
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 5 Issue 1 January 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Implementation of Error Detection Network in
High- Speed Variable Latency Speculative

Han-Carlson Adder

C. Dhanalakshmi
1
, C. Manjula

2

1, 2Adhiyamaan College of Engineering, Hosur

Abstract: Variable latency adders have been recently proposed in literature. In variable latency adder unwanted interconnections also

reduced compared with kogge-stone topology. Kogge-Stone adder consists of large number of black cells and many wire tracks. A

variable latency adder employs speculation: the exact arithmetic function is replaced with an approximated one that is faster and gives

the correct result most of the time, but not always. In order to detecting the error, error detection network also used. The approximated

adder is augmented with an error detection network that asserts an error signal when speculation fails. Speculative variable latency

adders to reduce average delay compared to traditional architectures. This paper proposes a novel variable latency speculative adder

based on Han-Carlson parallel- prefix topology which proposes the error detection network that reduces error probability compared to

previous approaches. Several variable latency speculative adders, for various operand lengths, using both Han-Carlson and Kogge-

Stone topology, have been synthesized using Xilinx 14.3. Obtained results show that proposed variable latency Han-Carlson adder used

in high-speed application.

Keywords: Addition, digital arithmetic, parallel-prefix adders, speculative adders, speculative functional units, variable latency adders

1. Introduction

VLSI binary adders are critically important elements in
processor chips, they are used in floating-point arithmetic
units, ALUs, memory addresses program counter update and
magnitude comparator [1, 2]. Adders are extensively used as
a part of the filter such as DSP lattice filter [3]. Ripple carry
adder is the first and most fundamental adder that is capable
of performing binary number addition. Since its latency is
proportional to the length of its input operands, it is not very
useful. To speed up the addition, carry look ahead adder is
introduced. Parallel prefix adders provide a good results as
compared to the conventional adders. The adders with the
large complex gates will be too slow for VLSI, so the design
is modularized by breaking it into trees of smaller and faster
adders which are more readily implemented. For large adders
the delay of passing the carry through the look-ahead stages
becomes dominated and therefore tree adders or parallel
prefix adders are used. High speed adders depend on the
previous carry to generate the present sum. In integer
addition any decrease in delay will directly relate to an
increase in throughput. In nanometer range, it is very
important to develop addition algorithm that provide high
performance while reducing power. Parallel prefix adders are
suitable for VLSI implementation since they rely on the use
of simple cells and maintain regular connection between
them. We can define each prefix.

Structures in terms of logic levels, fanout and wiring tracks.
Zero or more inverters are added to each prefix cell output to
minimize the delay based on this model, buffers are
individually sized to minimize the delay, buffers are used to
minimize the fanout and loading on gates since high fanout
causes poor performance. we design an extremely fast
unreliable adder that produces correct results for the vast

majority of input combinations. For brevity, we will call this
adder an Almost Correct Adder (ACA).

Figure 1: Graph representation of 16-bit Hybrid Han-

Carlson Adder

2. Preliminaries

This section introduces the unreliable ACA. Throughout the
paper, binary integers are denoted by uppercase letters, e.g.,
A,B,X etc.; the ith least significant bit of an integer X is
denoted by xi−1. In order to add two n-bit integers A and B,
one can define generate, propagate and kill signals at each bit
position as follows:
gi = aibi,

, and
ki = ai + bi.

Using these signals the carry output ci at each bit position i is
generated and is used to compute the sum bits. The
recurrence for ci is shown below.

Paper ID: NOV152775 751

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 5 Issue 1 January 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Note that the carry bit ci depends on the carry bit ci−1
only if the propagate signal pi is true, otherwise ci can be
determined locally based on the values of gi and ki.
Similarly, ci−1 depends on ci−2 only if pi−1 is true. This
means ci depends on ci−2 only if both pi and pi−1 are true. In
general ci will depend on ci−k only if every propagate signal
between bit position i and i−k+1 (inclusively) is true. If an
oracle provides us with the longest sequence of propagate
signals in advance, then an extremely fast adder could be
constructed. For example, we want to add two 20-bit
integers. Since the longest sequence of propagate signals is 4,
the carry output ci at bit position i will be independent of
ci−5. Hence, si can be computed only using the input bits of
6 preceding bit positions starting from ith bit position. In
other words, we can form several 6 bit adders, each
computing the carry-in and sum bit for a particular bit
position. The delay of this particular 20-bit adder will be
virtually the same as that of a 6-bit adder. Ideally, one would
like to know the longest sequence of propagate signals in the
input addenda. There are, in fact, no bounds on the length of
the longest propagate sequence. In extreme cases such as for
integers A = 11. . . 1, B = 00. . . 0 the length of the longest
propagate sequence is the same as the bit width of A and B.
However, in the next section, we show that on average, the
length of the longest propagate sequence is approximately
log n, where n is the bit width of the integers.

3. Previous Work

The different types of parallel prefix adders available are
Kogge-Stone adder, Brent-kung adder, Sklansky adder, Han-
Carlson adder, Knowles adder and Ladner-Fischer adder.
These adders offer a tradeoffs among the number of stages of
logic, the number of logic gates, fanout and amount of wiring
between stages. Kogge-Stone adder, Brent-kung adder and
Sklansky adder are the fundamental adders. Brent-Kung uses
minimal number of computation nodes which yields in
reduced area but structure has maximum depth which yields
slight increase in latency. Slansky reduces the delay at the
expense of increased fanout. Kogge-Stone achieves high
speed and low fanout but produces complex circuitry with
more numbers of wiring tracks[5].

The Knowles trees are family of network between Kogge-
Stone and Sklansky with increased fan-out. Ladner Fischer
introduced a network between Sklansky and Brent-Kung
which provides tradeoffs between logic levels and fanout. T.
Han and D.A. Carlson presented a hybrid construction of a
parallel prefix adder using two designs the Kogge-Stone
construction having the best feature of higher speed and the
Brent-kung construction with best feature of low area
requirement. A modified Han-Carlson adder uses fewer
number of prefix operations by adjusting the number of
stages amongst Kogge-Stone and Brent-kung adder and thus
reduces the area required by the adder circuitry. Fig 2.below
shows a 3-dimentional taxonomy of tree adders [6]. There are
three axes representing the fan-out, wiring tracks and logic
levels and each tree is indicated by three integers (l, f, t) in
the range [0, L-1]. The tree adders lie on the plane l + f + t =
L-1, where L= log2N and indicates the number of bits. Brent-
Kung, Kogge-Stone and Sklansky represent the vertices of

the cube (3, 0, 0),(0, 0, 3) and (0, 3, 0) respectively. Han-
Carlson, Ladner-Fischer and Knowles lie along the diagonals.
Where N indicates the number of bits the variables l, f, and t
are integers in the range [0, L− 1] indicating:
1) Logic Levels: L+ l
2) Fan-out: 2f+1
3) Wiring Tracks:

2t
Figure 2: Taxonomy of prefix networks

4. Proposed Work

Design the Speculative Han-Carlson Adder. It differs from
other adder in that it can be used for large word sizes. The
proposed design reduces the number of prefix operation by
using more number of Brent-Kung stages and lesser number
of Kogge-Stone stages. This also reduces the complexity,
silicon area and power consumption significantly.

Variable latency speculative prefix adders can be subdivided
in five stages: pre-processing, speculative prefix-processing,
post-processing, error detection and error correction. The
error correction stage is off the critical path, as it has two
clock cycles to obtain the exact sum when speculation fails.

Figure 3: Han-Carlson speculative prefix-processing stage.

Consider the n-bit addition of two numbers: A = an−1,
an−2, a0 and B = bn−1, bn−2, b0 resulting in the sum, S =
sn−1, sn−2, s0 and a carry, Cout. The first stage in CLA
computes the bit generate and bit propagate as follows:

gi = ai · bi
pi = ai + bi, (1)

Where gi is the bit generates and pi is the bit propagate. The
schematic of gi and pi using CMOS and transmission gates
design style. These are then utilized to compute the final sum
and Carry bits, in the last stage as follows:

Ci+1 = gi + pi · ci, (2)

Paper ID: NOV152775 752

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 5 Issue 1 January 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Where ·, + and ⊕ represent AND,OR, and XOR operations.
It is seen that the first and last stages are intrinsically fast
because they involve only simple operations on signals local
to each bit position. However, intermediate stages embody
the long-distance propagation of carries, as a result of which
the performance of the adder hinges on this part [10]. These
intermediate stages calculate group generate and group
propagate to avoid waiting for a ripple which, in turn,
reduces the delay. These group generate and propagates are
given by

Pi: j = Pi:k · Pk−1: j ,
Gi: j = Gi:k + Gk−1: j · Pi:k. (3)

There are many ways to develop these intermediate stages,
the most common being parallel prefix. Many parallel prefix
networks have been described in the literature, especially in
the context of addition. In this paper, we have used the
Kogge-Stone implementation, Hans-Carlson, Sklansky,
Brent-Kung implementation of CLA, and Kogge- Stone
implementation of Ling adder. PG logic in all adders is
generally represented in the form of cells. These diagrams
known as cell diagrams will be used to compare a variety of
adder architectures in the following sections. Here two cells
are used for implementation of all the adders: grey cell and
the black cell.

Han-Carlson Adder: The Han-Carlson trees are a family of
networks between Kogge-Stone and Brent-Kung. The logic
performs Kogge-Stone on the odd numbered bits and then
uses one more stage to ripple into the even positions.

Kogge-Stone Adders: The main difference between Kogge-
Stone adders and other adders is its high performance. It
calculates carries corresponding to every bit with the help of
group generate and group propagates. In this adder the logic
levels are given by log2N, and fan-out is 2.

di = ai ⊕ bi. (4)

Figure 4: Block generate and propagate (Ling carry) using
CMOS and transmission gate.

Now, instead of utilizing traditional carries, a new of carry,
known as Ling carries, is produced where the ith Ling carry
in [11] is defined to be

ci = Hi · pi, (5)

Where
 Hi = ci + ci−1. (6)

In this way, each Hi can be in turn represented by
Hi = gi + gi−1 + pi−1 · gi−2

+ · · · + pi−1 · pi−2 · pi−3 · . . . p1g0. (7)

 We can see from (5) that Ling carries can be calculated
much faster than Boolean carry. Consider the case of c4 and
H4

c4 = g4 + p4 · g3 + p4 · p3 · g2
+ p4 · p3 · p2 · g1 + p4 · p3 · p2 · p1 · g0, (8)
H4 = g4 + g3 + p3 · g2 + p3 · p2 · g1 + p3 · p2 · p1 . g0.

 If we assume that all input gates have only two inputs, we
can see that calculation of c4 requires 5 logic levels, whereas
that for H4 requires only four. Although the computation of
carry is simplified, calculation of the sum bits using Ling
carries is much more complicated. The sum bit, when
calculated by using traditional carry, is given to be

 (9)

Substituting (5) into (9), we get that

 (10)

However, according to [12] the computation of the bits si can
be transformed as follows:

 si = Hi-1 · di + Hi-1(di ⊕ pi-1) (11)

 Equation (11) can be implemented using a multiplexer with
Hi− 1 as the select line, which selects either di or (di ⊕ pi− 1).
No extra delay is added by Ling carries to compute the sum
since the delay generated by the XOR gate is almost equal to
that generated by the multiplexer and that the time taken
to compute the inputs to the multiplexer is lesser than that
taken to compute the Ling carry.. Here, for n-bit addition,
Ling carry Hi and Hi+1 is given by

Hi+1 = (G* i+1, P* i).(G* i-1, P* i-2) .· · · .(G* 1 , P* 0), (12)

Where

(13)

H3 = g3 + g2 + p2 · g1 + p2 · p1 · g0, (14)
H4 = g4 + g3 + p3 · g2 + p3 · p2 · g1 + p3 · p2 · p1 ·

g0.

This can be further reduced by using (13) to

 (15)

Paper ID: NOV152775 753

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 5 Issue 1 January 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

This can be then further reduced by using the “.” operator to

 This allows the parallel prefix computation of Ling adders
using a separate tree [9] for even and odd indexed positions.
Using this methodology, we implemented a 16-bit adder
using the Kogge-Stone tree and then utilized that block to
develop 32 and 64-bit adders. The gates and blocks used for
this implementation were then modified using transmission
gates. Cells other than gray and black cell that are used as
components in Ling adder.

Figure 5: The nodes of the prefix-processing stage, whose
outputs are needed to compute the error signal, are named
“checking nodes” and are highlighted as big hatched dots.

5. Adders Characterization

5.1 Error Detection

This section presents a circuit that flags an error if the sum
computed by the ACA is incorrect. This only occurs when
there is a chain of more than k propagates in the addenda. To
check for the presence of an error, we must consider all
chains of length k + 1, and check if any of them contain
solely propagates. The expression for error signal is stated as
follows:

The critical path delay to compute error signal has
complexity O (log k + log (n − k)). Since k = O(log n), the
error signal complexity can be reduced to O (log n). The
critical path delay of error detection has the same complexity
as that of the critical path delay of a traditional adder;
however, the error detector only requires simple gates, such
as AND, OR, etc.,. Experimentally, we report that the delay
of the error detection signal is approximately two-thirds of
the delay of a traditional adder.

5.2 Error Recovery

Once an error has been detected, one could simply employ a
traditional correct adder to produce the sum. Instead, we
have developed a novel error recovery technique that uses a
computation inside the ACA to reduce both the critical path

delay and hardware area. The matrix product MiMi−1,
Mi−k+1 computes the propagate and generate signals for the
block between bit position i and i − k + 1. Thus, the ACA
computes the propagate and generate signals for each k-bit
block. If we divide the input integers into n/k blocks of k-bits,
the values of propagate and generate for each block can be
taken from the ACA. An n/k-bit carry look-ahead adder then
takes these values and computes the carry for each of the
blocks. Meanwhile, we compute the propagate and generate
signals for each bit in a block.

In Han-Carlson the critical checking cells are in the second
last level of the graph and are also available after three black
cells delay. As it can be observed, in Kogge-Stone some of
the checking cells are at the last level of the graph; their
output signals are available after three black cells delay.

Table 1: Delay and power of Han-Carlson Speculative adder

 Han- Carlson Adder

Delay 9.810 ns
Power 0.016W (or) 160mW

6. Variable Latency Speculative Adder

We observe that for 16 bits, the delay of the ACA and error
detection mechanisms are approximately equal and,
individually, both are significantly less than the delay of a
traditional adder. Based on this observation, we have
designed the circuit shown in Fig. 6 whose clock period is
slightly greater than the critical path delay of the error
detection circuit. After one cycle, the circuit produces the
result of the ACA and a bit indicating whether or not an error
has been detected. If there is no error, then the circuit
provides SUM ∗ as its output and will also set the VALID bit
to 1. Since STALL is the complement of valid, the circuit will
be ready to accept a new set of input addenda. If an error
occurs, the valid bit will be set to 0 and the stall bit will be
set to 1. After two cycles, the corrected sum value will be
available and the valid bit will be set to 1. At this point, the
circuit is ready to accept new inputs. We call this type of
adder a Variable Latency Speculative Adder (VLSA). . Since
the ACA produces a correct sum in more than 99.99% of all
cases, the average latency will be 1.0001 cycles. The
effective latency of the circuit is almost half of the latency of
the fastest traditional adder.

7. Synthesis Results

Verilog descriptions of the proposed variable latency
speculative adders, and of their non-speculative counterpart.
It is not easy to compare performances (in terms of power,
speed, and area) of different designs, since they strongly
depend on timing constraint used during synthesis.

7.1 The Optimal K Choice

Comparison between variable latency adder and the non-
speculative Han-Carlson topology reveal that variable latency
adders allow to reduce the minimum achievable delay. For
instance, in the 64 bit case, the minimum achievable delay is

Paper ID: NOV152775 754

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 5 Issue 1 January 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

about 280 ps for the non-speculative adder and reduces up to
225 ps in the variable latency architecture.

7.2 Comparison with Kogge-Stone Variable Latency

Speculative Adder

Fig. 7 shows the comparison between proposed speculative
adder and Kogge-Stone one. Also in this case, we report the
performance of non-speculative adders, in order to identify
the region where the speculative approach is effective. As an
example, focusing on 64-bit adders, for lower than 350 ps,
the proposed Han-Carlson speculative adder is the best
choice in terms of silicon area and power consumption.
Moreover, it allows to reduce the minimum achievable to 225
ps, with a 18% improvement respect to Kogge-Stone non-
speculative adder and a 11% improvement respect to Kogge-
Stone speculative adder. For , proposed speculative adders
offer 45% area reduction and 35% power saving compared to
Kogge-Stone non-speculative adder.

Figure 7(a)

Figure 7(b)

Fig. 7(a). Area report of Han-Carlson Adder, 7(b). error
correction report of Han- Carlson Adder

8. Conclusion

In this paper a novel variable latency Han-Carlson parallel
prefix Speculative adder for high-speed application is
proposed. An accurate error detection network is
implemented to reduce the error probability compared with
kogge stone adder. Variable latency adder performance

mainly depends on prefix-processing stage. Speculative
latency adder reduces the number of black cells. Compared
with traditional, non-speculative, adders, our analysis
demonstrates that variable latency Han-Carlson adders show
sensible improvements when the highest speed is required;
otherwise the burden imposed by error detection and error
correction stages overwhelms any advantage. Additional
work is required to extend the speculative approach to other
parallel-prefix architectures, such as Brent-Kung, Ladner-
Fisher, and Knowles.

References

[1] I. Koren, Computer Arithmetic Algorithms. Natick, MA,
USA: A K Peters, 2002.

[2] R. Zimmermann, “Binary adder architectures for cell-
based VLSI and their synthesis,” Ph.D. thesis, Swiss
Federal Institute of Technology, (ETH) Zurich, Zurich,
Switzerland, 1998, Hartung-Gorre Verlag.

[3] R. P. Brent and H. T. Kung, “A regular layout for
parallel adders,” IEEE Trans. Comput., vol. C-31, no. 3,
pp. 260–264, Mar. 1982.

[4] P. M. Kogge and H. S. Stone, “A parallel algorithm for
the efficient solution of a general class of recurrence
equations,” IEEE Trans. Comput., vol. C-22, no. 8, pp.
786–793, Aug. 1973.

[5] J. Sklansky, “Conditional-sum addition logic,” IRE
Trans. Electron. Comput., vol. EC-9, pp. 226–231, Jun.
1960.

[6] T. Han and D. A. Carlson, “Fast area-efficient VLSI
adders,” in Proc. IEEE 8th Symp. Comput. Arith.
(ARITH), May 18–21, 1987, pp. 49–56.

[7] K. M. Butler, J. Saxena, A. Jain, T. Fryars, J. Lewis, and
G. Hetherington, “Minimizing power consumption in
scan testing: Pattern generation and DFT techniques,” in
Proc. Int. Test Conf., 2004, pp. 355–364.

[8] V. R. Devanathan, C. P. Ravikumar, and V. Kamakoti,
“On power profiling and pattern generation for power-
safe scan tests,” in Proc. Des.,Autom., Test Eur. Conf.,
2007, pp. 1–6.

[9] C.-W. Tzeng and S.-Y. Huang, “QC-fill: Quick-and-cool
X-filling for multicasting-based scan test,” IEEE Trans.
Comput., Aided Des., vol. 28,no. 11, pp. 1756–1766,
Nov. 2009.

[10] M.-F. Wu, H.-C. Pan, T.-H. Wang, J.-L. Huang, K.-H.
Tsai, and W.-T. Cheng, “Improved weight assignment
for logic switching activity during at-speed test pattern
generation,” in Proc. 15th Asia South Pacific Des.
Autom. Conf., 2010, pp. 493–498.

Paper ID: NOV152775 755

