
International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611 

Volume 5 Issue 1 January 2016 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Survey on a Novel Approach for Web Service - 

Security Testing to Improve Web Service 

Robustness 
 

Vina M. Lomte
1
, Jaydeep Mangle

2
 

 
1HOD of the Computer Engineering Department, RMD Sinhgad College of Engineering Savitribai Phule University, Pune, India 

 
2M.E. Student, Dept. of Computer Science, RMD Sinhgad School of Engineering, Savitribai Phule University, Pune, India 

 

 

Abstract: To have flexibility of providing services available (in service oriented architecture) across various platform, we need to 

expose web services due to its open nature in the system. The use of web services in today’s industry has been widely grown, which 

causes to the new security challenges. Increasing demand has increased challenges on information security; it becomes important to 

provide robustness to the web services. The various web services attacks such as XML injection, XPath Injection, Cross-site scripting 

(XSS), that corrupts web services requests to maliciously harm web service which may in turn provide unwanted information, which 

harmful to the organization. Studies has shown that current different testing available techniques such as penetration testing and fuzzy 

scanning- generates several false results i.e. positive and negative indications. However, fault injection technique improves robustness 

of web service application, through greater flexibility to modify the test cases and find software bugs. This work describes the fault 

injection technique with WS-Security (UsernameToken) to evaluate robustness of web services and development of set of rules to 

determine vulnerability analysis, resulting on the improvement of vulnerability detector accuracy. 

 

Keywords: Web services; cross-site scripting; XSS attack; penetration testing; fault injection;WS-Security; WSS; Security Token; 

soapUI; WSInject 

 

1. Introduction 
 

Web Services are modular software applications that can be 

described, published, located, and invoked across a network, 

such as the World Wide Web. Because of its distributed and 

open nature, they are more susceptible to security risks. 

Beyond the traditional insecurities, new ones arise, 

associated with technologies and services such as SOAP and 

XML. One example is the so-called Injection Attacks, among 

the most exploited in 2012, according to the Open Web 

Application Security Project (OWASP Top Ten 2013). 

Cross-site Scripting, better known as XSS, is a type of 

Injection Attack that intercepts information provided by 

users. Its purpose is to store, modify, or delete requests, 

misleading the servers and the user of the Web Services. The 

result of a successful attack is an intrusion to the system [2]. 

 

A variation of this attack allows injecting scripts (e.g. 

JavaScript, VBScript or Flash Script) in Web Services 

through its parameters and operations described in their 

WSDLs. The objective of the attacker is to inject malware, 

modify the database and infect every user who uses these 

Web Services. Due to difficulty to find vulnerabilities in Web 

Services like XSS, this approach applies a Security Testing 

Methodology in order to systematize the fault injection and 

remove vulnerabilities in this software. 

 

This survey focused on the robustness of Web Services using 

Security Testing technique like Penetration Testing and Fault 

Injection. These techniques allow verifying:  

 

I) Vulnerabilities in Web applications and services against 

different types of security attacks such as Denial-of-Services 

or spoofing attacks; and Among injection attacks are: XML 

Injection, SQL Injection, XPath Injection, Cross-site 

Scripting (XSS), Cross-site Request Forgery (XSRF), 

Fuzzing Scan, Invalid Types, Parameter Tampering, 

Malformed XML and Frankenstein Message (Timestamp 

Tampering) [3], [4], [5]. 

 

II) Discover new vulnerabilities before they are exploited by 

attackers. Both techniques use tools to analyze the presence 

of vulnerabilities in Web Services and emulate XSS attack. 

Author also analyzes the robustness of Web services with 

WS-Security and Security Tokens against XSS attack. These 

specifications allow authorizing the use of Web Services 

through the authentication of users and others services [1]. 

 

2. Literature Survey 
 

2.1 Vulnerabilities in Web Services 

 

Under the concept of Service Oriented Architecture (SOA), 

Web Services are in constant communication with other 

services. Their clients make requests for services through of a 

communication channel such as the Internet, sending and 

receiving information simultaneously. Another benefit is the 

possibility to develop web services in different languages and 

platforms. This technology transmits their information using 

two protocols, XML and HTML. In [3], the author defines 

the main challenges related to standards and interoperability 

in Web Services. This research emphasizes the relative 

immaturity of this technology on security threats, quality of 

service (QoS), and scalability, among others. In [8], the 

authors classify the security challenges involving threats, 

attacks and security problems in this technology. Author 

describes them as follows: 

 

Paper ID: NOV152753 325



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611 

Volume 5 Issue 1 January 2016 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

 Services level threats: attacks against WSDL and UDDI, 

injection of malicious code, phishing, denial of service, 

spoofing XML schemas and kidnapping/ stealing session. 

 Message level threats:  injection attacks, forwarding 

messages, attacks of message validation, interception and 

loss of message confidentiality. 

 

2.2 Vulnerabilities Detection Techniques 

   

Following the best practices of software testing and 

standards, there have been developed a lot of tools, 

languages and techniques in order to analyze and detect 

vulnerabilities in systems [2]. The security validation for 

Web Services can be performed in two phases, static and 

dynamic phase.  

 

The static phase tries to find faults inserted during the 

development phase introduced in the code by possible human 

errors in the project stage. This phase is analyzed as a state 

not reachable, i.e. it can always be found new faults. In this 

case, the methods used are Static Analyze (code inspection, 

static vulnerability analysis) or Theorem Proof, which do not 

need to run the system. These methods are early detection 

and carry many benefits such as reduced cost of testing.  

 

On the other hand, the dynamic phase focuses on verification 

of the system during its running, i.e. the code of the system is 

tested with real entries to verify security mechanisms at 

runtime. The Security Testing is applied in this phase. This 

test looks for vulnerabilities in web applications by sending 

attack within request message. Among these security 

techniques, the Penetration Testing and Fault Injection are 

among them. 

 

Penetration Testing emulate attacks, in order to reveal 

vulnerabilities. The tests are automated by the use of tools 

called vulnerability scanner (VS). There are a variety of 

vulnerabilities scanners, both commercial (e.g. HP Web 

Inspect, IBM Rational AppScan) and open source (e.g. 

WSDigger and WebScarab). The vulnerabilities detected 

differ from one tool to another. An evaluation of several 

commercial versions of vulnerabilities scanners showed that 

these tools are primarily limited to low coverage of existing 

vulnerabilities and the high percentage of false positives. 

 

2.2.1 Fault Injection attack   

In software testing, fault injection is a technique for 

improving the coverage of a test by introducing faults to test 

code paths, in particular error handling code paths that might 

otherwise rarely be followed. It is often used with stress 

testing and is widely considered to be an important part of 

developing robust software. Robustness testing (also known 

as Syntax Testing, Fuzzing or Fuzz testing) is a type of fault 

injection commonly used to test for vulnerabilities in 

communication interfaces such as protocols, command line 

parameters, or APIs. 

 

The propagation of a fault through to an observable failure 

follows a well defined cycle. When executed, a fault may 

cause an error, which is an invalid state within a system 

boundary. An error may cause further errors within the 

system boundary, therefore each new error acts as a fault, or 

it may propagate to the system boundary and be observable. 

When error states are observed at the system boundary they 

are termed failures. This mechanism is termed the fault-error-

failure cycle and is a key mechanism in dependability. 

 

2.2.2 XML Injection Attack 

In XML Injection, an attacker tries to inject various XML 

Tags in the SOAP message aiming at modifying the XML 

structure. Usually a successful XML injection results in the 

execution of a restricted operation. Depending on the 

executed operation various security objectives might get 

violated. Typical examples are:  

 modification of payment data - violated security objective : 

Integrity  

 unauthorized admin login - violated security objective : 

Access Control 

  

3. Testing Methodology 
 

3.1 Security Testing Methodology for Web Services  

 

One of the challenges to find vulnerabilities in Web Services 

during the implementation phase is determine which attacks 

scenarios are appropriate to test for [1]. 

 

These scenarios can be obtained from various sources such as 

Internet, books and papers. However, it is hard to find and set 

up a database with relevant attacks and automating them 

according to the testing environment. Our purpose in this 

section is to use, in part, the Security Testing Methodology 

[9]. 

 

In the following sub-sections, author briefly describe the 

results of each phase of Security Testing Methodology for 

Vulnerabilities Detection of XSS in Web Services the 

implementation of the Security Testing Methodology with 

XSS. This attack is emulated with WSInject and soapUI [1]. 

 

3.1.1 Identification of the Attacker Objectives 

The Web Service attacker aims to find vulnerabilities using 

different kinds of methods (e.g. Denial-of-Services, spoofing, 

injection attack, man-in-the-middle, among others). In this 

research, the goal of the attacker is focused on finding 

vulnerabilities in servers that work with Web Services. 

 

The attacker intercepts SOAP messages between the client 

and the server. His goal is perform unauthorized operations 

(violation of integrity) or escalate privileges (violation of 

control access). For that, he tries to inject various XML tags 

in order to modify the XML message structure and generate 

faults in the server. 

 

3.1.2 Definition of the Attacker Capability 

Based on the Dolev-Yao model [6], the attacker has the 

following capabilities: 

 Partial control of the network and knowledge of the 

endpoints (client and server). 

 Ability to intercept SOAP messages and modify 

expressions, delay and duplicate. 

Paper ID: NOV152753 326



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611 

Volume 5 Issue 1 January 2016 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

 Knowledge of the status of all participants, i.e. the attacker 

is able to intercept messages and phishing client/server or 

perform man-in-the-middle attacks. 

 Ability to recognize the access points, operations and 

parameters of WSDL5. 

 

3.1.2 Attacks Modeling 

In this step, author use the SecurITree version 3.4 in order to 

model XSS attack. This tool, used in several researches 

helped us to design the attack tree for injecting vulnerabilities 

in Web Services. 

 

The attack tree was built and structured accordingly to the 

proposed steps in [1], composed of the following attributes: 

i) attacker capability; ii) possibility of emulating the attack by 

a fault injection tool; iii) the requirements of the attack to be 

run in the Web Service; and iv) the verification if the WS-

Security protects the Web Services from XSS attack. 

 

These four attributes were used to classify the Injection 

Attacks with boolean values, namely < Possible; Impossible 

>. The output is the creation of the attack tree, which is used 

by the attacker to look for vulnerabilities in the Web 

Services. 

 

3.1.4 Attack Scenarios Generation 

At this stage, the attack scenarios are produced automatically 

according to the criteria defined in step 3.1.3. The output of 

this step is the attack scenarios described in the same format 

of the tree leaves, each one representing the description of an 

attack. 

 

The scenarios can be used to create a useful and reusable 

library of attacks to test protocols.  

 

3.1.5 Attack Scenarios Implementation 

The attack scenarios, generated in step 3.1.4, are described in 

text notation, i.e. at the same level of the attack tree 

abstraction. This type of description is useful for testing 

analysts and security experts due to their easy configuration, 

but not to be processed by an injection tool. 

 

In this stage, the analysts must perform a set of refinement 

steps in order to transform the text notation into executable 

script by WSInject tool. 

 

4. Proposed System 
 

It is necessary to have flexible testing approaches that allow 

creating multiple scenarios, which could help to determine 

robustness of the web services. There are several ways to 

analyze the existence of vulnerabilities in SOA (Service 

Oriented Architecture), e.g. compare server responses in the 

presence of attacks and absence of them, sensitive 

information exposure, XML schema modification request, 

among others. This step is crucial to reduce the number of 

false positives or false negatives. 

 

 

 

 

4.1 Proposed System Architecture 

 

 
     Figure 1: System architecture 

 

Surveyed approach uses the HTTP status-code in the server 

response, which describes the behavior of the Web Service in 

a not robust environment. For example, when the request is 

processed by Web Services without detecting the attack, i.e. 

not generated a message describing the existence of error in 

the request, it allows to identify the existence of a possible 

vulnerability found with code 200 OK. If a code 400 Bad 

Request is received, it can be considered as robust response 

because the server detected the XSS attack. 

 

4.2 Proposed System Algorithm 

 

Step 1:  Capture the message sent from client (e.g. Soap-

UI). 

Step 2:  Identify the request and modify the content of the 

request to corrupt it, for given attacking scenario. 

(Using tool such as WS-Inject). 

Step 3:  Obtain response from server, observe the impact 

due to malformed request sent in step 2. This could 

be analyzed with help of HTTP status code, as 

mentioned in section 4.2.1. 

Step 4:  If  

I. Given attack does not show any vulnerability in 

targeted environment then modify the test case, 

   Go to Step 2; 

  Else 

I. Report the bug in the web service with given 

attack scenario. 

Step 5:  Stop. 

   

4.2.1 Proposed System Algorithm rules: 

The UDDI Business Registry (UBR) is a single registry for 

Web Services through its WSDL. The WSDL file allows us 

to know how the service can be called, what parameters it 

expects, and what data structures it returns. 

 

The fault injection can be performed with help of WSInject 

which is configured between client and server. This can be 

configured to WSDL of the service through proxy. Using this 

one can corrupt the request sent through the client (e.g. 

SoapUI) and observe its response [1]. This enables to 

conclude whether targeted system has vulnerabilities in it or 

not. The difference in behavior can be observed by varying 

workload and faultload. The evaluation can be performed 

with help of 8 rules developed as mentioned below [1]: 

 

Rule 1. If the message header contains the code “200 OK” 

AND the server ran the SOAP message with any attack, 

THEN it could be a Vulnerability Found (VF) in the Web 

Service. OTHERWISE, if the SOAP message describes the 

existence of a syntax error or warning about the presence of 

Paper ID: NOV152753 327



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611 

Volume 5 Issue 1 January 2016 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

any attack,THEN there is No Vulnerability Found (NVF). 

 

Rule 2. If the message header contains the code “400 Bad 

request message”, e.g. request format is invalid: missing 

required soap: Body element, THEN there is No 

Vulnerability Found (NVF). 

 

Rule 3. If the message header contains the code “500 Internal 

Server Error” AND there are information disclosure in the 

SOAP message (e.g. it shows path directory, function library 

and object information, usernames and passwords, database 

access, among others), THEN there is a Vulnerability Found 

(VF), OTHERWISE there is No Vulnerability Found (NVF). 

 

Rule 4. i) If in the absence of any attack, the message header 

contains the code “500 Internal Server Error” AND there are 

information disclosure in the SOAP message; AND ii) if in 

the presence of any attack, the header contains the code 

“HTTP 200 OK”, THEN there is a Vulnerability Found 

(VF). 

 

Rule 5. i) If in the absence of any attack, the header contains 

the code “500 Internal Server Error” AND there are 

information disclosure in the SOAP message; AND ii) if in 

the presence of any attack, the header contains the code “400 

Bad request message”, THEN there is a Vulnerability Found 

(VF). 

 

Rule 6. i) If in the absence of any attack, the message header 

contains the code “500 Internal Server Error” AND there are 

information disclosure in the SOAP message; AND ii) if in 

the presence of any attack, the header contains the code “500 

Internal Server Error” too, THEN there is a Vulnerability 

Found (VF). 

 

Rule 7. If the server does not respond, it is considered as 

crash, THEN the result is considered Inconclusive, because 

one cannot guarantee that the error was caused by the attack. 

 

Rule 8. If none of the rules above may be applied, THEN the 

result is considered Inconclusive, because there is no way to 

confirm if there really were vulnerabilities in the Web 

Service. 

 

After performing various attacks made on selected web 

service, with security tokens (i.e. UsernameToken) and 

without security token results observed as, the use of 

UsernameTokens reduces the percentage of Web Services 

vulnerabilities from 92% to 72%, but not enough. This 

happens because these services use password to authenticate 

the user. However, these techniques do not protect the 

integrity of SOAP message and its confidentiality. XML-Enc 

or XML-Sig may be used to provide confidentiality and 

integrity of both the UsernameToken and the entire message 

body. 

 

Furthermore, the use of this specification forces the 

programmers to create more robust Web Services. i.e. use 

message timestamps, nonces, and caching, the password 

should be digested for protect against eavesdropping attacks, 

as well as other application-specific tracking mechanisms. 

 

4.3 Mathematical Model 

 

Let S be the whole system S= I, P, O I-Input P-Procedure O-

Output. 

 

Input I=REQ, MEC, S-Token Where, 

REQ- Request that could be obtained from client (e.g. soap-

UI),  

 

MEC - Request which is obtained in the form of string could 

be corrupted with certain mechanism suitable to attack 

scenario,  

 

S-Token - Security tokens may needs to be supplied with 

request to improve authentication. 

 

Procedure (P), The REQ needs to be analyzed in the system, 

which could be corrupted by applying MEC suits to given 

attack scenario, forward the REQ to the web service and wait 

for the response. As mentioned in the algorithm steps, 

analyze the response message header information. It usually 

contains HTTP status code. Further security can be enhanced 

with S-Token mechanism add-on to the REQ. 

 

Output (O) – As per the guideline provided in the algorithm, 

from the response output obtain as system is vulnerable to 

given attack scenario or not. 

 

4.4 Module description 

 

1) Fault injection: To test the robustness of the service, 

multiple attack scenarios needs to be performed by 

injecting the malformed code to the REQ made, through 

clients. 

2) Attack scenario: various test cases can be generated to 

test the robustness of the service by varying the attack 

scenarios previously made. There are set of parameters 

need to pass to the service to perform desired operation, 

it’s value or parameter itself can be modified to approach 

certain corrupting MEC. 

3) Response analysis: The malformed request which has 

been sent to the service may provide in turn response 

from it. Its header information (e.g. HTTP status) could 

help to analyze the response. 

4) Test case decision: For the given attack scenario based on 

the response observed, one can conclude whether system 

is vulnerable to the given attack or not. 

 

5. Conclusion 
 

This paper provides survey on new approach to analyze the 

robustness of Web Services by Fault Injection with 

WSInject. This tool allows emulation and generation of 

attacks, however, the process is delayed and often not 

automated. This survey focused on emulation of Cross-site 

Scripting (XSS) attack. This is a fairly frequent attack, 

according to the research cited, whose effects can be quite 

devastating for servers and users of Web Services. 

Paper ID: NOV152753 328



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611 

Volume 5 Issue 1 January 2016 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

The results of the Penetration Testing phase help to develop 

the rules for vulnerabilities analysis. However, the results 

obtained by soapUI show a large percentage of false 

positives and false negatives.  

 

One advantage of the proposed approach is that it relies on 

the use of a fault injector of general purpose, which can be 

used to emulate several types of attacks and may generate 

variants of the same, which is usually limited in the tools 

commonly used for security testing, as the vulnerabilities 

scanners. 

 

References 
 

[1] Marcelo Invert Palma Salas, Paulo Lício de Geus, 

Eliane Martinsl, “Security Testing Methodology for 

Evaluation of Web Services Robustness - Case: XML 

Injection”, Institute of Computing, UNICAMP, 

Campinas, Brazil, 2015. 

[2] Cachin, C., and J. Camenisch, “Malicious and 

Accidental-Fault Tolerance in Internet Applications: 

Reference Model and Use Cases,” LAAS, MAFTIA, 

2000. 

[3] Holgersson, J., and E. Soderstrom, “Web Service 

Security-Vulnerabilities and Threats within the Context 

of WS-Security”, SIIT 2005, ITU. 

[4] Williams J., and D. Wichers, OWASP Top 10, OWASP 

Foundation, 2010,URL: https://www.owasp.org/ 

[5] Meiko J., G. Nils, H. Ralph, “A Survey of Attacks on 

Web Services, Computer Science - Research and 

Development, 01 Nov 2009,” Springer Berlin, 

Heidelberg; ISSN: 1865-2034, volume 24, Edição 4. 

2009 

[6] Dolev D., A. Yao, “On the Security of Public Key 

Protocols,” In IEEE Transactions on Information 

Theory, IEEE Computer Society Press, Mar 1983. 

[7] Morais A, and E. Martins, “Injeção de Ataques 

Baseados em Modelo para Teste de Protocolos de 

Segurança,” Thesis (Master in Computer Science), 

Institute of Computing, UNICAMP, State University of 

Campinas, Brazil, 15, May 2009. 

[8] Ladan MI, Web services: Security Challenges, in 

Proceedings of the World Congress on Internet 

Security, 2011, WorldCIS’11, IEEE Press, Londres, 

Reino Unido, 21-23, Fev 2011. 

[9] Martins E., A. Morais, and A. Cavalli, Generating 

Attack Scenarios for the Validation of Security Protocol 

Implementations, In Proceedings of the II Brazilian 

Workshop on Systematic and Automated Software 

Testing, SBC, Campinas-SP, Brasil, 2008. 

 

Author Profile 
 

Prof. Vina M. Lomte is the HOD of Computer Dept. 

at RMD SSOE College, Pune, having more than 10+ 

years of experience in the field of teaching and 

research. The domains of her research are Software 

Testing, Software Engineering and Web Security. 

 

 

 

 

Mr. Jaydeep Mangle is pursuing his Masters of 

Engineering in the Computer Science Department, 

RMD SSOE College, Savitribai Phule University, 

Pune. He has received Bachelor of Engineering degree 

in Computer Science from University Of Mumbai, 

Ratnagiri, India.  

Paper ID: NOV152753 329




