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Abstract: The ground state proton momentum distributions and elastic charge form factors for some odd ds 12   shell nuclei, such as 

KClCl 393735 and,,  have been studied utilizing the Coherent Density Fluctuation Model and formulated by means of the fluctuation 

function (weight function) .)( 2
xf  The fluctuation function has been connected to the charge density distribution of the nuclei and 

obtained from the theory and experiment. The feature of the long-tail behavior at high momentum region of the PMD has been 

determined by both the theoretical and experimental fluctuation functions. It is found that the inclusion of the quadrupole form factors 

)(2 qFC
 in all nuclei under study, which are described by the undeformed ds 12   shell model, is essential for obtaining a notable 

accord between the theoretical and experimental form factors.  
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1. Introduction 
 

 It is well know that electron scattering is one of the most 
powerful tools to study the properties of nuclei. Up to now, 
the scattering of high-energy electrons from stable nuclei on 
and near the stability line has given us the most precise 
information about nuclear size and charge density 
distribution. The interest in charge densities results from the 
very important fact that they reflect the behavior of wave 
functions of protons in nuclei, where the charge density 
distribution is the sum of the proton wave functions squared. 
Charge density distributions for stable nuclei have been well 
studied by [1- 3]. For unstable nuclei, although studies of 
electron scattering have not been realized so far, nuclear 
physicists have already planned to explore the structure of 
unstable nuclei with electron-nucleus scattering. Based on 
the new techniques for producing high-quality Radioactive 
Ion Beam (RIB), new electron-nucleus colliders are now 
under construction at RIKEN in Japan [4] and at GSI in 
Germany [5]. One of the main subjects of the new colliders 
is the measurement of charge form factors for unstable 
nuclei. 
 
 A number of theoretical methods have been utilized for 
investigating elastic electron-nucleus scattering, such as the 
plan-wave Born approximation (PWBA), the eikonal 
approximation and the phase-shift analysis method [6-10]. 
The PWBA method be able to offer qualitative outcome and 
has been employed extensively for its ease. To take account 
of the Coulumb distortion effect, which is ignored in 
PWBA, the other two methods may possibly be utilized. In 
the past few years, some theoretical investigations on elastic 
electron scattering of exotic nuclei have been carried out [6-
10]. Wang et al. [6, 7] investigated such scattering along 
some isotopic and isotonic chains by joining the eikonal 
approximation with the relativistic mean field theory. Roca-
Mazza et al, [8] systematically investigated elastic electron 
scattering for both stable and exotic nuclei with the phase-
shift analysis method. Karataglidis and Amos [9] analyzed 

the elastic electron scattering form factors, longitudinal and 
transverse, from exotic He(  and )Li  isotopes and from 

B8  nucleus using large space shell models. Chu et al. [10] 
studied the elastic electron scattering along O and S 
isotopic chains and demonstrated that the phase-shift 
analysis method can reproduce the experimental data very 
well for both light and heavy nuclei. Al-Rahmani and 
Hussein [11] have studied the CDD and elastic electron 
scattering form factors of some ds 12   shell nuclei 
utilizing the PWBA and illustrated that the inclusion of the 
higher pf 21   shell in the calculations leads to produce 
a good results in comparison with those of the experimental 
data. 
 
 In the coherent density fluctuation model (CDFM), which 
is characterized by the work of Antonov et al. [12, 13], the 
local nucleon density distribution (NDD) and the nucleon 
momentum distribution (NMD) are simply linked and 
specified by an experimentally obtainable fluctuation 

function (weight function) 
2)(xf . They [12, 13] studied 

the NMD of He4(  and ),16O  C12  and CaK 4039 ,(  and 

)48Ca  nuclei employing weight functions 
2)(xf  

specified by the two parameter Fermi (2PF) NDD [14], the 
data of Reuter et al. [15] and the model independent NDD 
[14], respectively. It is significant to remark that all above 
studies, employed the framework of the CDFM, proved a 
high momentum tail in the NMD. Elastic electron 
scattering from Ca40  nucleus was also studied in Ref. 
[12], where the calculated elastic differential cross sections 

)( dd  were found to be in good agreement with 
those of 2PF [14]. 
 
 Nearly all the CDFM investigations are based on the use of 
weight functions originated in terms of the experimental 
NDD. In the present study, we utilize the CDFM with 
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weight functions originated in terms of theoretical CDD. We 
first try to derive a theoretical form for the CDD, applicable 
through out the upper region of the 2s-1d shell nuclei with Z 
  16, based on the use of the single particle harmonic 
oscillator wave function and the occupation numbers of the 
states. The derived form of the CDD is employed in 
determining the theoretical weight function 2)(xf  which is 
then used in the CDFM to study the proton momentum 
distribution (PMD) and elastic electron scattering charge 
form factors for KClCl 393735 and,,  nuclei. The effect of 
considering the quadrupole form factor in these nuclei is 
also studied. It is found that the theoretical weight function 

2)(xf  based on the derived CDD is capable to give 
information about the PMD and elastic charge form factors 
as do those of the experimental data.  
 
2. Theory 
 
The CDD of the one-body operator can be written 
respectively, as [16] 

2)()12(2
4
1)(  

nl

nlnlc rRlr 


              (1) 

where )(rc  is the CDD of nuclei, nl  is the proton 

occupation probability of the state nl  ( nl = 0 or 1 for 

closed shell nuclei and 0 < nl < 1 for open shell nuclei) 

and )(rRnl  is the radial part of the single-particle 
harmonic oscillator wave function. To derive an explicit 
form for the CDD of ds 12   shell nuclei, we assume that 
there is a core of filled s1  and p1  shells and the proton 
occupation numbers in s2  and d1  orbitals are equal 
to )2(   and ),10( Z  respectively, but not to 2 
and )10( Z  as in the simple shell model. Using this 
assumption in eq. (1), we get 
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where Z  is the atomic number of nuclei,   is the deviation 
of the proton occupation numbers from the prediction of the 
simple shell model. After introducing the form of )(rRnl  

with a harmonic oscillator size parameter b  in Eq.(2), an 
analytical form for the ground state CDD of the ds 12   
shell nuclei is expressed as 
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 The normalization condition of the )(rc is given by  





0

2)(4 drrrZ c ,                       (4) 

and the mean square radius (MSR) of the considered 
ds 12  shell nuclei is given by  

.)(4

0

42



 drrr
Z

r c


                   (5) 

The central )0( rc  is obtained from eq. (3) as 
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then   is obtained from eq. (6) as 

 )0(5
3
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In Eq. (7), the values of the central density )0(c are taken 
from the experiments whereas the oscillator size parameter b 
is chosen in such away so as to reproduce the experimental 
root mean square radii of nuclei. The PMD, ),(kn  for the 

ds 12  shell nuclei is studied using two distinct methods. 
In the first method, it is determined by the shell model using 

the single-particle harmonic oscillator wave functions in 
momentum representation and expressed as 
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whereas in the second method, the )(kn  is determined by 
the CDFM, where the mixed density is given by [12, 13] 
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is the density matrix for Z  protons uniformly distributed 
in the sphere with radius x  and density 

3
0 4/3)( xZx   . The Fermi momentum is defined as 

[12, 13] 
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and the step function ,  in Eq. (10), is defined by 
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According to the density matrix definition of Eq.(9), one-
particle density )(r  is given by its diagonal element as 
[12, 13] 
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In Eq. (13), )(rx  and 
2)(xf  have the following forms 

[12, 13] 
 rxxrx


  )()( 0                      (14) 

.
)(

)(
1)(

0

2

xr

c

dr

rd

x
xf 







               (15) 

The weight function 
2)(xf  of Eq. (15), determined in 

terms of the ground state ),(rc  satisfies the following 
normalization condition [12, 13] 
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and holds only for monotonically decreasing )(rc , i.e. 

.0
)(


dr

rd c  

On the basis of Eq. (13), the PMD, ),(kn  is given by [12, 
13] 
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is the Fermi-momentum distribution of the system with 
density ).(0 x  By means of Eqs. (15), (17) and (18), an 

explicit form for the PMD is expressed in terms of )(rc as  
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with normalization condition 

 3

3
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 The elastic monopole charge form factors )(0 qFC  of the 
target nucleus are also expressed in the CDFM as [12, 13]  
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where the form factor of uniform charge density distribution 
is given by 
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Inclusion of the correction due to the finite nucleon size 
)(qf fs and the center of mass correction )(qfcm  in the 

calculations requires multiplying the form factor of Eq. (21) 
by these corrections. Here, )(qf fs is considered as free 
nucleon form factor which is assumed to be the same for 
protons and neutrons [17] 
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4
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The correction )(qfcm  removes the spurious state arising 
from the motion of the center of mass when shell model 
wave function is used and is given by [17] 
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Multiplying the right hand side of Eq. (21) by these 
corrections yields:  
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It is important to point out that all physical quantities 
studied above in the framework of the CDFM such as 

)(kn  and ,)(0 qFC  are expressed in terms of the weight 

function .)( 2
xf  In the previous work [12, 13], the 

weight function was obtained from the NDD of the 2PF, 
extracted by analyzing elastic electron-nuclei scattering 
experiments. In the present work, the theoretical weight 

function 
2)(xf  is expressed, by introducing the derived 

CDD of Eq. (3) into Eq. (15), as 
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 Here, the quadrupole charge from factors are described by 
the undeformed sd-shell model, where the ground state 
charge density distributions of these deformed nuclei are 
described by [18] 
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The normalization of the spherically symmetric part 
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0 Zedrrrch  here, the 

)(0 rch  is calculated by Eq. (3), i.e., ).()(0 rr cch    

The quadrupole part of the charge density )(2 rch  is 

related to the electric quadrupole moment Q  by [18] 
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The quadrupole charge form factor, which contains the 
non-spherical part of the charge density distribution, is then 
given by [19] 
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where )(2 qrj  is the spherical Bessel function of order 

two, JP  is a quadrupole projection factor given by 

),32)(1/()12(  JJJJPJ  and J  is the ground 

state angular momentum ( 2/3J  for all nuclei under 
study). According to the undeformed sd shell model 
[20], where the qudrupole moment arises from protons 
moving in the sd shell of undeformed potential, the 
radial dependence of the quarupole charge density 
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distributions )(2 rch  is assumed to be the same as that of 

the sd shell part ).(0 rch  In this study, the quadrupole 

moment Q  is considered as a free parameter so as to fit the 
theoretical form factors with those of experimental data.  
 
3. Results and Discussion 
 
In this study, the CDFM is used to study the proton 
momentum distributions )(kn  and elastic form factors for 
some odd ds 12   shell nuclei. The distribution 

)(knCDFM  of Eq. (19) is calculated by means of the CDD 
obtained firstly from theoretical consideration as in Eq. (3) 
and secondly from experiments, such as 3PF [14]. The size 
parameters b  are chosen in such a way so as to imitate the 
experimental root mean square (rms) charge radii of nuclei. 
The values of   are determined by Eq. (7). The values of 
the parameters ,b  and Q  together with the experimental 
values of the parameters zc, and w  of 3PF distribution as 
well as the corresponding value of the central densities 

)0(3
exp

PF  and the root mean square charge radii 
21

exp
2  r  for ClCl 3735 ,  and K39  nuclei are presented in 

table 1. The occupation numbers of protons in the orbitals 2s 
and 1d, which are equal to )2(   and )10( Z  
respectively, of the considered odd 2s-1d shell nuclei are 
compared in table 2 with those obtained by the shell model 
calculations, utilizing the shell model OXBASH code [21], 
using the USDB [22] realistic effective interactions. 
 
In Fig. 1, we explore the dependence of the CDD (in 

3fm ) on r (in fm ) for Cl35  [Fig. 1(a)], Cl37  [Fig. 

1(b)] and K39  [Fig. 1(c)] nuclei. The dashed and solid 
curves correspond to the calculated CDD, using Eq. (3) with 

0  and ,0 respectively whereas the dotted 
symbols correspond to the experimental data [14]. It is 
noticeable that the dashed curves are in poor agreement with 
the experimental data, particularly for small r. Inclusion of 
the parameter   into our calculations leads to a good 
agreement with the experimental data as demonstrated by 
the solid curves. 
 
In Fig. 2, we display the dependence of the )(kn  (in )3fm  

on k  (in )1fm  for Cl35  [Fig. 2(a)], Cl37  [Fig. 2(b)] and 

K39  [Fig. 2(c)] nuclei. The long-dashed curves correspond 
to the PMD’s of Eq. (8) evaluated by the shell model using 
the single particle harmonic oscillator wave functions in the 
momentum space. The dotted symbols and solid curves 
correspond to the PMD’s obtained by the CDFM of Eq. (19) 
employing the experimental and theoretical CDD, 
respectively. It is evident that the behavior of the long-
dashed distributions estimated by the shell model is in 
contrast with the distributions imitated by the CDFM. The 
significant property of the long-dashed distributions is the 
steep slope mode, when k  increases. This behavior is in 
disagreement with the studies [12, 13, 23- 25] and it is 

attributed to the fact that the ground state shell model wave 
functions given in terms of a Slater determinant does not 
take into account the important effects of the short range 
dynamical correlation functions. Hence, the short-range 
repulsive features of the nucleon-nucleon forces are 
responsible for the high momentum behavior of the PMD 
[23, 24]. It is noted that the general structure of the dotted 
and solid distributions at the region of high momentum 
components is almost the same for ClCl 3735 ,  and K39  
nuclei, where these distributions have the property of long-
tail manner at momentum region .2 1 fmk  The 
property of long-tail manner obtained by the CDFM, which 
is in agreement with the studies [12, 13, 23- 25], is 
connected to the presence of high densities )(rx  in the 
decomposition of Eq. (13), though their fluctuation 

functions 
2)(xf are small.  

 
The elastic electron scattering charge form factors from the 
considered nuclei are calculated in the framework of the 
CDFM through introducing the theoretical weight functions 

2)(xfc  of Eq. (26) into Eq. (25). In Fig. 3, we present the 

dependence of the form factors )(qF  on the momentum 

transfer q  (in )1fm  for Cl35  [Fig. 3(a)], Cl37  [Fig. 

3(b)] and K39  [Fig. 3(c)] nuclei. Here, the effect of the 
quadrupole form factor )(2 qFC  is considered by the 

undeformed ds 12   shell model as given in Eq. (29). The 
dashed and long-dashed curves correspond to the 

contributions of the monopole form factors 
2

0 )(qFC and 

quadrupole form factors ,)( 2
2 qFC  respectively, whereas 

the solid curves correspond to the total contribution, which 
is obtained as the sum of the monopole and quadrupole 
form factors. In Figs. 3(a) and 3(b), the experimental data 
[26] (open circles symbols) are very well explained by the 
dashed curves up to the momentum transfer 

12.1  fmq  while for 12.1  fmq  these curves 
under predict these data. In Fig. 3(c), the dashed curve 
agrees well the experimental data [27] at the regions of 

25.1,2.10 q  and 11.37.2  fm  and disagrees 
them at the other regions of considered momentum transfer. 
Inclusion the effect of quadrupole form factors in the 
calculations leads to improve the calculated form factors, 
especially at the regions where the experimental data are 
not explained by the dashed curve. The locations of the 
diffraction minima in Figs. 3(a)-3(c) are approximately 
located in the correct places when the contribution of the 
quadrupole form factors is considered in the calculations. 
This figure gives the conclusion that the contribution of the 
quadrupole form factors gives a strong modification to the 
monopole form factors and brings the calculated values 
very close to the experimental data.  
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4. Conclusions  
 
The PMD and elastic charge form factors ),(qF  which are 
evaluated by the CDFM , are formulated via the weight 

function .)( 2
xf  The weight function, which is related 

with the local density ),(rc  is obtained from experiment 
and from theory. The property of the long-tail mode of the 
PMD, which is in agreement with the other studies [12, 13, 
24, 25, 28], is achieved by both theoretical and experimental 
weight functions and is connected to the presence of high 

densities )(rx  in the decomposition of Eq. (13), though 
their weight functions are small. It is noticed that the 
inclusion of the quadrupole form factors in ClCl 3735 ,  and 

K39  nuclei, which are characterized by the undeformed 
ds 12   shell model, is necessary for getting a notable 

accord between the theoretical and experimental form 
factors. It is observed that the theoretical CDD of Eq. (3) 
utilized in obtaining the theoretical weight function of Eq. 
(26) is able to provide information about the PMD and 
elastic charge form factors as do those of the experimental 
data. 

 

Table 1: The Values of various parameters employed in the present calculations together with the value of )0(exp  and 
2/1

exp
2  r . 

Nucleus Model c  
[14] 

z  
[14] 

w  
[14] 

)0(exp  [14] 

( 3fm ) 

2/1
exp

2  r  [14] ( fm ) b  
( fm ) 

  Q  

Cl35  PF3  3.476 0.599 -0.10 0.08288272 3.388 1.986 0.9217771 190 

Cl37  PF3  3.554 0.588 -0.13 0.08134359 3.384 1.983 0.9772688 175 

K39  PF3  3.743 0.585 -0.20 0.08568579 3.408 1.976 0.8776901 320 

 
Table 2: Occupation numbers of nucleons in 1d and 2s orbitals of some odd 2s-1d shell nuclei. 

Nuclei Occupation numbers of 

protons in 1d 

Occupation numbers of 

protons in 2s 

Present results 
obtained by 

( 10Z ) 

Realistic 
results [22] 

Present 
results 

obtained by 
( 2 ) 

Realistic 
result [22] 

Cl35  7.921777 7.980 1.078223 1.020 

Cl37  7.977268 7.099 1.022732 1.902 

K39  9.877690 9.000 1.122310 2.000 
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Figure 1: Dependence of the CDD on r  for (a) ,35Cl  (b) Cl37  and (c) K39  nuclei. The dashed and solid curves are the 

calculated CDD of Eq. (3) when 0  and ,0  respectively. The dotted symbols are the experimental data taken 
from ref. [14]. 
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Figure 2: Dependence of PMD on k  for (a) ,35Cl  (b) Cl37  and (c) K39  nuclei. The solid curves and dotted symbols are the 
calculated PMD obtained in terms of the CDFM of Eq. (19) using the theoretical CDD of Eq. (3) and the experimental data of 

ref. [14], respectively. The long-dashed curves are the calculated PMD of Eq. (8) obtained by the shell model calculation 
using the single-particle harmonic oscillator wave functions in momentum representation. 
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Figure 3: Dependence of the charge from factors on q  for (a) Cl35 , (b) Cl37  and (c) K39  nuclei. The dashed and long-

dashed curves represent the contributions of the monopole form factors 2
0 |)(| qFC  and the quadrupole form factors 

,|)(| 2
2 qFC  respectively. The solid curves represent the total form factors for both contributions. The experimental data 

(open circles) for ClCl 3735 ,  are taken from ref. [26] and for K39  are taken from ref. [27]. 
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