.net</u> Licensed Under Creative Commons Attribution CC BY **Example 3.1:** Let us consider set $X = \{x_1, x_2, x_3\}$ and let $\tau_g = \{\emptyset, X, \{x_1, x_2\}, \{x_2, x_3\}\}$ be generalized topology on *X*. Let $I = \{\emptyset, \{x_1\}, \{x_2\}, \{x_1, x_2\}\}$. Then *I* is an ideal on the generalized topological space *X*, and (X, τ_g, I) is a generalized ideal topological space.

The collection of Ideals on a generalized topological space X is closed under arbitrary intersection operation, viz.:

Proposition 3.1: Let X be a generalized topological space and let $\{I_{\lambda}\}_{\lambda \in \Lambda}$, where Λ is an index set, be any arbitrary collection of ideals on X. Then $I = \bigcap_{\lambda \in \Lambda} I_{\lambda}$ is an ideal on X.

Proof: Suppose $A \in I$ and $B \subseteq A$. Then $A \in I_{\lambda}$ for each $\lambda \in \Lambda$. Since I_{λ} is an ideal on X and $B \subseteq A$, we have $B \in I_{\lambda}$. Therefore $B \in I_{\lambda}$ for each $\lambda \in \Lambda$. Hence $B \in \bigwedge_{\lambda \in \Lambda} I_{\lambda} = I$. Further suppose that $A_1, A_2 \in I$. This implies $A_1, A_2 \in I_{\lambda}$ for each $\lambda \in \Lambda$. As I_{λ} is an ideal on X, we have $A_1 \cup A_2 \in I_{\lambda}$ for each $\lambda \in \Lambda$. Hence $A_1 \cup A_2 \in \bigcap_{\lambda \in \Lambda} I_{\lambda} = I$. Thus $I = \bigcap_{\lambda \in \Lambda} I_{\lambda}$ is an ideal on X.

However, collection of ideals on a generalized topological space X is not closed under the operation of union. We have following Example.

Example 3.2: Let us consider generalized topological space $X = \{x_1, x_2, x_3\}$ with generalized topology $\tau_g = \{\emptyset, X, \{x_1, x_2\}, \{x_1, x_3\}\}$. Further let us consider ideals $I_1 = \{\emptyset, \{x_1\}, \{x_2\}, \{x_1, x_2\}\}$ and $I_2 = \{\emptyset, \{x_1\}, \{x_3\}, \{x_1, x_3\}\}$ on X. Then we can see that $I_1 \cup I_2 = \{\emptyset, \{x_1\}, \{x_2\}, \{x_3\}, \{x_1, x_2\}, \{x_1, x_3\}\}$ is not an ideal on X.

Definition 3.2: Let (X, τ_g, I) be a generalized ideal topological space, and let $A \subseteq X$. Then the **local function** of A is denoted by A^* and is defined as $A^* = \{x \in X : A \cap \bigcup \notin I \text{ for each } g\text{-open set } \bigcup Containing x.$

Definition 3.3: Let (X, τ_g, I) be a generalized ideal topological space. Then the operator $c_g^* : P(X) \longrightarrow P(X)$, where P(X) is a power set of X, defined as $c_g^*(A) = A \cup A^*$ for all $A \in P(X)$ is called **generalized closure operator**.

Example 3.3: Let $X = \{x_1, x_2, x_3\}$ be a generalized topological space with generalized topology $\tau_g = \{\emptyset, X, \{x_1, x_2\}, \{x_2, x_3\}\}$ and ideal $I = \{\emptyset, \{x_1\}\}$ on X. Then generalized closure operator an each subsets of X is defined as follows:

- $c_g^*(\emptyset) = \emptyset$.
- $c_g^* \{x_1\} = \{x_1\}.$
- $c_q^* \{x_2\} = X.$
- $c_g^* \{x_3\} = \{x_3\}.$
- $c_a^* \{x_1, x_2\} = X.$
- $c_q^* \{x_1, x_3\} = \{x_1, x_3\}.$
- $c_q^* \{ x_2, x_3 \} = X.$
- $c_g^*(X) = X$.

Proposition 3.2: Let X be a generalized ideal topological space and $A \subseteq X$. Then $c_g^*(A) \subseteq c_g(A)$.

Proof: Let *X* be a generalized ideal topological space and $A \subseteq X$. Let $x \in A^*$ and *F* be a g-closed set such that $A \subseteq F$. Then X - F is a g-open set and it is disjoint from *A*. This implies $x \notin X - F$. i.e., $x \in F$. Hence $A^* \subseteq F$ and we have, $A^* \subseteq c_g(A)$. Since $c_g^*(A) = A \cup A^* \subseteq A \cup c_g(A)$, it follows that $c_a^*(A) \subseteq c_g(A)$.

Proposition 3.3: Let X be a generalized ideal topological space and let A, B be subsets of X. Then

- (i) $c_g^*(\phi) = \phi, c_g^*(X) = X.$
- (ii) If $A \subseteq B$ then $c_g^*(A) \subseteq c_g^*(B)$.
- (iii) $c_g^*(A) \cup c_g^*(B) \subseteq c_g^*(A \cup B).$
- (iv) $c_g^*(A \cap B) \subseteq c_g^*(A) \cap c_g^*(B).$

Proof: (i) Since $c_g^*(\phi) = \phi \cup \phi^* = \phi \cup \phi = \phi$. Thus $c_g^*(\phi) = \phi$.

Now $c_q^*(X) = X \cup X^* = X$.

(ii) Let X be a generalized ideal topological space and $A \subseteq B \subseteq X$. Then we have, $A^* \subseteq B^*$. Now $c_g^*(A) = A \cup A^* \subseteq B \cup B^* = c_g^*(B)$. Thus $c_g^*(A) \subseteq c_g^*(B)$.

(iii) Since $A \subseteq A \cup B, B \subseteq A \cup B$ from (ii) we have $c_g^*(A) \subseteq c_g^*(A \cup B)$ and $c_g^*(B) \subseteq c_g^*(A \cup B)$. This implies $c_g^*(A) \cup c_g^*(B) \subseteq c_g^*(A \cup B)$.

(iv) Since $A \cap B \subseteq A$ and $A \cap B \subseteq B$ from (ii) we have $c_g^*(A \cap B) \subseteq c_g^*(A)$ and $c_g^*(A \cap B) \subseteq c_g^*(B)$. This implies $c_g^*(A \cap B) \subseteq c_g^*(A) \cap c_g^*(B)$.

Proposition 3.4: Let X be a generalized ideal topological space and let $\{A_{\alpha}\}_{\alpha \in \Lambda}$ be a family of subsets of X. Then (i) $\bigcup_{\alpha \in \Lambda} c_g^* (A_{\alpha}) \subseteq c_g^* (\bigcup_{\alpha \in \Lambda} A_{\alpha})$, and

(ii) $c_g^* (\bigcap_{\alpha \in \Lambda} A_{\alpha}) \subseteq \bigcap_{\alpha \in \Lambda} c_g^* (A_{\alpha}).$

Proof: (i) Let $\{A_{\alpha}\}_{\alpha \in \Lambda}$ be a collection of subsets of generalized topological space *X*. Then we have $A_{\alpha} \subseteq \bigcup_{\alpha \in \Lambda} A_{\alpha}$, for each $\alpha \in \Lambda$. This implies $c_g^*(A_{\alpha}) \subseteq c_g^*(\bigcup_{\alpha \in \Lambda} A_{\alpha})$, for each $\alpha \in \Lambda$. Therefore $\bigcup_{\alpha \in \Lambda} c_g^*(A_{\alpha}) \subseteq c_g^*(\bigcup_{\alpha \in \Lambda} A_{\alpha})$.

(ii) We have $\bigcap_{\alpha \in \Lambda} A_{\alpha} \subseteq A_{\alpha}$, for each $\alpha \in \Lambda$. This implies $c_g^*(\bigcap_{\alpha \in \Lambda} A_{\alpha}) \subseteq c_g^*(A_{\alpha})$, for each $\alpha \in \Lambda$. Hence we conclude that $c_g^*(\bigcap_{\alpha \in \Lambda} A_{\alpha}) \subseteq \bigcap_{\alpha \in \Lambda} c_g^*(A_{\alpha})$.

4. g-semi-I- open sets

In this section, we have studied the notion of g-semi-I- open sets in a generalized ideal topological space and observed its properties. First we recall the definition of g-semi- open set.

Definition 4.1[2]: Let (X, τ_g) be a generalized topological space and $A \subseteq X$. Then, A is said to be **g-semi-open set** if $A \subseteq c_g$ $(i_g(A))$.

Proposition 4.1: In a generalized topological space each gopen set is g-semi-open. **Proof:** X be a generalized topological space and let A be a gopen set in X. Then $A = i_g(A)$. Since $A \subseteq c_g(A)$, we have $A \subseteq c_g(i_g(A))$. Hence A is a g-semi-open set in X.

The converse of above result is not necessarily true. We have following example:

Example 4.1: Let us consider set $X = \{x_1, x_2, x_3, x_4\}$ with generalized topology $\tau_g = \{\phi, X, \{x_1, x_2\}, \{x_2, x_3\}, \{x_1, x_2, x_3\}$ on X. Then the family of g-closed sets is given by $\tau_g^c = \{\phi, X, \{x_4\}, \{x_3, x_4\}, x_{1,x4}$. Suppose A = x1, x2, x4. Then $igA = \{x1, x2\}$. Now cg (igA = cgx1, x2 = X. Therefore $A \subseteq cg$ (ig(A)). Hence A is a g-semi-open set in X, but A is not g-open set in X.

Definition 4.2: Let (X, τ_g, I) be a generalized ideal topological space and $A \subseteq X$. Then A is said to be **g**-semi-I-open set if $A \subseteq c_g^*(i_g(A))$.

Proposition 4.2: In a generalized ideal topological space (X, τ_g, I) each g-open set is g-semi-I-open.

Proof: Let (X, τ_g, I) be a generalized ideal topological space and let A be a g-open set in X. Then $A = i_g(A)$. Now $c_g^*(i_g(A)) = c_g^*(A) = A \cup A^* \supseteq A$. Thus we have $A \subseteq c_g^*(i_g(A))$. Hence A is g-semi-I-open set in X.

The converse of above result is not necessarily true. We have following example:

Example 4.2: Let us consider set $X = \{x_1, x_2, x_3, x_4\}$ with generalized topology $\tau_g = \{\phi, X, \{x_1, x_2\}, \{x_2, x_3\}, \{x_1, x_2, x_3\} \text{ and } I = \{\phi, \{x_3\}\} \text{ on } X.$ Let $A = \{x_2, x_3, x_4\}$. Then $i_g(A) = \{x_2, x_3\}$. Now $c_g^*(i_g(A) = c_g^*(\{x_2, x_3\}) = \{x_2, x_3\} \cup \{x_2, x_3\}^* =$

 $\{x_2, x_3\} \cup X = X$. Therefore $A \subseteq c_g^*$ $(i_g(A))$. Hence A is a g-semi-I-open set in X but A is not g-open set in X.

Proposition 4.3: In a generalized ideal topological space each g-semi-I –open set is g-semi-open.

Proof: Let (X, τ_g, I) be a generalized ideal topological space let A be a g-semi-I-open set in X. Then we have $A \subseteq c_g^*(i_g(A))$. Since $c_g^*(i_g(A)) \subseteq c_g(i_g(A))$, it follows that $A \subseteq c_g(i_g(A))$. Hence A is g-semi-open set in X.

The converse of above result is not necessarily true. We have following example:

Example 4.3: Let us consider set $X = \{x_1, x_2, x_3, x_4\}$ with generalized topology $\tau_g = \{\emptyset, X, \{x_1\}, \{x_1, x_2\}, \{x_2, x_3\}, \{x_1, x_2, x_3\}\}$ and ideal $I = \{\emptyset, \{x_1\}\}$ on X. Suppose $A = \{x_1, x_4\}$. Then $c_g(i_g(A)) = c_g(i_g\{x_1, x_4\}) = c_g(\{x_1\}) = \{x_1, x_4\}$. Thus $A = c_g(i_g(A))$. Hence A is g-semi -open set in X. Now $c_g^*(i_g(A)) = c_g^*(i_g\{x_1, x_4\}) = c_g^*\{x_1\} = \{x_1\} \cup \{x_1\}^* = \{x_1\}^* \cup \{x_1\}^* \cup \{x_1\}^* = \{x_1\}^* \cup \{x_1\}^* \cup \{x_1\}^* = \{x_1\}^* \cup \{x_1\}^*$

 $\emptyset = \{x_1\}$. Thus $A \not\subseteq c_g^*(i_g(A))$. Therefore we see that A is g-semi-open but not g- semi- I-open set in X.

Proposition 4.4: In a generalized ideal topological space arbitrary union of g-semi-I-open sets is g-semi-I-open.

Proof: Let *X* be a generalized ideal topological space and let $\{A_{\alpha}\}_{\alpha \in \Lambda}$ be a family of g-semi-I-open sets in *X*. Then $A_{\alpha} \subseteq c_g^*(i_g(A_{\alpha}))$, for all $\alpha \in \Lambda$. Suppose $A = \bigcup_{\alpha \in \Lambda} A_{\alpha}$. Now we have $c_g^*(i_g(A)) = c_g^*(i_g(\bigcup_{\alpha \in \Lambda} A_{\alpha})) \supseteq c_g^*(\bigcup_{\alpha \in \Lambda} (i_g(A_{\alpha}))) \supseteq \bigcup_{\alpha \in \Lambda} (c_g^*((i_g(A_{\alpha}))) \supseteq \bigcup_{\alpha \in \Lambda} A_{\alpha} = A$. Thus $A = \bigcup_{\alpha \in \Lambda} A_{\alpha}$ is a g-semi-I-open sets in *X*.

However, intersection of two g-semi-I-open sets is not necessarily g-semi-I-open set. We have following example:

Example 4.4: Let us consider set $X = \{x_1, x_2, x_3, x_4\}$ with generalized topology $\tau_g = \{\emptyset, X, \{x_1, x_2\}, \{x_2, x_3\}, \{x_1, x_2, x_3\}\}$ and ideal $I = \{\emptyset, \{x_3\}\}$ on X. Suppose $A = \{x_1, x_2, x_4\}$ and $B = \{x_2, x_3, x_4\}$. Then we see that the sets A and B are g-semi-I-open sets in X, but $A \cap B = \{x_2, x_4\}$ is not g-semi-I-open set in X.

References

- [1] Csaszar; A; Generalized topology, generalized continuity, Acta Math. Hungar., 96 (2002), 351-357.
- [2] Csaszar, A., Generalized open sets in generalized topologies. Acta Mathematica Hangarica, 2005, 106, 53-66.
- [3] Hatir E. (Konya) and Noiri T. (Yatsushiro), On Semi-I-Open sets and Semi-I-Continuous functions, Acta. Math. Hungar. 107(4) (2005), 345-353.
- [4] Jankovic D and Hamlett T.R., New Topologies from old via Ideals, The American Mathematical Monthly. Vol.97. No. 4 (Apr. 1990), pp. 295-310.
- [5] Kuralowski, K. Topologic, Vol. 1 Wars zawa (1930).
- [6] Maitra J.K. and Tripathi H.K., (2014), Local Function in Generalized ideal topological spaces, VISLESANA, 11(1), 191-195.
- [7] Maitra J.K., Tiwari Rajesh and Tiwari V., (2015), A Note on Local Function in Generalized Ideal topological space. International Journal of Mathematics and Computer Applications and Research (IJMCAR) vol. 5, issue 5, oct,2015, 7-12.
- [8] Samuels P., A Topology formed from a given topology and ideal, J. London Math. Soc., 10 (1975) 409-416.