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Abstract: This paper deals with the solution of the chance constrained reliability-redundancy allocation problems in imprecise 

environment. The reliabilities of the components are imprecise numbers and the type of the constraints are chance constraints i.e., 

stochastic in nature. This paper proposes a stochastic simulation based genetic algorithm approach for solving the reliability 

optimization problems of the type mentioned. The impreciseness is represented in the stochastic approach.  In case of stochastic 

approach, the reliabilities of the components are taken to be random variables having normal distribution. Then Monte Carlo 

simulation technique is applied to transform the chance constraints into the deterministic ones.  Then Big-M penalty technique is 

applied to transform the problem to unconstrained one. The altered problem is then solved by the real coded genetic algorithm based on 

stochastic simulation. Some numerical illustrations are presented to show the performance of the proposed procedure. 
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1. Introduction 
 
In the most of the existing stochastic optimization methods of 
reliability engineering it has been assumed that all the 
component reliabilities are precise and fixed real numbers 
lying in [0,1]. This means that there exists the complete 
probabilistic information about the component as well as 
system behavior.  This information is dependent on the 
following two conditions, viz., all the probabilities or 
probability distributions are known or perfectly determinable, 
and the system components are independent i.e., all the 
random variables, describing the component reliability 
behavior are independent. 

 
Almost in all in the techniques available for reliability 
optimization, the assumption on uncertainty is based on 
precise probabilities and the reliabilities of system 
components are to be known and fixed positive numbers 
which lying in the interval [0, 1] and well discussed in [4], 
[8], [15], [16], [17], [22], [23], [24], [31], [32], [33]. The 
precise system reliability can be computed theoretically if 
both the above-mentioned conditions are satisfied. However, 
in the most of the cases of real-life situations, where either 
the system is newly invented or it persists only as a project, 
there does not exist sufficient statistical information. This 
means that only some partial information about the system 
components is known. So the reliability of the components of 
a system might be an imprecise numbers rather than precise. 
To embark upon the problem with such imprecise numbers, 
generally stochastic, fuzzy and fuzzy-stochastic approaches 
are applied and the corresponding problems are converted 
into deterministic problems for solving them. In fuzzy 
approach, the parameters, constraints and goals are 
considered as either fuzzy sets with known membership 
functions or fuzzy numbers whereas in stochastic approach, 
the system parameters are to be random variables with known 
probability distributions. On the other hand, in fuzzy-

stochastic approach, some of the parameters are considered 
as fuzzy sets/fuzzy numbers and others as random variables. 
Apart from these approaches, another one approach, viz. 
interval approach may be applied for the same purpose. In 
this approach, an interval number is used to represent the 
imprecise number. In this area, only a very few works has 
been done considering the system parameters as interval 
valued. In this connection, the works of Gupta et. [6], Bhunia 
et al. [1], Sahoo et al. [27], Bhunia and Sahoo [2], Sahoo et 
al. [26], Sahoo et al. [28], Mahato et al. [19], Sahoo et al. 
[29], [30] are worth mentioning.  

 
In this paper, we have proposed a stochastic simulation based 
genetic algorithm approach [11], [12], for solving the chance 
constrained [4], [10], [13], [21], reliability optimization 
problem considering the reliability of each component of a 
system as either precise or imprecise number lying in [0,1]. 
To symbolize this impreciseness, we have applied stochastic 
approach. In the stochastic approach, the reliability of each 
component is considered as a random variable with normal 
distribution. Firstly, the chance constraints have been 
transformed into deterministic constraints by Monte Carlo 
simulation technique [25]. Then the transformed problem has 
been solved by real coded genetic algorithm based 
constrained handling technique. Finally, to illustrate the 
methodology as well as to test the performance of the 
proposed technique a numerical example has been solved for 
different set of input data and sensitivity of some parameters 
are also presented in tabular form. 
 
2. Assumptions 
 
In formulating the chance constraints based stochastic 
reliability-redundancy optimization problem, the following 
assumptions have been considered.  
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a) Reliability of each component is stochastic in nature. 
b) Failure of a component of any subsystem will not lead the 

entire system to failure. 
c) Redundancies are active without repair. 
d) The components and also the system will have only two 

states either operating or failure. 
e) The resource constraints are chance constraints with 

resource vector as stochastic in nature. 
f) The coefficients in the left hand side of the resource 

constraints are stochastic in nature.  
 
3. Notations 
 
The notations which have been used in the whole paper are 
given in the table below. 
 
Notations Descriptions 

n number of subsystems 
m number of constraints 

jx  number of redundant components in the j-th 
subsystem 

 1 2, ,..., nx x x x  redundant vector 

jr  reliability of each component in the j-th 
subsystem which is precise 

 
reliability of each component in the j-th 
subsystem which is stochastic in nature and 
follows normal distribution with parameters 

 and 
j jr r   

    , SSR x R x  precise system reliability, stochastic system 
reliability 

   ,i ig x g x  precise and stochastic valued usability of  i-th 
constraint respectively 

, iib b  precise and stochastic valued total availability 
of i-th resource 

( 1),  j jl u  Lower and upper bounds of jx  

i  level of significance of i-th chance constraint 
Prob(.) probability of  (.) 

 ,U a b  uniform distribution over [a, b] 

 ,N    normal distribution with parameters   
(mean) and   (standard deviation) 

sp  population size 

gm  maximum number of generations 

mp  probability of mutation 
cp  probability of crossover 

 

4. Some Useful Probability Distributions 
 
4.1 Uniform Distribution 

 
A continuous random variable X over the interval [a,b] is 
said to follow uniform distribution and denoted by 

 ,X U a b , if its probability density function  f x  is 
given by  

  
 

1   if ,

0          otherwise.

x a b
f x b a




 

  

 
 

4.2 Normal Distribution 

 
A continuous random variable X is said to follow normal 
distribution with parameters   (mean) and   (standard 
deviation), denoted as  ,X N   , if its probability 

density function  f x is given by  

 
   

2
2

1 1exp ;   
2 2

            - , ,  0.

f x x

x


 

 

 
   

 

    

 

 
5. Random Numbers Generation 
 
In stochastic simulation, random number plays an important 
role. So, the generation of random numbers is an essential 
part of simulation. For this purpose, Jana and Biswal [11], 
[12] proposed several algorithms based on different 
probability distributions.   
 
The sub function for the generation of pseudo random 
numbers between 0 and RAND_MAX has been given in the 
C library as follows: 
#include<stdlib.h> 
int rand (void). 
where the value of RAND_MAX is defined in <stdlib.h>. 
Hence, a uniformly distributed random number can be 
generated from the given interval [a, b] according to the 
following algorithm. 
 
Algorithm for uniform distribution 

Step 1: 
1

()m rand  
Step 2: 1 / RAND_MAXm m  
Step 3: Return  .a m b a 

 
We denote this random number generator as U(a,b).   
Algorithm for normal distribution  
 
Based on normal distribution, a random number between 
 ,    

 
can be generated according to the following 

algorithm 

Step 1: Generate  2 3 and  from 0,1 .m m U  

Step 2: Compute    
1
2

2 32log sin 2 .ey m m     

Step 3: Return
  .y 

 
We denote this   , .N    
 
6. Mathematical Formulation of the Problem 
 
Let us consider a n-stage parallel-series system as shown in 
Fig.-1.  This system is comprised of n subsystems connected 
in series, where j-th subsystem consists of jx  number of 
identical components connected in parallel. Assuming the 
reliability of each component as precise (fixed), we get the 
system reliability  SR x  as  

 
1

1 (1 ) j
n

x
S j

j
R x r



   
   . 
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We desire to maximize the system reliability subject to 
several resource constraints. Sometimes, constraints are 
satisfied depending on the chance. This type of constraints is 
known as chance constraints. In this case, each constraint is 
considered as an event of a random experiment. 
 

 
Figure 1: An n-stage parallel series system 

 
Then, the chance constrained reliability-redundancy 
allocation problem for this parallel-series system with m 
constraints can be formulated as follows:  

 
1

Maximize 1 (1 ) j
n

x
S j

j
R x r



   
       (1) 

subject to 
 Pr ob 1 ,   1,2,...,i i ig x b i m       

and ,   1,2,..., .j j jl x u j n    
 
In problem (1), it is to be noted that all the parameters are 
assumed to be precise.  
 
Now, if the reliabilities of components in problem (1) are 
stochastic in nature and follow normal distribution, then the 
chance constrained stochastic reliability optimization 
problem becomes  

 
1

Maximize 1 (1 ) j
n

x
jS

j
R x r



   
        (2) 

subject to 
  Pr ob 1 ,   1,2,...,i iig x b i m     

  

and ,   1,2,..., .j j jl x u j n    

where  ,
j jj r rr N    ,   1,2,..., .j n  and 

 ~ ,
i ii b bb N   ,   1,2,..., .i m  

We aim to solve the problem (2) for different set of data. The 
problem is nonlinear all integer programming problem with 
chance constraints. By transforming the problem into 
deterministic problem, the reduced problems can be solved 
by existing methods. However, in an alternative way, we can 
solve the same by stochastic simulation based genetic 
algorithm technique. 
 
 

7. Stochastic Simulations 
 
In the stochastic simulation for chance constrained 
optimization problem, at first the stochastic constraints are 
converted into their respective deterministic equivalent forms 
to the given level of confidence. Let us consider the chance 
constraints as follows: 

 Pr ob , 1 ,  0< 1,  1,2,...,i i i ig x r b i m         
where  1 2, ,...., nr r r r is a n-dimensional continuous vector 
and each ir  has a known distribution. Monte Carlo 
simulation technique is used for estimating these chance 
constraints for a given x. Let us generate N independent 

vectors         1 2, ,...., ,   1,2,...,s s s s
nr r r r s N   

from their probability distributions. Let  1,2,...,iN i m  be 
the number of occurrences when all the constraints 

  , ( 1,2,..., )s
i ig x r b i m    are satisfied. Then by the 

definition of probability we have 

1 ,   1,2,..., . i
i

N i m
N



                (3) 

A solution is said to be feasible, if the condition (3) is 
satisfied for all i (i=1,2,3,…,m).     
 
The algorithm for calculating the value of /iN N  from the 
given chance constraints is as follows: 
 

Step-1: Initialize  0 1,2,..., .iN i m    

Step-2: Generate random numbers according to the known 

distribution of the random variables .iR  

Step-3: Find all the values of  , ,  ig x r  for all 

,  1,2,..., .i i m
 

Step-4: If 
  , ,s

i ig x r b
 
then  1, 1,2,..., .i iN N i m     

Step-5: Repeat Steps 2 -4  for N  times. 

Step-6: Find the ratio / , 1,2,..., .iN N i m    

Step-7: Stop. 

 
8. Big-M Penalty Technique 
 
It is to be observed that the optimization problem (2) is 
constrained optimization problem. During the past, several 
techniques [20] have been proposed to handle the constraints 
in genetic algorithms for solving the optimization problem. 
Recently, Gupta et al. [6] and Bhunia et al. [1] solved the 
optimization problem using Big-M penalty method. In this 
method, the given constrained optimization problem is 
converted into an unconstrained optimization problem by 
penalizing a large positive number say, M and called this 
penalty as Big-M penalty. In this work, we have used the 
Big-M penalty technique.    
 
The transformed problem of (2) is as follows: 

Maximize ˆ ( )SR x                                           (4) 

where 
ifˆ ( )
if

S
S

R x S
R x

M x S
 

 
 


  
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and    : Pr ob 1 ,   1,2,...,i iiS x g x b i m      
 be the 

feasible space.  
 
Problem (4) is integer non-linear unconstrained optimization 
problem. For solving this problem, we have developed 
stochastic simulation based genetic algorithm (GA) with 
advanced operators for integer variables. 
 
9. The Genetic Algorithm 
 
The different steps of genetic algorithm [5], [9] are given in 
the following algorithm: 
 

The Algorithm 

Step-1: Initialize GA parameters ( sp , gm , mp
 
and cp ) and the 

bounds of each decision variables. 

Step-2: Set iteration 0.  

Step-3: Initialize the population i.e. sp  number of chromosomes. 

Step-4: Set iteration 1.iteration   

Step-5: Check the constraints using stochastic simulation. 

Step-6: Evaluate fitness function for each chromosome. 

Step-7: Use tournament selection to select chromosomes having 

better fitness values. 

Step-8: Apply crossover, mutation and elitist operators to update 

the chromosomes. 

Step-9: If iteration< gm , go to Step-4; otherwise go to Step-10. 

Step-10: Print the best chromosome along with the fitness value. 

Step-11: Stop. 

 
There are several GA parameters, viz. population size ( sp ), 
maximum number of generation ( gm ), crossover rate i.e., the 

probability of crossover ( cp ) and mutation rate i.e., the 
probability of mutation ( mp ). There is no hard and fast rule 
for selecting the population size for GA, how large it should 
be.  The population size is problem dependent and will need 
to increase with the dimension of the problem.  Regarding the 
maximum number of generations, there is no clear indication 
for considering this value. It varies from problem to problem 
and depends upon the number of genes (variables) of a 
chromosome and prescribed as stopping/termination criteria 
to make sure that the solution has converged. From natural 
genetics, it is obvious that the rate of crossover is always 
greater than that of the rate of mutation. Generally, the 
crossover rate varies from 0.60 to 0.95 whereas the mutation 
rate varies from 0.05 to 0.20. Sometimes, the mutation rate is 
considered as 1/n where n is the number of genes (variables) 
of the chromosome. 
  
At the beginning, GA needs the initialization of the 
population of solutions. If 1 2, ,..., nx x x  be the decision 
variables of the optimization problem to be solved, then each 
chromosome can be represented as  1 2( , ,..., ) ,p n pX x x x

 
1,2,..., .sp p Here the integer values of  1,2,...,jx j n

 
are initialized uniformly between   and 1,2,..., .j jl u j n  
There are several procedures for selecting a random number 
of integer types. In this work, we have used the following 
algorithm for selecting an integer number randomly. A 

random integer random number between a and b can be 
generated as either x a g   or, x b g   where g is a 
random integer between 1 and a b . 
 
As the constraints of the problem are chance constraints with 
some known degree of significance, stochastic simulation 
technique has been applied for checking the constraints. 
 
Fitness function plays an important role in GA. This role is 
same for natural evolution process in the biological and 
physical environments. In our work, the value of objective 
function of the optimization problems corresponding to the 
chromosome is considered as the fitness value of that 
chromosome. 
 
The selection operator which is the first operator in artificial 
genetics plays an interesting role in GA. This selection 
process is based on the well known Darwin’s principle on 
natural evolution “survival of the fittest”. The primary 
objective of this process is to select the above average 
individuals/chromosomes from the population according to 
the fitness value of each chromosome and eliminate the rest 
of the individuals/chromosomes. There are several methods 
for implementing the selection process. In this work, we have 
used the well known tournament selection with size two.  
 
The exploration and exploitation of the solution space can be 
made possible by exchanging genetic information of the 
current chromosomes. After the selection process, other 
genetic operators, like crossover and mutation are applied to 
the resulting chromosomes those which have survived. 
Crossover is an operator that creates new 
individuals/chromosomes (offspring) by combining the 
features of both parent solutions.  It operates on two or more 
parent solutions at a time and produces offspring for next 
generation. In this work, we have used intermediate 
crossover for integer variables. 
 
The aim of mutation operator is to introduce the random 
variations into the population and is used to prevent the 
search process from converging to the local optima. This 
operator helps to regain the information lost in earlier 
generations and is responsible for fine tuning capabilities of 
the system and is applied to a single individual only. Usually, 
its rate is very low; because otherwise it would defeat the 
order building being generated through the selection and 
crossover operations. In this work we have used one-
neighborhood mutation for integer variables. 
 
10. Numerical Examples 

 
To illustrate the methodology and also to test the 
performance of the proposed algorithm, we have solved the 
example for several stages and with different set of input 
data. In this example, component reliabilities, coefficients of 
the chance constraints and available resources are normally 
distributed. 
 
Example:  A n-stage series system with m stochastic chance 
constraints is considered as a pure stochastic integer 
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programming problem with stochastic reliability components. 
The problem in this case becomes  

  
1

Maximize 1 (1 ) j
n

x
jS

j
R x r



   
           

subject to 

 
4

1
Pr ob 1 ,   1,2,...,ij ij i

j
a x b i m



 
    

  
   

where,  ,
j jj r rr N    , 1 10,   1,2,...,jx j n     

and  ,
i ii b bb N    ,   1,2,..., .i m  

Now, we desire to solve this problem with 4-stages with 
two number of stochastic constraints i.e., n=4 & m=2 in 
different situations. The input data are all taken in stochastic 
form which are distributed normally and are given in the 
Tables 1-5. 

 
Table 1: Input data  

j 1 2 3 4 
jr  N(0.75, 0.01) N(0.80, 0.02) N(0.75, 0.01) N(0.85, 0.02) 

1 ja  N(1.5, 0.01) N(3.3, 0.05) N(3.2, 0.02) N(4.4, 0.01) 

2 ja  N(4.0, 0.03) N(5.0, 0.04) N(7.0, 0.03) N(9.0, 0.02) 

Available resource: 1b ~N(55, 2), 2b ~N(125, 3),
  1 20.10,  0.15    

 
Table 2: Input data  

j 1 2 3 4 
jr  N(0.85, 0.01) N(0.85, 0.02) N(0.80, 0.01) N(0.90, 0.02) 

1 ja  N(1.5, 0.01) N(3.3, 0.05) N(3.2, 0.02) N(4.4, 0.01) 

2 ja  N(4.0, 0.03) N(5.0, 0.04) N(7.0, 0.03) N(9.0, 0.02) 

Available resource: 1b ~N(55, 2), 2b ~N(125, 3),
  1 20.10,  0.15    

 
Table 3: Input data  

j 1 2 3 4 
jr  N(0.85, 0.01) N(0.90, 0.02) N(0.85, 0.01) N(0.95, 0.02) 

1 ja  N(1.5, 0.01) N(3.3, 0.05) N(3.2, 0.02) N(4.4, 0.01) 

2 ja  N(4.0, 0.03) N(5.0, 0.04) N(7.0, 0.03) N(9.0, 0.02) 

Available resource: 1b ~N(55, 2), 2b ~N(125, 3),
  1 20.10,  0.15    

 
Table 4: Input data  

j 1 2 3 4 
jr  N(0.86, 0.01) N(0.89, 0.02) N(0.85, 0.01) N(0.94, 0.02) 

1 ja  N(1.5, 0.01) N(3.3, 0.05) N(3.2, 0.02) N(4.4, 0.01) 

2 ja  N(4.0, 0.03) N(5.0, 0.04) N(7.0, 0.03) N(9.0, 0.02) 

Available resource: 1b ~N(55, 2), 2b ~N(125, 3),
  1 20.10,  0.15    

 
Table 5: Input data  

 j 1 2 3 4 
jr  N(0.89, 0.01) N(0.85, 0.02) N(0.90, 0.01) N(0.93, 0.02) 

1 ja  N(1.5, 0.01) N(3.3, 0.05) N(3.2, 0.02) N(4.4, 0.01) 

2 ja  N(4.0, 0.03) N(5.0, 0.04) N(7.0, 0.03) N(9.0, 0.02) 

Available resource: 1b ~N(55, 2), 2b ~N(125, 3),
  1 20.10,  0.15    

 
 

 

 

 

 

 

Table 6: Best found results for input data taken from Table 
1-5 

Input from 
Table No.  1 2 3 4, , ,r r r r r   1 2 3 4, , ,x x x x x  R 

1  (0.74,0.79,0.76,0.85)    (6,4,5,3) 0.998010 
2  (0.85,0.87,0.79,0.87) (6,4,5,3) 0.999649 
3  (0.83,0.88,0.85,0.95) 

(0.86,0.92,0.85,0.93) 

(6,4,5,3) 

(4,4,3,1) 
0.999968 

4  (0.85,0.87,0.82,0.93) (6,4,5,3) 0.999947 
5  (0.89,0.83,0.90,0.91) (5,5,4,3) 0.999940 

 
Table 7: Sensitivity of 1b  using others data from Table 3 

1b  x r R 

N(55,1) (7,4,5,3) (0.87,0.94,0.85,0.96) 0.9999639311 

N(55,2) (6,4,5,3) (0.84,0.91,0.85,0.95) 0.9999631286 
N(55,3) (6,4,5,3) (0.84,0.91,0.88,0.99) 0.9999409114 
N(55,4) (5,4,5,3) (0.83,0.90,0.85,0.92) 0.9999097329 
N(55,5) (5,4,5,3) (0.84,0.92,0.85,0.96) 0.9998751529 

 
Table 8: Sensitivity of 2b  using others data from Table 3 

2b  x r R 

N(125,1) (6,4,5,3) (0.86,0.91,0.87,0.93) 0.9999600432 
N(125,2) (6,4,5,3) (0.86,0.87,0.84,0.94) 0.9999487544 
N(125,3) (6,4,5,3) (0.84,0.91,0.85,0.95) 0.9999631286 

N(125,4) (6,4,5,3) (0.84,0.91,0.86,0.97) 0.9999558163 
N(125,5) (6,4,5,3) (0.86,0.89,0.85,0.92) 0.9999454725 

 
Table 9: Sensitivity of 1  using others data from Table 3 

1  x  r  R 

0.10 (6,4,5,3) (0.85,0.92,0.84,0.94) 0.9999542631 
0.15 (6,4,5,3) (0.84,0.92,0.85,0.93) 0.9999596902 
0.20 (6,4,5,3) (0.82,0.88,0.84,0.94) 0.9999579307 
0.25 (7,4,5,3) (0.84,0.90,0.85,0.95) 0.9999607027 
0.30 (10,4,2,1) (0.86,0.92,0.84,0.96) 0.9999730732 
0.35 (6,4,5,3) (0.85,0.89,0.84,0.94) 0.9999509162 
0.40 (6,4,5,3) (0.85,0.92,0.87,0.98) 0.9999540116 
0.45 (6,4,5,3) (0.85,0.89,0.86,0.93) 0.9999604335 
0.50 (6,4,5,3) (0.86,0.85,0.85,0.95) 0.9999737764 
0.55 (6,4,5,3) (0.86,0.92,0.86,0.94) 0.9999929499 

 
Table 10: Sensitivity of 2  using others data from Table 3 

2  x  r  R 

0.15 (6,4,5,3) (0.85,0.92,0.84,0.94) 0.9999542631          
0.20 (6,4,5,3) (0.85,0.93,0.84,0.94) 0.9999523536 
0.25 (6,4,5,3) (0.86,0.91,0.87,0.95) 0.9999538756 
0.30 (6,4,5,3) (0.84,0.87,0.84,0.97) 0.9999549780 
0.35 (6,4,5,3) (0.85,0.92,0.84,0.93) 0.9999545930 
0.40 (6,4,5,3) (0.86,0.89,0.86,0.91) 0.9999524183 
0.45 (6,4,5,3) (0.86,0.92,0.87,0.93) 0.9999581263 

0.50 (6,4,5,3) (0.86,0.93,0.85,0.95) 0.9999550624 
0.55 (6,4,5,3) (0.84,0.90,0.85,0.97) 0.9999512939 
0.60 (6,4,5,3) (0.84,0.89,0.85,0.98) 0.9999535680 

 
We have used real coded genetic algorithm to solve the 
problem under consideration. In this algorithm, we have used 
tournament selection, intermediate crossover and one 
neighborhood mutation as genetic operators. For this 
purpose, we have prepared the code for this algorithm in C++ 
Programming language.  The corresponding computational 
work has been done on a PC with Intel i3 processor in 
LINUX environment. For each problem, fifty independent 
runs have been performed to determine the best found system 
reliability which is nothing but the optimal/near to optimal 
value of system reliability. In this computation, the values of 
genetic parameters, like sp , gm , cp and mp have been taken 
as 150, 100, 0.85 and 0.15 respectively.  
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Table 11: Input data in crisp case 
 j 1 2 3 4 

jr  0.75 0.80 0.75 0.85 

1 ja  1.5 3.3 3.2 4.4 

2 ja  4.0 5.0 7.0 9.0 

Available resource: 1b =55 2b =125, and 1 20.10,  0.15    

 
11. Result Discussion 
 
The numerical example has been solved for different input 
data set. The input data are given in the Tables 1-5. It is to be 
noted that the reliability components follow the normal 
distribution with different means and standard deviations in 
each input data table. In these data tables, standard deviation 
of the i-th component reliability is kept fixed; however, the 
mean has been changed to make different input data set. For 
every input data set, we have considered 50 independent run 
of the program coded in C++ in Ubuntu 10.1 LINUX 
operating system to find the best fitness function of the 
problem. The best found results obtained in these five cases 
are presented in Table-6 and it is to be noted that using 
Table-3, we get comparatively better outcome. Further, we 
observe from Table-6 that in case of input Table-3, there are 
two different optimal solutions with same objective function 
value 0.999968. Earlier works available in the literature, in 
case of crisp input data set given in Table-11, show that the 
optimum objective value of this problem is 0.995946 with 
x=(5,4,5,4).  Thus, the outcomes in this work are far better 
than that of the crisp case achieved earlier. The sensitivities 
of the resource availabilities b1 and b2 are presented in Tables 
7 & 8 respectively. While, the Tables 9 & 10 represent the 
sensitivities of 1 and 2 respectively. The best found results 
have been indicated with bold face in each case. 
 
12. Conclusions 
 
In this paper, we have presented a simulation based genetic 
algorithm for solving Chance Constrained redundancy 
allocation problem considering stochastic component 
reliabilities. To transform the chance constraints to its 
deterministic equivalent form, Monte Carlo simulation 
technique have been applied.  Then the transformed problem 
has been converted into unconstrained optimization problem 
with the help of Big-M penalty technique. To solve the 
transformed problem, we have applied real coded genetic 
algorithm with tournament selection, intermediate crossover 
and one-neighbourhood mutation. For solving the 
optimization problem, we have used the GA based Big-M 
penalty approach. In this approach, the value of fitness 
function is not computed for infeasible solutions. For 
infeasible solutions, the value of M may be taken depending 
on the fitness function value. A small value (in case of 
maximization problem) or a large value (in case of 
minimization problem) may be considered for M to solve the 
constrained optimization problem.  
 
13. Scope of Future Research 
 
In future, the researchers may apply the proposed 
methodology and simulation based genetic algorithm for 

solving optimization problems which are mostly arising in 
the areas of reliability engineering disciplines and 
management sciences and also in the different areas of 
optimization.  
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