
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 5 Issue 1, January 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Software Engineering Testing Research

H H Dangi

Lecturer in CE department, CTIDS, C u Shah University, wadhwan 363030

Abstract: Software testing research has not kept up with modern software system designs and applications, and software engineering

education falls short of providing students with the type of knowledge and training that other engineering specialties require. Testing

researchers should pay more attention to areas that are currently relevant for practicing software developers, such as embedded systems,

mobile devices, safety critical systems and other modern paradigms, in order to provide usable results and techniques for practitioners.

We identify a number of skills that every software engineering student and faculty should have learned, and also propose that education

for future software engineers should include significant exposure to real systems, preferably through hands on training via internships

at software producing firms.

Keywords:

1. Introduction

Let us first see the problems that are occurred in software
testing research. Problems occurred in Software Testing
Research are:

Where is software going all those billions or trillions of lines
of code currently running and the gazillions more that will
be written in the next decade and how does it relate to the
current software engineering research literature? Where the
research community is headed and are research and practice
converging? When we write our research papers, is there
anyone out there listening or are we writing for ourselves
and for each other? Such questions are related to this work

The sorts of software systems discussed in the software
testing research literature, by and large, are systems that are
either stand alone, or that connect with other software
systems that run on what are typically thought of as
computers. These systems take inputs which are characters,
or numbers, or files of characters and numbers. It is
relatively easy to understand how to test them, even if it is
not done very well, or very thoroughly, or if good ways of
assessing the comprehensiveness of the tests are lacking.
Typically in the research community, testing is equated with
functionality testing. The sorts of issues that are addressed
are how to generate and select test cases, how to do it
efficiently, how to assess adequacy, etc. Of course, all of
these are important issues, but this research has been done
for decades and very few of its results have changed the way
software is tested in any fundamental way. We believe this
is because researchers are not talking about the types of
software that industry and government are increasingly
concerned about, and are not talking about testing for the
types of problems that are of the greatest concern for these
systems. Additionally, researchers generally do not provide
compelling evidence that the techniques they propose in
their research will actually be successful or be practically
beneficial.

The practitioners we have interacted with are generally
knowledgeable, intelligent, and well educated people. They
are faced with major issues of limited resources and tight
deadlines for testing large, complex systems, but it is often
clear that they view what they read in the research literature

as not addressing their problems, or consider the techniques
described as not scalable or requiring artifacts that they do
not have, such as formal specifications. Because it is rare for
research results to be accompanied by or followed up with
an industrial scale empirical study that provides compelling
evidence of the value of a proposed technique, practitioners
usually feel that adoption is not worth the effort and the risk.

Finally, practitioners often complain about the lack of robust
tool support for a proposed testing research approach. If a
prototype tool that is hard-to-use and understand is provided
by the researchers, practitioners will be very reluctant to
spend time learning it, especially when the benefits are
doubtful, and its operation is frustrating. If the task of
building a usable tool is left to its potential users, it will
almost certainly not happen. Practitioners have their hands
full with the subject system they are building; they are
generally not willing to invest significant time out of their
already overstretched schedules to implement a new
technique that they view as unproven because there are no
large-scale empirical studies to back it up We recently
participated in a US National Academy of Sciences
Workshop and panel on Industrial Methods for the Effective
Test and Development of Defense Systems. It was a real
eye-opener, even for people like us who work in industry
and work regularly with software development projects.

We listened to test managers from the automotive industry
and from the US Department of Defense, and realized that
the research community is not even speaking about the same
sorts of objects that they are concerned about. These
organizations design, implement, and test massive embedded
systems of systems. Furthermore, these sorts of systems of
systems are by no means unique to the military or to the
automotive industry. Embedded systems are in every
industry, and they are increasingly driven by analog inputs
such as pulses, or electrical inputs, or a continuously
variable mechanical action, all of which are far removed
from anything the end-user is aware of. For example, one
might have to test an automobile fuel injection software
system, which responds to another system that reacts to a
driver’s depressing a gas pedal.

Testing researchers first have to learn how to test these
embedded systems for functionality, even if the system

Paper ID: NOV152722 318

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 5 Issue 1, January 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

under test is a flight control system for an airplane that is
still under design or a satellite yet to be built. How can one
test the functionality of an implanted device that emits a
signal or injects some medication into a patient’s blood
stream when certain conditions occur, provided that other
conditions have not occurred?

Once the functional testing has been completed, how can
one assure the airplane manufacturer or the satellite designer
that the embedded systems are not vulnerable to attack, that
they work under all sorts of environmental conditions, that
they work when inputs are outside the expected ranges, and
that they can meet performance goals, safety regulations and
reliability requirements? This is where the research
community needs to be headed because this is where the
world is heading. And clearly the research community
should be arriving ahead of the systems that are being built
in industry. Research should be guiding development, but in
software engineering, and particularly software testing, that
is often not the case.

2. Learning, Training and Experience
This section describes what we believe to be the three most
important factors in raising the level of software quality and
producing a future generation of qualified software
engineers. Advances in design, implementation, and
validation research are obviously important, but none of
them will be ultimately useful without well-trained
practitioners who know how to distinguish good design from
bad, and who can make intelligent choices of appropriate
implementation and validation techniques. The elements of
software engineering education include at least the
following:

 solid grounding in fundamentals of computer science,

including appropriate mathematics
 the importance of working in teams, and how to take

advantage of different team members’ skills and
expertise

 understanding of all the key factors that might be
relevant for a system, when each is appropriate, and how

 to evaluate them. These factors include such things as
 Risk
 Safety
 Performance
 Reliability
 correctness (and this might not be the most important)
 ease of use, clarity
 ease of modification

Hands-on study of real systems, to provide experience, and
to instill awareness of the difficulties encountered while
systems are being built, tested, and operated in many
engineering disciplines, it is usual for students to have
internships which are essentially apprenticeships, where they
learn by working with experienced professional engineers
and get real hands-on training. Such programs frequently
extend an undergraduate engineering degree from four to
five years. In many fields, engineering graduates cannot
legally call themselves an engineer without passing a
licensing exam, and that often has a work experience
requirement. For example, it’s not enough to know the

theory of building a bridge if you want to be a civil engineer;
you also have to work with people who design and build
them and are experienced enough to mentor interns.

In the US, these sorts of internships are not the norm in
software engineering, and an exam is generally not required
for someone to call himself or herself a software engineer. It
is not clear that there are any requirements at all that go with
the title. What sort of training does a software engineering
educator need? Many people teaching software engineering
courses have a computer science degree, which presumably
prepares them to teach computer science fundamentals, but
they lack real engineering experience. In many cases,
software engineering faculty and researchers have never
themselves engineered software or specified, designed,
tested or assessed any real software systems. Therefore, the
educators and researchers are talking about how they
imagine people engineer software, and what they believe the
significant problems are, or what they have learned by
reading papers written by researchers without firsthand
experience. And so students are learning from people who
may be very smart and knowledgeable about theory, but
without any real pragmatic experience.

Therefore, it’s important to consider how to assure that our
software engineering faculty is qualified to actually teach
more than foundational courses in the field. One possible
solution is for funding agencies to offer summer or even
year long positions for software engineering faculty to work
at industrial development and testing organizations. The
companies will probably gain very little immediate, concrete
benefit from such visitors, and that is why funding agencies
should underwrite their expenses. We are not speaking about
a professor spending the summer or a sabbatical working in
an industry research lab that seldom involves really learning
how practitioners specify, design, build or test software,
since in many industry labs, researchers are just as far
removed from practitioners as academics are The Big
Picture and How to Get There In the future we will see more
and more embedded software systems, increasingly larger
systems of systems, systems that require synchronization
with other systems, systems of mobile devices, and safety
critical systems that control all sorts of medical devices and
procedures. Since these systems are embedded and depend
on other systems, and do not run on devices that look like
computers, and are not necessarily directly responding to
stimuli controlled by the end user, new ways of testing them
need to be developed. This is a significant research
challenge.

In most engineering fields, systems are specified using
engineering models, which every engineer of the relevant
type has been taught to create and understand. That is
definitely not the case with software engineers, and
modeling needs to be included as a standard tool or skill that
every software engineer routinely learns as part of their
education. In addition, since embedded software systems are
increasingly common and widespread, software engineers
need to learn how to simulate systems.

Simulation is a standard tool in many other engineering
disciplines, but it is rarely taught to software engineering
students. If you are testing a component of a larger system

Paper ID: NOV152722 319

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 5 Issue 1, January 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

that has not yet been built, the only alternative might be to
test it by doing simulations. Other circumstances under
which dynamic testing cannot be done at a particular stage
of development includes software systems embedded in a
device that might have disastrous safety consequences if the
software were to fail. This might include things like software
embedded in medical devices or airplanes. It might be
considered too risky to dynamically test the system until it
has been compellingly shown to function properly, and the
most compelling evidence might come from simulations.
While simulation is not a substitute for significant dynamic
Testing, for example it certainly does offer the possibility of
providing evidence of potential flaws in the system before
the airplane is ready to fly.

3. Conclusion

Perceptive individuals have called for more attention to
engineering principles and sounder education for software
engineers for many years .I have tried to offer some concrete
suggestions for how we might improve software engineering
education, by identifying a number of skills that every
software engineering student and faculty should have
learned, as well as hands-on training that they should have
had. I have also pointed out the following areas that the
research community needs to focus on to meet the demands
of the types of systems that are being built today and will
increasingly be built in the future.
 Testing embedded systems
 Testing properties other than functionality, including

performance, safety and security
 Simulation
 Industrial grade empirical studies
 Easy-to-use tools that implement testing techniques

References

[1] Boehm, B. and Port, D., Educating software engineering

students to manage risk, Proc. Int. Confon Software
Engineering , 2001.

[2] Ludewig, J., Software Engineering in the year 2000
minus and plus ten, in R. Wilhelm (ed.) Berlin,
Heidelberg, 2001, pp. 102 - 111.

[3] D. Parnas, Software Engineering: An Unconsummated
Marriage, CACM , Vol. 40, No. 9 (Sept. 1997), p. 128

Paper ID: NOV152722 320

