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Abstract: Nuclear Quadrupole Moment (NQM) of zinc nucleus in pure metallic environment is calculated using quantum statistically 

obtained electric field gradient (EFG) tensor at nuclear site and available nuclear quadrupole coupling coefficients in non-interference 

of atomic shell approximations. Result does not compare well with previous data, and indicates inclusion of additional shell effect in 

model based NQM calculations. 
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1. Introduction 
 
Zinc is an integral constituent of a large number of 
enzymes, inorganic and biological molecules. To better 
understand its catalytic and structural role in such systems, 
it is suggestive to study both 𝑍𝑛30

67  NMR- tensors, 
chemical shift and EFG tensors. The Zn (II) center in such 
systems is surrounded in definite way by ligands, as in 
complexes, and ionic network, as in oxides and 
aluminates. Periodicity of structure plays vital role in these 
structures. Similar is the case of metallic zinc, in which 
ions form hexagonal close packed lattice, and conduction 
electrons are surrounding them. 
 
Limitations arise in quantum mechanical calculations of 
EFG, and hence NQM, due to lack of exact wave 
functions. Software like Gaussian 98 suite of programs use 
limited basis sets of electrons, calculations performed at 
restricted Hartree Fock level and density functional level. 
Accurate calculation of EFG requires large basis set to 
encompass core and valence polarization, and often face 
slow convergence with standard basis sets. On the other 
hand, qualitatively good basis set for heavy elements are 
rare. Several approximate approaches are found in 
literature. We here use a quantum statistical approach 
essentially of Thomas Fermi model of atoms [1-3] type, 
and used by Bodenstedt et al[4], but using a different way 
of lattice summation. 
 
The NQM of zinc in metallic environment is calculated 
using the EFG and available NQCC data. 
 
2. Computational Details 
 
The conduction electrons in zinc fill up the space between 
spherically symmetric metal ions according to quantum 
statistics as assumed for free atoms by Thomas and Fermi 
in statistical atomic model [1]. The assumption does not 
exhibit the electronic shell effects of interference pattern 
but is a good approximation for electrostatic potential of 
atoms used till date. We assume the shell effects in our 
three dimensional Thomas-Fermi lattice calculations as 
insignificant as a first approximation and see its effect on 
calculated values. Here we find a charge distribution 
exclusively determined by the available volume in phase 

space of zinc metal. Once the charge distribution is at hand 
we can calculate EFG, and hence NQM. 
 
There is one to one correspondence between electrons 
occupying a volume dV in space between ions, and 
available phase cells in phase space. As conduction 
electrons can have momentum from zero to Fermi 
momentum, pf, they lie within a sphere of this radius in 
momentum space. Heisenberg’s uncertainty principle and 
Sackur-Tetrode results show that their charge density may 
be written, using quantum statistics, as 
 

𝜌𝑒𝑙  𝑟 𝑑𝑉 =  −𝑒  
4𝜋𝑝𝑓

3

3ℎ3
 × 2 𝑑𝑉  

 
The factor 2 cares for two spin states of electrons, and a 
phase cell is of volume ℎ3.  
 
The Fermi momentum is derived from total energy of 
electron in conduction band that is very close to the Fermi 
energy. Using the potential 𝜑(r) at position r, and the 
kinetic energy of electron corresponds to Fermi 
momentum, we get  
 

𝐸𝐹 =  −𝑒 𝜑 𝑟 +
𝑝𝑓

2

2𝑚
 

 
The conduction electronic charge distribution may now be 
written, using above two equations, as  
 

𝜌𝑒𝑙  𝑟 = −
8𝜋𝑒

3ℎ3
 2𝑚 

3

2 𝐸𝐹 + 𝑒 𝜑 𝑟  
3

2  …  (1)  
 
As the unit cell is neutral, the volume integral of the 
conduction electron charge density over the unit cell must 
be opposite to the total ionic charge. Let z e be the ionic 
charge and there are k such ions per unit cell. Then 
 

 𝜌𝑒𝑙  𝑟 𝑑𝑉 = −𝑘 𝑧𝑒  … (2) 

 
The Fermi energy is fixed by this secondary condition. 
 
The total charge density 𝜌(𝒓) and potential 𝜑 𝑟′  are 
related in the Poisson equation formed as 
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𝜑 𝑟′ =  
𝜌 𝑟 𝑑𝑉

4𝜋𝜖0𝑟
 … (3) 

 
Here the integration runs over entire volume. Equations (1) 
and (3) show that to know the charge density, we need 
potentials, and to know potentials we need the charge 
density! In cases of such transcendental equations, 
numerical or graphical methods are used for solutions. 
 
Instead of dividing the crystal volume into infinitesimal 
volumes dV, we divide the unit cell into N small Wigner-
Seitz unit cells, filling up the Bravais unit cell, with their 
centres arranged to satisfy the symmetry of the Bravais 
lattice around an ion. Charges in such sites, each of 
volume 𝜔, are related to their potentials as 
 

𝑞𝑖 = −𝜔
8𝜋𝑒

3ℎ3
 2𝑚 

3

2 𝐸𝐹 + 𝑒 𝜑𝑖 
3

2  … (4) 
Let there be 𝑀𝑖  sites per unit cell, for i-th non-equivalent 
type and ℵ such types. Then the cell neutrality condition is 
expressed as  

 𝑀𝑖

ℵ−1

𝑖

 𝐸𝐹 + 𝑒 𝜑𝑖 
3

2 =  −𝑘 𝑧𝑒 …  (5)  

The Fermi energy 𝐸𝐹  is calculated from eq. (5). Iterations 
give us self-consistent charges as discussed ahead. 
 
The parameters along a- and b- axes of zinc unit cell are 
divided into 4 equal parts each and c-axis into 8 equal 
parts, i.e., N=128. In these, a volume of 128th part of unit 
cell volume belongs to each site: ω=a2 c/128. Equivalent 
sphere replaces the sites for computational ease, whose 
radii are quickly obtained. 
 
In the process we obtain three non-equivalent planes in 
which lie 14 non-equivalent sites occupying 128 positions 
in unit cell. If we calculate ionic charge using wave 
functions of zinc up to radius decided by the procedure, we 
get unrealistic charge on an ion. To get a realistic value of 
charge, ionic volume is taken as that containing first 
nearest electronic sites. These are 12. The ionic volume is, 
now, 13 times the old value. For two ions per unit cell, the 
total number of sites reduces to 104 and non-equivalent 
sites to 12. 
 
The ionic charge is obtained by integration of Roothaan- 
Hartree- Fock wave function of zinc[5] over an effective 
ionic volume determined by the sub-lattice construction. 
We get 
 
Z=2.348 
 
This charge is used to get conduction electron charge 
distribution by iterations. We need potentials in the 
process. These are written as fast converging series in 
direct and reciprocal lattice spaces [6].  
 
Let the field point in the 𝜆=0-unit cell be 𝝉𝑖𝜇

, and be 
vacant. Then potential is given by  
 

∅  𝝉𝑖𝜇
 = [ 𝑞𝜈𝐷𝜇𝜈 +  −

2𝑞𝜇

𝑎0

 

+  𝑞𝜈𝑅𝜇𝜈 ]
1

4𝜋𝜖0

 . . . (6) 

 
Here summation runs over all types of charges. The 
matrices are obtained by the lattice sums. 
 

𝐷𝜇𝜈 =   
Γ(

1

2
,
𝜋 𝑻𝝀+𝝉𝑗𝜈 −𝝉𝑖𝜇  

2

𝑎0
2 )

Γ(
1

2
, 0)  𝑻𝝀 + 𝝉𝑗𝜈 − 𝝉𝑖 𝜇

 

′

𝜆

𝑀𝜈

𝑗𝜈=1

 

 
The gamma functions are given by 
 

Γ 𝜂, 𝜉 =  exp −𝜉 𝜉𝜂−1𝑑𝜉
∞

𝜉

 

 
This is also known as incomplete gamma function. 
 
The reciprocal lattice sum is carried over real part of the 
sum 
 

𝑅𝜇𝜈 =
1

𝜋Ω0

  
exp  −2𝜋𝑖𝐾𝜆 . (𝝉𝑗𝜈 − 𝝉𝑖 𝜇

 − 𝜋𝑎0
2𝐾𝜆

2)

𝐾𝜆
2

′

𝜆

𝑀𝜈

𝑗𝜈 =1

 

 
The prime on summation indicates that for𝜆 = 0, one 
should not have 𝝉𝑗𝜈 = 𝝉𝑖𝜇

. 
 
We have calculated these matrices for Zn using 
FORTRAN.  
 
Using the tabulations and iterations of Newton Raphson, 
we obtained the charges at 11 electronic non-equivalent 
sites [Table 1]. 
 
The electric field gradient at origin due to point charge q at 
position r relative to a vacant ionic site taken as origin of 
co-ordinates in the crystal produces electric field intensity 
at the origin whose space rate of variation along c-axis 
taken as Z-axis is given by 
 
Vzz= 𝑞

 4𝜋∊𝟎

3 𝑧2−𝑟2

𝑟5 …(7)  
 
Let us reformulate it for zinc crystal. Let 𝑁𝑖=𝑛𝑖 + 𝑡𝑖𝑗𝑘

 
denotethei-th component of position vector of 
nonequivalent charge located at k-th position of j-th 
nonequivalent type site in the n-th unit cell. The 
multiplicity per unit cell for a j-th non-equivalent site is 
denoted by𝑀𝑗 . In this notation system, the position vectors 
may be written as 
 
𝒓 =   𝑁𝑖𝒖𝑖  (i =1 for x-component, 2 for y-component and 
3 for z-component). 
 
The vectors 𝒖𝒊 are the unit vector i, j and k. The position 
vector of a site in zinc crystal is, thus, given by 
 
r = (n1+ 𝑡1𝑗𝑘

) i + (n2 + 𝑡2𝑗𝑘
) j + ( 𝑐

𝑎
) (n3 +𝑡3𝑗𝑘

 ) k. 
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With these notations, and Z-axis as c-axis of crystal, the 
EFG may be written as 
 

𝑉𝑧𝑧 =  1 − 𝑅  𝑞𝑗

11

𝑗 =1

𝐵𝑗  +  1 − 𝛾∞ 𝑞12𝐵12  …  (8) 

 
Using lattice summations, we obtain the values of 
quantizes in this equation; these are shown in table 1. The 
value of R is -9.00 [7], and the value of the Sternheimer 
anti-shielding factor is -12.31 for ionic zinc [8]. With these 
values the electronic EFG (11 non-equivalent sites) turns 
out to be positive in sign and equals 4.349 a u, and ionic 
EFG (12th non-equivalent sites) bears negative sign and 
equals -4.465 au. The total EFG is, thus, equal to -
0.116au. 
 
The measured quantities are nuclear quadrupole coupling 
constant (NQCC) and asymmetry parameter in EFG, that 
appear in the expression 

 𝜈𝑄 = 𝑒𝑄
𝑉𝑧𝑧

ℎ
 …  (9) 

 
with 𝑉𝑧𝑧  as principal component of EFG tensor along spin 
quantization axis, the Z-axis, and asymmetry parameter 
𝜂 = (𝑉𝑥𝑥 − 𝑉𝑦𝑦 )/𝑉𝑧𝑧 . The recent NQCC value for zinc is 
12.25 MHz [9], which we use in equation (9) to get a 
quadrupole moment of zinc in metallic environment as  
 

𝑄 𝑏 =
𝜈𝑄 

234.9647 𝑉𝑧𝑧

=
12.35 𝑀Hz

234.9647 ×  −0.116 𝑎𝑢 
= −0.453 𝑏 

 
Table 1: Charges and Bjin zinc 

Non-equivalent 
Sites 

Charge in units 
of e 

Bj in units of 1.44 X 1021 
V/m2 

1 -0.07077082 24.4810400 
2 -0.05191937 -32.4921300 
3 -0.03366279 -27.0163700 
4 -0.03007849 -9.4726350 
5 -0.04888698 -45.3905700 
6 -0.05059905 -47.5129100 
7 -0.05508910 -50.134880 
8 -0.03683521 37.1529200 
9 -0.04173968 92.2081600 

10 -0.03213683 36.6918800 
11 - 0.02071887 1.8778090 

12 (ion) 2.348 -0.9642023 
 
3. Discussion 
 
The result based on quantum statistical approach taken 
here is matching in sign of EFG and quadrupole moment 
of nucleus and thus correctly gives the nuclear shape, but 
the numerical value of quadrupole moment is thrice the 
known value of 0.151 b for zinc [9, 10]. This suggests that 
quantum statistics of Thomas Fermi model is not able to 
give correct EFG of Zn. The results of electronic and ionic 
EFG are in clear contrast with values on page 17 of ref[2]. 
They correspond to Raghavan’s universal correlation of 
about 1, and not about 3 [11]. The result may be improved 
by further work such as additional consideration of p-wave 
electronic contributions of electrons surrounding zinc 

nucleus and showing local effect on EFG, and hence NQM 
of zinc. The shell effects are not featured in Thomas- 
Fermi type of approach. 
 
It may be mentioned here that the computations for 
tetragonal close packed structures like Indium has 
compared well using essentially the same procedure [12-
14]. 
 
4. Conclusion 
 
The quantum statistical way of charge distribution, 
exclusively determined by the available volume in phase 
space of hcp lattice of zinc metal, which facilitated 
computation of EFG, and hence NQM, gives correct signs 
of electronic and ionic EFGs but magnitudes are a bit 
smaller. This results in enhanced value of calculated 
nuclear quadrupole moment. The initial approximation of 
assuming shell effects insignificant is not correct at least in 
zinc, though such an approach was a success in tcp metal 
Indium. Additional contribution of p-wave of Zn to EFG 
need be considered before actual computation of 
quadrupole moment of zinc nucleus in hexagonal close 
packed metallic environment. 
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