
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 5 Issue 1 January 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Big File Cloud Storage (BFCS): Distributed Storage
Service with De-Duplication and Secure Storage

Sukruti Gajare1, R. A. Khan2

1, 2Department of Computer Engineering, MES College of Engineering, Pune, University of Pune, Maharashtra, India

Abstract: Nowadays, cloud-based storage are growing and has become an emerging trend in big data storage field. Many problems

arise while designing an efficient and low complicated storage engine for cloud-based systems with some issues like big files processing,

metadata, latency, parallel Input/Output, de-duplication, distributed nature, high scalability. Key value stores has a vital role and

showed many advantages when solving those problems. This paper presents about Big File Cloud Storage(BFCS) with its modules and

architecture to handle most of problems in a big file cloud storage which is based on key value store. Here we are proposing less-

complicated, fixed metadata design, which allows fast as well as highly-concurrent, distributed file Input/Output, and simple file and

data de-duplication method for static data. This method can be used to build a distributed storage system that can accommodate data

whose size is upto terabytes.

Keywords: Cloud Storage System, Key value, Big File, Distributed Storage System

1. Introduction

Now-a-days cloud storage system are being used for storing
the data in gigabytes and terabytes. Cloud storage is used for
the daily use, for backing-up data, sharing file to their
colleagues, on the social networking sites. The user of the
cloud based system can upload the data on the system and
can share it with others and make it available for them and
later can download it. The load over the system is very
heavy. Hence, to ensure a good quality of service cloud
users, the system has to look over various requirement and
difficult problems: serving services to the user with high
quality without any bottleneck; efficiently storing, retrieving
and managing the big data files; resumable and parallel
download and upload of data; the deduplication to be taken
care of for managing the storage capacity of the system.
Traditional file-systems had to face many challenges for
service builder when managing a huge number of big-file:
How to scale system; How to do distribution of data on a
large number of nodes; How to do replication data for load-
balancing and fault-tolerance. The solution for these
problems is Distributed File Systems and Cloud Storages
using commonly is splitting big file to multiple smaller
chunks, storing them on disks or distributed nodes and then
managing them using a meta-data system. Storing of the
chunks and meta-data related to it efficiently and designing a
lightweight meta-data related to it are significant problems
that cloud storage providers have to face.

Key value stores have various advantages for storing data in
data-intensive operation. In recent years, key value stores
have a very unpre-cedented growth in every field. They have
low latency with less response time and high scalability with
small and medium key value pair size. Current key value
stores are not designed for directly storing big-values, or big
file in our case. We executed several experiments in which
we put whole file-data to key value store, the system did not
have good performance as usual for many reasons: firstly, the
latency of put/get operation for big-values is high, thus it
affects other parallel operations of key value store service
and multiple concurrent accesses to different value. And ,

when the value is big, then there is no space to cache objects
in memory for fast access. Finally, it is difficult to scale-out
system when number of users and data increase. This
research is implemented to solve those problems when
storing big-values or big-file using key value stores. It has
and gets many advantages of key value store in data
management to research called cloud-storage system called
Big File Cloud Storage (BFCS).

2. Big File Cloud Storage (BFCS) Architecture

A. Overview of the Architecture
BFCS System includes four layers: Application Layer,
Logical Layer, File-Chunk Store Layer and Key value store
Layer. Each layer of the architecture contains several co-
ordinated components. Application Layer consists of
application software on desktop computers, mobile devices
and web-interface, that allows the user to upload, download
their files. This layer uses API contained in Logical Layer
and uses several algorithms for downloading and uploading
process which are described in subsections II-F and II-G.
Logical Layer consisted of many services and worker
services, ID-Generator services and all logical API for Cloud
Storage System. This layer gives the business logic part in
BFCSS. The vital components of this layer are upload and
download.

Logical Layer stores and retrieves data from File-Chunk
Store Layer. File-Chunk Store Layer is the most important
layer which has responsibility for storing and caching chunks.
This layer manages information of all chunks in the system
including user details and file metadata. In this, meta-data
describes a file and how it is organized in chunks. File-Chunk
Store Layer also contains many distributed back-end
services. Two important services of File-Chunk Store Layer
are FileInformationService and Chunk Storage Service.

Paper ID: NOV152793 573

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 5 Issue 1 January 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Figure 1: Shows the overview of BFCSS Architecture

File Information Service stores information of files. It is a
key value store mapping data from fileID to FileInform
structure. Chunk Storage Service stores data chunks which
are created by splitting the original files that user uploaded.
Splitting and storing a large file as number of chunks in
distributed key value store bring a lot of benefits. Firstly, it is
easier to store, distribute chunks in key value stores. File
chunks can be stored efficiently in a key value store. It is
difficult to do this with a large file directly in local file
system.

B. File Description
File consists of one or more chunks with fixed-size. Each
chunk has a unique integer Identity, and all of chunk
generated from a file have a contiguous range of chunk-id.
This is a different point to many other Cloud Service such as
DropBox[12] which uses SHA-2[16] of chunk as ID.

C. Storage of the Chunks
The basic element in the defined cloud storage system is
chunk. A chunk is generated from a file. When the user
uploads a file, it will be split into a number of chunks. All
chunks which are generated from a file except the last chunk
have the same size (the last chunk of a file may have an equal
or smaller size). After that, the ID generator will generate id
for the first chunk with auto-increment mechanism. Next
chunk that follows in the chunks set is to be assigned with an
ID and then gradually increase till the final chunk. A
FileInform object is created with information such as file-id,
size of file, id of first chunk, number of chunks and will be
stored to the database and the chunks will be stored in key
value store as a record with key as id of chunk and value is
data of chunk. Chunk storage is one of the most significance
of defines cloud storage. By using chunks to represent a file,
we can easily build a distributed file storage system service
with replication, load balancing, fault-tolerant and supporting
recovery.

D. Metadata

Typically, in the cloud storage system such as Dropbox [12],
the size of meta-data will respectively increase with the size
of original file, it contains a list of elements, each element
contains information such as chunk size, hash value of chunk.
Length of the list is equal to the number of chunk from file.
So it becomes complicated when the file size is big. BFCS
proposed a solution in which the size of meta-data is
independent of number of chunks with any size of file, both a
very small file or a huge file. The solution just stores the id of
first chunk, and the number of chunks which is generated by
original file. Because the id of chunk is increasingly assigned
from the first chunk, we can easily calculate the ith chunk id
by the formula:
Chunk_id[i] = fileInform.startChunk_id + i

Meta-data is mainly described in FileInform structure consist
of following fields:
 File_Name - the name of file;
 file_id: - unique identification of file in the whole system ;
 sha: - hash value by using SHA algorithm of file data;
 reference_file:- id of file that have previous existed in

System and have the same sha256 - we treat these files as
one, reference_file is valid if it is greater than zero;

 start_Chunkid : - the identification of the first chunk of file,
the next chunk will have id as start_Chunkid +1 and so on;

 num_Chunk:- the number of chunks of the file;
 file_Size :- size of file in bytes;
 file_status:- the status of file, it has one in four values

namely
UploadingF ile - when chunk are uploading to server;
CompletedFile - when all chunk are uploaded to server but it
is not check as consistent;
CorruptedFile - when all chunk are uploaded to server but it
is not consistent after checking;
GoodCompleted - when all chunk are uploaded to server and
consistent checking completed with good result. By using
this solution, we can create a lightweight meta-data design
when building the defined cloud storage.

E. Uploading and Deduplication Mechanism
Figure 2 describes an algorithm for uploading big file to
BFCS.Data deduplication can be defined in the cloud storage
BFCS. There are many types and methods of data
deduplication [3] which can work both on client-side or
server-side. We use a simple method with SHA2 hash
function to detect duplicate files in the system during the
uploading of file.

The upload service on BFCS cloud storage system has a little
different between mobile client and web interface. The client
computes the SHA hash value of data content of this file P.
After that, the client creates a metadata of file including file
name, file size, SHA value. This information will be sent to
server. At server-side, if data deduplication is enabled, SHA
value will be used to

Paper ID: NOV152793 574

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 5 Issue 1 January 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Figure 2: Uploading Mechanism

see associated file_id, if there is a file_id in the system with
the SHA-value we call it Q, this means that file P and file Q
are the same. So we simply refer file P to file Q by assigning
the id of file B to reference_file property of file P - a
property that describes that a file is referenced to another file,
thus the upload flow complete, there is no more wasteful
upload of file. In the case there is no fileID associated with
SHA-value of file P or data deduplication is disabled, the
system will create some of new properties for the file
information including the id of file, the id of first chunk using
id_Generator and number of chunk calculated by file size and
chunk size. This process can be done in parallel to maximize
speed of operation. Every chunk will be stored in the BFCS
storage system as a key value pair.

F. Downloading Mechanism
Figure 3 describes an algorithm for uploading big file to
BFCS. Firstly, the client selects the id of file that will be
downloaded to the server.

If FileInform of the file_id exists, this information will be
sent back to the client. The client uses the FileInform
information to schedule the download process. Every
downloaded chunk will be save directly to its position in this
file. When all chunks are fully downloaded successful, the
download process is completed

Figure 3: Downloading Mechanism

3. Conclusion

BFCS, a simple meta-data to create a high performance
Cloud Storage based on MYSQL key value store. Every file
in the system has a same size of meta-data regardless of file-
size. Every big-file stored in BFCSS is split into multiple
fixed-size chunks (may except the last chunk of file). The
chunks of a file have a contiguous ID range, thus it is easy to
distribute data and scale-out storage system, especially when
using MYSQL. This research also brings the advantages of
key value store into big-file data store which is not default
supported for big-value. The data deduplication method of
BFCSS uses SHA-2 hash function and a key value store to
fast detect data-duplication on server-side. It is useful to save
storage space and network bandwidth when many users
upload the same static data.

Paper ID: NOV152793 575

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 5 Issue 1 January 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

References

[1] Thanh Trung Nguyen, Tin Khac Vu, Minh Hieu Nguyen,

Ha Noi, Viet Nam, “BFCSS: High-Performance
Distributed Big-File Cloud Storage Based On Key
value Store”, June 1-3 2015, IEEE SNPD 2015, 978-1-
4799-8676-7/15(Base Paper).

[2] T.T.Nguyen and M.H.Nguyen , “Design Sequential
Chunk identity with Light weight Metadata for Big File
Cloud Storage”, IJCSNS International Journal of
Computer Science and Network Security, VOL.15 No.9,
September 2015.

[3] Jin Li, Xiaofeng Chen, Xinyi Huang, Shaohua Tang and
Yang Xiang, Mohammad Mehedi Hassan, Abdulhameed
Alelaiwi, “Secure Distributed Deduplication Systems
with Improved Reliability”, 2015,
10.1109/TC.2015.2401017, IEEE Transactions on
Computers.

[4] Thanh Trung Nguyen · Minh Hieu Nguyen, “Zing
Database: High-Performance Key value Store For
Large-Scale Storage Service”, 17 August 2014,
Springer - Vietnam J Comput Sci (2015), DOI
10.1007/s40595-014-0027-4.

[5] Joshi Vinay Kumar, V Ravi Shankar, “De-duplication
and Encryption in Cloud Storage”, May 2015,
International Journal of Innovative Research in Science,
Engineering and Technology, Vol. 4, Special Issue 6.

[6] Leeba Varghese , Suranya G, “Test Pattern Generation
Using LFSR With Reseeding Scheme For BIST
Designs”, December 2014, International Journal of
Advanced Research in Electrical, Electronics and
Instrumentation Engineering, Vol. 3, Special Issue 5.

[7] Christian Forfang, “Evaluation of High Performance
Key value Stores”, June 2014, Norwegian University of
Science and Technology.

[8] Nesrine Kaaniche, Maryline Laurent, “A Secure Client
Side Deduplication Scheme in Cloud Storage
Environments”, 2013, Institut Mines-Telecom,
Telecom SudParis, UMR CNRS 5157.

[9] Idilio Drago, Enrico Bocchi, Marco Mellia, Herman
Slatman, Aiko Pras, “Benchmarking Personal Cloud
Storage”, October 23–25, 2013, ACM, 978-1-4503-
1953-9/13/10.

[10] Mihir Bellare, Sriram Keelveedhi, Thomas Ristenpart,
“DupLESS: Server-Aided Encryption for
Deduplicated Storage”, 2013, USENIX Security
Symposium.

[11] Iuon-Chang Lin and Po-ChingChien, “Data
Deduplication Scheme for Cloud Storage”, 2012,
International Journal of Computer, Consumer and
Control (IJ3C), Vol. 1, No.2.

[12] Idilio Drago, Marco Mellia, Maurizio M. Munafò, Anna
Sperotto, Ramin Sadre, Aiko Pras, “Inside Dropbox:
Understanding Personal Cloud Storage Services”,
November 14–16, 2012, ACM, 978-1-4503-XXXX-
X/12/11.

[13] Russell Sears, Raghu Ramakrishnan, “bLSM: A
General Purpose Log 0Structured Merge Tree”, May
20–24, 2012, ACM, 978-1-4503-1247-9/12/05.

[14] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C.
Hsieh, Deborah A. Wallach, Mike Burrows, Tushar

Chandra, Andrew Fikes, Robert E. Gruber, “Bigtable: A
Distributed Storage System for Structured Data”,
Google, Inc.

[15] David Karger, Eric Lehma, Tom Leighton, Matthew
Levine, Daniel Lewin, Rina Panigrahy “Consistent
Hashing and Random Trees: Distributed Caching
Protocols for Relieving Hot Spots on the World Wide
Web”.

[16] “Secure Hash Standard”, Computer Systems
Laboratory National Institute of Standards and
Technology Gaithersburg, MD 2089, Issued April 17,
1995.

[17] Martin Placek, Rajkumar Buyya, “A Taxonomy of
Distributed Storage Systems”.

[18] Dhruba Borthakur, “HDFS Architecture Guide”,
Copyright © 2008 The Apache Software Foundation.

[19] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak
Leung, “The Google File System”, October 19–22,
2003, ACM, 1-58113-757-5/03/0010.

Paper ID: NOV152793 576

