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Abstract: Variable latency adders have been recently proposed in literature. In variable latency adder unwanted interconnections also 

reduced compared with kogge-stone topology. Kogge-Stone adder consists of large number of black cells and many wire tracks. A 

variable latency adder employs speculation: the exact arithmetic function is replaced with an approximated one that is faster and gives 

the correct result most of the time, but not always. In order to detecting the error, error detection network also used. The approximated 

adder is augmented with an error detection network that asserts an error signal when speculation fails. Speculative variable latency 

adders to reduce average delay compared to traditional architectures. This paper proposes a novel variable latency speculative adder 

based on Han-Carlson parallel- prefix topology which proposes the error detection network that reduces error probability compared to 

previous approaches. Several variable latency speculative adders, for various operand lengths, using both Han-Carlson and Kogge-

Stone topology, have been synthesized using Xilinx 14.3. Obtained results show that proposed variable latency Han-Carlson adder used 

in high-speed application. 
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1. Introduction 
 
VLSI binary adders are critically important elements in 
processor chips, they are used in floating-point arithmetic 
units, ALUs, memory addresses program counter update and 
magnitude comparator [1, 2]. Adders are extensively used as 
a part of the filter such as DSP lattice filter [3]. Ripple carry 
adder is the first and most fundamental adder that is capable  
of performing binary number addition. Since its latency is 
proportional to the length of its input operands, it is not very 
useful. To speed up the addition, carry look ahead adder is 
introduced. Parallel prefix adders provide a good results as 
compared to the conventional adders. The adders with the 
large complex gates will be too slow for VLSI, so the design 
is modularized by breaking it into trees of smaller and faster 
adders which are more readily implemented. For large adders 
the delay of passing the carry through the look-ahead stages 
becomes dominated and therefore tree adders or parallel 
prefix adders are used. High speed adders depend on the 
previous carry to generate the present sum. In integer 
addition any decrease in delay will directly relate to an 
increase in throughput. In nanometer range, it is very 
important to develop addition algorithm that provide high 
performance while reducing power. Parallel prefix adders are 
suitable for VLSI implementation since they rely on the use 
of simple cells and maintain regular connection between 
them. We can define each prefix. 
 
Structures in terms of logic levels, fanout and wiring tracks. 
Zero or more inverters are added to each prefix cell output to 
minimize the delay based on this model, buffers are 
individually sized to minimize the delay, buffers are used to 
minimize the fanout and loading on gates since high fanout 
causes poor performance. we design an extremely fast 
unreliable adder that produces correct results for the vast 

majority of input combinations. For brevity, we will call this 
adder an Almost Correct Adder (ACA). 
 

 
Figure 1:  Graph representation of 16-bit Hybrid Han-

Carlson  Adder 
 

2. Preliminaries 
 
This section introduces the unreliable ACA. Throughout the 
paper, binary integers are denoted by uppercase letters, e.g., 
A,B,X etc.; the ith least significant bit of an integer X is 
denoted by xi−1. In order to add two n-bit integers A and B, 
one can define generate, propagate and kill signals at each bit 
position as follows: 
gi = aibi, 

, and 
ki = ai + bi. 

 
Using these signals the carry output ci at each bit position i is 
generated and is used to compute the sum bits. The 
recurrence for ci is shown below. 
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Note that the carry bit ci depends on the carry bit      ci−1 
only if the propagate signal pi is true, otherwise ci can be 
determined locally based on the values of gi and ki. 
Similarly, ci−1 depends on ci−2 only if pi−1 is true. This 
means ci depends on ci−2 only if both pi and pi−1 are true. In 
general ci will depend on ci−k only if every propagate signal 
between bit position i and i−k+1 (inclusively) is true. If an 
oracle provides us with the longest sequence of propagate 
signals in advance, then an extremely fast adder could be 
constructed. For example, we want to add two 20-bit 
integers. Since the longest sequence of propagate signals is 4, 
the carry output ci at bit position i will be independent of 
ci−5. Hence, si can be computed only using the input bits of 
6 preceding bit positions starting from ith bit position. In 
other words, we can form several 6 bit adders, each 
computing the carry-in and sum bit for a particular bit 
position. The delay of this particular 20-bit adder will be 
virtually the same as that of a 6-bit adder. Ideally, one would 
like to know the longest sequence of propagate signals in the 
input addenda. There are, in fact, no bounds on the length of 
the longest propagate sequence. In extreme cases such as for 
integers A = 11. . . 1, B = 00. . . 0 the length of the longest 
propagate sequence is the same as the bit width of A and B. 
However, in the next section, we show that on average, the 
length of the longest propagate sequence is approximately 
log n, where n is the bit width of the integers. 
 
3. Previous Work 
 

The different types of parallel prefix adders available are 
Kogge-Stone adder, Brent-kung adder, Sklansky adder, Han-
Carlson adder, Knowles adder and Ladner-Fischer adder. 
These adders offer a tradeoffs among the number of stages of 
logic, the number of logic gates, fanout and amount of wiring 
between stages. Kogge-Stone adder, Brent-kung adder and 
Sklansky adder are the fundamental adders. Brent-Kung uses 
minimal number of computation nodes which yields in 
reduced area but structure has maximum depth which yields 
slight increase in latency. Slansky reduces the delay at the 
expense of increased fanout. Kogge-Stone achieves high 
speed and low fanout but produces complex circuitry with 
more numbers of wiring tracks[5].  

 
The Knowles trees are family of network between Kogge-
Stone and Sklansky with increased fan-out. Ladner Fischer 
introduced a network between Sklansky and Brent-Kung 
which provides tradeoffs between logic levels and fanout. T. 
Han and D.A. Carlson presented a hybrid construction of a 
parallel prefix adder using two designs the Kogge-Stone 
construction having the best feature of higher speed and the 
Brent-kung construction with best feature of low area 
requirement. A modified Han-Carlson adder uses fewer 
number of prefix operations by adjusting the number of 
stages amongst Kogge-Stone and Brent-kung adder and thus 
reduces the area required by the adder circuitry. Fig 2.below 
shows a 3-dimentional taxonomy of tree adders [6]. There are 
three axes representing the fan-out, wiring tracks and logic 
levels and each tree is indicated by three integers (l, f, t) in 
the range [0, L-1]. The tree adders lie on the plane l + f + t = 
L-1, where L= log2N and indicates the number of bits. Brent-
Kung, Kogge-Stone and Sklansky represent the vertices of 

the cube (3, 0, 0),(0, 0, 3) and (0, 3, 0) respectively. Han-
Carlson, Ladner-Fischer and Knowles lie along the diagonals. 
Where N indicates the number of bits the variables l, f, and t 
are integers in the range [0, L− 1] indicating: 
1) Logic Levels: L+ l 
2) Fan-out: 2f+1 
3) Wiring Tracks:   

2t  
Figure 2: Taxonomy of prefix networks 

 

4. Proposed Work 
 
Design the Speculative Han-Carlson Adder. It differs from 
other adder in that it can be used for large word sizes. The 
proposed design reduces the number of prefix operation by 
using more number of Brent-Kung stages and lesser number 
of Kogge-Stone stages. This also reduces the complexity, 
silicon area and power consumption significantly. 

 
Variable latency speculative prefix adders can be subdivided 
in five stages: pre-processing, speculative prefix-processing, 
post-processing, error detection and error correction. The 
error correction stage is off the critical path, as it has two 
clock cycles to obtain the exact sum when speculation fails. 

 
 

 
Figure 3: Han-Carlson speculative prefix-processing stage. 

 
Consider the n-bit addition of two numbers: A = an−1, 
an−2, a0 and B = bn−1, bn−2, b0 resulting in the sum, S = 
sn−1, sn−2, s0 and a carry, Cout. The first stage in CLA 
computes the bit generate and bit propagate as follows: 

 
gi = ai · bi 
pi = ai + bi,                                                            (1) 
 

Where gi is the bit generates and pi is the bit propagate. The 
schematic of gi and pi using CMOS and   transmission gates 
design style. These are then utilized to compute the final sum 
and Carry bits, in the last stage as follows: 

 
Ci+1 = gi + pi · ci,                                                  (2) 
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Where ·, + and ⊕ represent AND,OR, and XOR operations. 
It is seen that the first and last stages are intrinsically fast 
because they involve only simple operations on signals local 
to each bit position. However, intermediate stages embody 
the long-distance propagation of carries, as a result of which 
the performance of the adder hinges on this part [10]. These 
intermediate stages calculate group generate and group 
propagate to avoid waiting for a ripple which, in turn, 
reduces the delay. These group generate and propagates are 
given by  

Pi: j = Pi:k · Pk−1: j , 
Gi: j = Gi:k + Gk−1: j · Pi:k.                      (3) 

 
There are many ways to develop these intermediate stages, 
the most common being parallel prefix. Many parallel prefix 
networks have been described in the literature, especially in 
the context of addition. In this paper, we have used the 
Kogge-Stone implementation, Hans-Carlson, Sklansky, 
Brent-Kung implementation of CLA, and Kogge- Stone 
implementation of Ling adder. PG logic in all adders is 
generally represented in the form of cells. These diagrams 
known as cell diagrams will be used to compare a variety of 
adder architectures in the following sections. Here two cells 
are used for implementation of all the adders: grey cell and 
the black cell.  

 
Han-Carlson Adder: The Han-Carlson trees are a family of 
networks between Kogge-Stone and Brent-Kung. The logic 
performs Kogge-Stone on the odd numbered bits and then 
uses one more stage to ripple into the even positions. 

 
Kogge-Stone Adders:  The main difference between Kogge-
Stone adders and other adders is its high performance. It 
calculates carries corresponding to every bit with the help of 
group generate and group propagates. In this adder the logic 
levels are given by log2N, and fan-out is 2. 

di = ai ⊕  bi.                             (4) 

 

Figure 4: Block generate and propagate (Ling carry) using 
CMOS and transmission gate. 

 
Now, instead of utilizing traditional carries, a new of carry, 
known as Ling carries, is produced where the ith Ling carry 
in [11] is defined to be 

ci = Hi · pi,                                         (5) 
 

Where 
 Hi = ci + ci−1.                                   (6) 

 
In this way, each Hi can be in turn represented by 
Hi = gi + gi−1 + pi−1 · gi−2 

+ · · · + pi−1 · pi−2 · pi−3 · . . . p1g0. (7) 
 
 We can see from (5) that Ling carries can be calculated 
much faster than Boolean carry. Consider the case of c4 and 
H4 
 
c4 = g4 + p4 · g3 + p4 · p3 · g2 
+ p4 · p3 · p2 · g1 + p4 · p3 · p2 · p1 · g0, (8) 
H4 = g4 + g3 + p3 · g2 + p3 · p2 · g1 + p3 · p2 · p1 . g0. 
 
 If we assume that all input gates have only two inputs, we 
can see that calculation of c4 requires 5 logic levels, whereas 
that for H4 requires only four. Although the computation of 
carry is simplified, calculation of the sum bits using Ling 
carries is much more complicated. The sum bit, when 
calculated by using traditional carry, is given to be 
 

                                 (9) 
 
Substituting (5) into (9), we get that 
 

                   (10) 
 
However, according to [12] the computation of the bits si can 
be transformed as follows: 
 

 si = Hi-1 · di + Hi-1(di ⊕ pi-1)                   (11) 
 
 Equation (11) can be implemented using a multiplexer with 
Hi− 1 as the select line, which selects either di or (di ⊕  pi− 1). 
No extra delay is added by Ling carries to compute the sum 
since the delay generated by the XOR gate is almost equal to 
that generated by the multiplexer and that the time taken 
to compute the inputs to the multiplexer is lesser than that 
taken to compute the Ling carry.. Here, for n-bit addition, 
Ling carry Hi and Hi+1 is given by  
 

 
Hi+1 = (G* i+1, P* i ).(G* i-1, P* i-2) .· · · .(G* 1 , P* 0 ), (12) 

Where 
 

(13) 
 

H3 = g3 + g2 + p2 · g1 + p2 · p1 · g0,          (14) 
H4 = g4 + g3 + p3 · g2 + p3 · p2 · g1 + p3 · p2 · p1 ·  

g0. 
 
This can be further reduced by using (13) to 

 
 

                 (15) 
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This can be then further reduced by using the “.” operator to 
 

 
 
 This allows the parallel prefix computation of Ling adders 
using a separate tree [9] for even and odd indexed positions. 
Using this methodology, we implemented a 16-bit adder 
using the Kogge-Stone tree and then utilized that block to 
develop 32 and 64-bit adders. The gates and blocks used for 
this implementation were then modified using transmission 
gates. Cells other than gray and black cell that are used as 
components in Ling adder. 
 

 
Figure 5: The nodes of the prefix-processing stage,   whose 
outputs are needed to compute the error signal, are named 
“checking nodes” and are highlighted as big hatched dots. 

           
5. Adders Characterization 
 

5.1 Error Detection 

 
This section presents a circuit that flags an error if the sum 
computed by the ACA is incorrect. This only occurs when 
there is a chain of more than k propagates in the addenda. To 
check for the presence of an error, we must consider all 
chains of length k + 1, and check if any of them contain 
solely propagates. The expression for error signal is stated as 
follows: 
 

 
 

The critical path delay to compute error signal has 
complexity O (log k + log (n − k)). Since k = O(log n), the 
error signal complexity can be reduced to O (log n). The 
critical path delay of error detection has the same complexity 
as that of the critical path delay of a traditional adder; 
however, the error detector only requires simple gates, such 
as AND, OR, etc.,. Experimentally, we report that the delay 
of the error detection signal is approximately two-thirds of 
the delay of a traditional adder. 

 
5.2 Error Recovery 

 

Once an error has been detected, one could simply employ a 
traditional correct adder to produce the sum. Instead, we 
have developed a novel error recovery technique that uses a 
computation inside the ACA to reduce both the critical path 

delay and hardware area. The matrix product MiMi−1, 
Mi−k+1 computes the propagate and generate signals for the 
block between bit position i and i − k + 1. Thus, the ACA 
computes the propagate and generate signals for each k-bit 
block. If we divide the input integers into n/k blocks of k-bits, 
the values of propagate and generate for each block can be 
taken from the ACA. An n/k-bit carry look-ahead adder then 
takes these values and computes the carry for each of the 
blocks. Meanwhile, we compute the propagate and generate 
signals for each bit in a block. 
 
In Han-Carlson the critical checking cells are in the second 
last level of the graph and are also available after three black 
cells delay. As it can be observed, in Kogge-Stone some of 
the checking cells are at the last level of the graph; their 
output signals are available after three black cells delay. 

 
Table 1: Delay and power of Han-Carlson Speculative adder 

 Han- Carlson     Adder 

Delay 9.810 ns 
Power 0.016W  (or)  160mW 

 

6. Variable Latency Speculative Adder 
 
We observe that for 16 bits, the delay of the ACA and error 
detection mechanisms are approximately equal and, 
individually, both are significantly less than the delay of a 
traditional adder. Based on this observation, we have 
designed the circuit shown in Fig. 6 whose clock period is 
slightly greater than the critical path delay of the error 
detection circuit. After one cycle, the circuit produces the 
result of the ACA and a bit indicating whether or not an error 
has been detected. If there is no error, then the circuit 
provides SUM ∗  as its output and will also set the VALID bit 
to 1. Since STALL is the complement of valid, the circuit will 
be ready to accept a new set of input addenda. If an error 
occurs, the valid bit will be set to 0 and the stall bit will be 
set to 1. After two cycles, the corrected sum value will be 
available and the valid bit will be set to 1. At this point, the 
circuit is ready to accept new inputs. We call this type of 
adder a Variable Latency Speculative Adder (VLSA). . Since 
the ACA produces a correct sum in more than 99.99% of all 
cases, the average latency will be 1.0001 cycles. The 
effective latency of the circuit is almost half of the latency of 
the fastest traditional adder. 
 
7. Synthesis Results 
 

Verilog descriptions of the proposed variable latency 
speculative adders, and of their non-speculative counterpart. 
It is not easy to compare performances (in terms of power, 
speed, and area) of different designs, since they strongly 
depend on timing constraint used during synthesis. 
 
7.1 The Optimal K Choice 

 
Comparison between variable latency adder and the non-
speculative Han-Carlson topology reveal that variable latency 
adders allow to reduce the minimum achievable delay. For 
instance, in the 64 bit case, the minimum achievable delay is 
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about 280 ps for the non-speculative adder and reduces up to 
225 ps in the variable latency architecture.  
 
7.2 Comparison with Kogge-Stone Variable Latency 

Speculative Adder 

 
Fig. 7 shows the comparison between proposed speculative 
adder and Kogge-Stone one. Also in this case, we report the 
performance of non-speculative adders, in order to identify 
the region where the speculative approach is effective. As an 
example, focusing on 64-bit adders, for lower than 350 ps, 
the proposed Han-Carlson speculative adder is the best 
choice in terms of silicon area and power consumption. 
Moreover, it allows to reduce the minimum achievable to 225 
ps, with a 18% improvement respect to Kogge-Stone non-
speculative adder and a 11% improvement respect to Kogge-
Stone speculative adder. For , proposed speculative adders 
offer 45% area reduction and 35% power saving compared to 
Kogge-Stone non-speculative adder. 
 

 
Figure 7(a) 

 

 
Figure 7(b) 

 
Fig. 7(a). Area report of Han-Carlson Adder, 7(b). error 
correction report of Han- Carlson Adder 
 
8. Conclusion 
 
In this paper a novel variable latency Han-Carlson parallel 
prefix Speculative adder for high-speed application is 
proposed. An accurate error detection  network is 
implemented to reduce the error probability compared with 
kogge stone adder. Variable latency adder performance 

mainly depends on prefix-processing stage. Speculative 
latency adder reduces the number of black cells. Compared 
with traditional, non-speculative, adders, our analysis 
demonstrates that variable latency Han-Carlson adders show 
sensible improvements when the highest speed is required; 
otherwise the burden imposed by error detection and error 
correction stages overwhelms any advantage. Additional 
work is required to extend the speculative approach to other 
parallel-prefix architectures, such as Brent-Kung, Ladner-
Fisher, and Knowles. 
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