Sum of Orthogonal Bimatrices in C_{nxn}

S. Jothivasan

Research Scholar, Ramanujan Research Centre, PG and Research Department of mathematics, Govt. Arts College (Autonomous), Kumbakonam, Tamilnadu, India.

Abstract: Let $F \in \{R, C, H\}$. Let $\mathcal{U}_{n \times n}$ be the set of unitary bimatrics in $F_{n \times n}$, and let $O_{n \times n}$ be the set of orthogonal bimatrices in $F_{n \times n}$. Suppose $n \ge 2$, we show that every $A_B \in F_{n \times n}$ can be written as a sum of bimatrices in $\mathcal{U}_{n \times n}$ and of bimatrices in $O_{n \times n}$. let $A_B \in F_{n \times n}$ be given that and let $k \ge 2$ be the least integer that is a least upper bound of the singular values of A_B . When F=C, we show that A_B can be written as a sum of k bimatrices from $\mathcal{U}_{n\times n}$.

Keywords: Orthogonal matrix, bimatrix, orthogonal bimatrix, unitary bimatrix, sum of orthogonal bimatrices, sum of unitary bimatrices.

AMS classification: 15A09, 15A15, 15A57.

1. Introduction

Matrices provide a very powerful tool for dealing with linear models. Bimatrices are still a powerful and an advanced tool which can handle over one linear model at a time. Bimatrices are useful when time bound comparisons are needed in the analysis of a model. Bimatrices are of several types. We denote the space of nxn complex matrices by \mathcal{C}_{nxn} . For $A \in \mathcal{C}_{nxn}$, A^T, A^{-1}, A^{\dagger} and det (A) denote transpose, inverse, Moore-Penrose inverse and determinant of A respectively. If $AA^{T} = A^{T}A = I$ then A is an orthogonal matrix, where I is the identity matrix. In this paper we study orthogonal bimatrices as a generalization of orthogonal matrices. Some of the properties of orthogonal matrices are extended to orthogonal bimatrices. Some important results of orthogonal matrices are generalized to orthogonal bimatrices.

2. Basic Definitions and Results

Definition 1.1 [6]

A bimatrix A_{B} is defined as the union of two rectangular array of numbers A_1 and A_2 arranged into rows and columns. It is written as $A_{B} = A_{1} \cup A_{2}$ with $A_{1} \neq A_{2}$ (except zero and unit bimatrices) where,

 a^1

$$A_{1} = \begin{bmatrix} a_{11}^{1} & a_{12}^{1} & \cdots & a_{1n}^{1} \\ a_{21}^{1} & a_{22}^{1} & \cdots & a_{2n}^{1} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}^{1} & a_{m2}^{1} & \cdots & a_{mn}^{1} \end{bmatrix}$$
$$A_{2} = \begin{bmatrix} a_{11}^{2} & a_{12}^{2} & \cdots & a_{2n}^{2} \\ a_{21}^{2} & a_{22}^{2} & \cdots & a_{2n}^{2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}^{2} & a_{m2}^{2} & \cdots & a_{mm}^{2} \end{bmatrix}$$

 a^{1}

and

 $'\cup'$ is just for the notational convenience (symbol) only.

Definition 1.2 [6]

Let $A_{B} = A_{1} \cup A_{2}$ and $C_{B} = C_{1} \cup C_{2}$ be any two $m \ge n$ bimatrices. The sum D_B of the bimatrices A_B and C_B is defined as

$$D_{B} = A_{B} + C_{B} = (A_{1} \cup A_{2}) + (C_{1} \cup C_{2})$$
$$= (A_{1} + C_{1}) \cup (A_{2} + C_{2})$$

Where $A_1 + C_1$ and $A_2 + C_2$ are the usual addition of matrices.

Definition 1.3 [7]

If $A_{\scriptscriptstyle R} = A_{\scriptscriptstyle 1} \cup A_{\scriptscriptstyle 2}$ and $C_{\scriptscriptstyle R} = C_{\scriptscriptstyle 1} \cup C_{\scriptscriptstyle 2}$ be two bimatrices, then A_B and C_B are said to be equal (written as $A_B = C_B$) if and only if A_1 and C_1 are identical and A_2 and C_2 are identical. (That is, $A_1 = C_1$ and $A_2 = C_2$).

Definition 1.4 [7]

Given a bimatrix $A_{\rm B} = A_{\rm I} \cup A_{\rm 2}$ and a scalar λ , the product of λ and A_{B} written as λA_{B} is defined to be

Volume 5 Issue 1, January 2016 www.ijsr.net Licensed Under Creative Commons Attribution CC BY International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

$$\lambda A_{B} = \begin{bmatrix} \lambda a_{11}^{1} & \lambda a_{12}^{1} & \cdots & \lambda a_{1n}^{1} \\ \lambda a_{21}^{1} & \lambda a_{22}^{1} & \cdots & \lambda a_{2n}^{1} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda a_{m1}^{1} & \lambda a_{m2}^{1} & \cdots & \lambda a_{mn}^{1} \end{bmatrix} \cup \begin{bmatrix} \lambda a_{11}^{2} & \lambda a_{12}^{2} & \cdots & \lambda a_{1n}^{2} \\ \lambda a_{21}^{2} & \lambda a_{22}^{2} & \cdots & \lambda a_{2n}^{2} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda a_{m1}^{2} & \lambda a_{m2}^{2} & \cdots & \lambda a_{mn}^{2} \end{bmatrix}$$
$$= (\lambda A_{1} \cup \lambda A_{2}).$$

That is, each element of A_1 and A_2 are multiplied by λ .

Remark 1.5 [7]

If $A_B = A_1 \cup A_2$ be a bimatrix, then we call A_1 and A_2 as the component matrices of the bimatrix A_B .

Definition 1.6 [6]

If $A_B = A_1 \cup A_2$ and $C_B = C_1 \cup C_2$ are both *n* x *n* square bimatrices then, the bimatrix multiplication is defined as, $A_B \times C_B = (A_1C_1) \cup (A_2C_2).$

Definition 1.7 [6]

Let $A_B^{m \times m} = A_1 \cup A_2$ be a *mxm* square bimatrix. We define $I_B^{m \times m} = I^{m \times m} \cup I^{m \times m} = I_1^{m \times m} \cup I_2^{m \times m}$ to be the identity bimatrix.

Definition 1.8 [6]

Let $A_B^{m \times m} = A_1 \cup A_2$ be a square bimatrix, A_B is a symmetric bimatrix if the component matrices A_1 and A_2 are symmetric matrices. i.e, $A_1 = A_1^T$ and $A_2 = A_2^T$.

Definition 1.9 [6]

Let $A_B^{m \times m} = A_1 \cup A_2$ be a *mxm* square bimatrix i.e, A_1 and A_2 are *mxm* square matrices. A skew-symmetric bimatrix is a bimatrix A_B for which $A_B = -A_B^T$, where $-A_B^T = -A_1^T \cup -A_2^T$ i.e, the component matrices A_1 and A_2 are skew-symmetric.

3. Orthogonal and Unitary Bimatrices

Definition 2.1 [5]

A bimatrix
$$A_B = A_1 \cup A_2$$
 is said to be orthogonal bimatrix,
if $A_B A_B^T = A_B^T A_B = I_B$ (or)
 $\left(A_1 A_1^T \cup A_2 A_2^T\right) = \left(A_1^T A_1 \cup A_2^T A_2\right) = I_1 \cup I_2.$
(That is, the component matrices of A_B are orthogonal.)
That is, $A_B^T = A_B^{-1}$ (or) $\left(A_1^T \cup A_2^T\right) = \left(A_1^{-1} \cup A_2^{-1}\right).$

Remark 2.2

Let $A_B = A_1 \cup A_2$ be a orthogonal bimatrix. If A_1 and A_2 are square and posses the same order then A_B is called square orthogonal bimatrix, and if A_1 and A_2 are of different orders then A_B is called mixed square orthogonal bimatrix.

Example 2.3

(1)
$$A_{B} = \frac{1}{\sqrt{6}} \begin{bmatrix} \sqrt{2} & 1 & -\sqrt{3} \\ \sqrt{2} & -2 & 0 \\ \sqrt{2} & 1 & \sqrt{3} \end{bmatrix} \cup \frac{1}{3} \begin{bmatrix} 2 & 2 & 1 \\ -2 & 1 & 2 \\ 1 & -2 & 2 \end{bmatrix}$$

is a square orthogonal bimatrix.

(2)
$$A_{B} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} \cup \begin{bmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ \sin\theta & 0 & -\cos\theta \end{bmatrix}$$

is a mixed square orthogonal bimatrix.

Definition 2.4 [4]

Let $A_B = A_1 \cup A_2$ be an $n \times n$ complex bimatrix. (A bimatrix A_B is said to be complex if it takes entries from the complex field). A_B is called a unitary bimatrix if $A_B A_B^* = A_B^* A_B = I_B$ (or) $\overline{A_B}^T = A_B^{-1}$. That is, $A_1 A_1^* \cup A_2 A_2^* = A_1^* A_1 \cup A_2^* A_2 = I_1 \cup I_2$.

Example 2.5

$$A_{B} = A_{1} \cup A_{2} = \frac{1}{\sqrt{2}} \begin{bmatrix} i & i \\ i & -i \end{bmatrix} \cup \frac{1}{2} \begin{bmatrix} 1+i & -1+i \\ 1+i & 1-i \end{bmatrix}$$
 is a nitary bimatrix

unitary bimatrix.

In this paper, we have determined which bimatrices (if any) in $C_{n \times n}$ can be written as a sum of unitary or orthogonal bimatrices. We let $\mathcal{U}_{n \times n}$ and $O_{n \times n}$ are the set of unitary and orthogonal bimatrices in the complex field. We begin with the following observation.

Let *n* be a given positive integer. Let $G \subset F_{n \times n}$ be a group under multiplication. Then $A_B \in F_{n \times n}$ can be written as a sum of bimatrices in G if and only if for every $Q_B, P_B \in G$, the bimatrix $Q_B A_B P_B$ can be written as a sum of bimatrices in G. Notice that both $\mathcal{U}_{n \times n}$ and $O_{n \times n}$ are groups under multiplication.

Let $\alpha_1, \alpha_2 \in F$ be given. Then lemma 2.6 guarantees that for each $Q_{\scriptscriptstyle B} \in G$, we have that $\alpha_1 Q_1 \cup \alpha_2 Q_2$ can be written as a sum of bimatrices from G if and only if $\alpha_1 I_1 \cup \alpha_2 I_2$ can be written as a sum of bimatrices from G.

Lemma 2.7

Let $n \ge 2$ be a given integer. Let $G \subset F_{n \times n}$ be a group under multiplication. Suppose that G contains $K_B \equiv diag(1, -1, ..., -1)$ and the permutation bimatrices. Then every $A_B \in F_{n \times n}$ can be written as a sum of bimatrices in G if and only if for each $\alpha_1, \alpha_2 \in F$, $\alpha_1 I_1 \cup \alpha_2 I_2$ can be written as a sum of bimatrices from G.

4. Sum of orthogonal bimatrices in C_{nxn}

The only bimatrices in the set of all orthogonal bimatrices of order 1 are ±1. Hence, not every element of $F_{1\times 1}$ can be written as a sum of elements in the set of all orthogonal bimatrices of order 1. In fact, only the integers can be written as a sum of elements of the set of all orthogonal bimatrices of order 1.

Notice that $\mathcal{U}_1 = \left\{ e^{i\theta_1}; \theta_1 \in R \right\} \cup \left\{ e^{i\theta_2}; \theta_2 \in R \right\}.$

for

each

Set

We

show

that

 $(A_1^k \cup A_2^k) = (C_1^k \cup C_2^k).$

$$C_{B_2} = \left(C_1^{II} \cup C_2^{II}\right) \equiv \left\{e^{i\theta_1} + e^{i\beta_1}; \theta_1, \beta_1 \in R\right\} \cup \left\{e^{i\theta_2} + e^{i\beta_2}; \theta_2, \beta_2 \in R\right\}.$$

If
$$\theta_1, \theta_2, \beta_1, \beta_2 \in K$$
 are given, then
 $|e^{i\theta_1} + e^{i\beta_1}| \leq 2$ and $|e^{i\theta_2} + e^{i\beta_2}| \leq 2$.
Hence, $(C_1^{II} \cup C_2^{II}) \subset (A_1^{II} \cup A_2^{II}) \equiv \{Z_1 \in C; |Z_1| \leq 2\} \cup \{Z_2 \in C; |Z_2| \leq 2\}$
We show that $(A_1^{II} \cup A_2^{II}) \subset (C_1^{II} \cup C_2^{II})$. Let
 $0 \leq r_1 \leq 2$ and $0 \leq r_2 \leq 2$ are given.
Set $\beta_1 = -\theta_1$, $\beta_2 = -\theta_2$ and Choose θ_1 and θ_2 so
that, $2 \cos \theta_1 = r_1$ and $2\cos \theta_2 = r_2$. Then
 $e^{i\theta_1} + e^{-i\theta_1} = 2\cos \theta_1 = r_1$ and $e^{i\theta_2} + e^{-i\theta_2} = 2\cos \theta_2 = r_2$.
If $z_1 = r_1 e^{i\delta_1}$ and $z_2 = r_2 e^{i\delta_2}$, then choose
 $\beta_1 = -\theta_1 + 2\delta_1; \beta_2 = -\theta_2 + 2\delta_2$, and choose
 θ_1, θ_2 so that $2\cos(\theta_1 - \delta_1) = r_1$ and
 $2\cos(\theta_2 - \delta_2) = r_2$.
Let $k \geq 2$ be an integer.
Set

$$C_{B_k} = \left(C_1^k \cup C_2^k\right) \equiv \left\{\sum_{j=1}^k e^{i\theta_j^1}; \theta_j^1 \in R \text{ for } j = 1, \dots, k\right\}$$

$$\cup \left\{ \sum_{j=1}^{k} e^{i\theta_{j}^{2}}; \theta_{j}^{2} \in R \text{ for } j = 1, ..., k \right\}$$

and

$$A_{B_{k}} = \left(A_{1}^{k} \cup A_{2}^{k}\right) \equiv \left\{z_{1} \in C; |z_{1}| \leq k\right\} \cup \left\{z_{2} \in C; |z_{2}| \leq k\right\}.$$

for each k, we have $e^{i(\theta_{1}^{1} - \beta_{1})} + ... + e^{i(\theta_{k}^{1} - \beta_{1})} = r_{1}; e^{i(\theta_{1}^{2} - \beta_{2})} + ... + e^{i(\theta_{k}^{2} - \beta_{2})} = r_{2}$

First, notice that for each *k*, we $(C_1^k \cup C_2^k) \subset (A_1^k \cup A_2^k)$. We now show that Hence, $(z_1 = r_1 e^{i\beta_1}; z_2 = r_2 e^{i\beta_2}) \in (C_1^k \cup C_2^k)$ if and only $(A_1^k \cup A_2^k) \subset (C_1^k \cup C_2^k). \quad \text{If} \quad z_1 = r_1 e^{i\beta_1}; \ z_2 = r_2 e^{i\beta_2} \quad \text{if} \quad r_1, r_2 \in (C_1^k \cup C_2^k). \text{ For } (\theta_1^1, \dots, \theta_k^1; \theta_1^2, \dots, \theta_k^2) \in \mathbb{R},$ with $r_1, r_2, \beta_1, \beta_2 \in R$ and $r_1, r_2 \ge 0$, then $e^{i\theta_1^1} + e^{i\theta_2^1} + \dots + e^{i\theta_k^1} = r_i e^{i\beta_1}$ $e^{i\theta_1^2} + e^{i\theta_2^2} + \dots + e^{i\theta_k^2} = r_2 e^{i\beta_2}$ if and only if

 $f_k^1(\theta_1^1,...,\theta_k^1) \equiv e^{i\theta_1^1} + ... + e^{i\theta_k^1};$ set $f_k^2(\theta_1^2,...,\theta_k^2) \equiv e^{i\theta_1^2} + ... + e^{i\theta_k^2}.$

(1)

Volume 5 Issue 1, January 2016 www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

397

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

The case k = 2 has already been shown. Let k = 3, and suppose $0 \le r_1 \le 3; 0 \le r_2 \le 3$ Set $(\theta_3^1, \theta_3^2) = 0$ and set $\theta_1^1 = \theta_2^1 = -\theta_2^1$ and $\theta_1^2 = \theta_2^2 = -\theta_2^2$. Then $f_3^1(\theta_1^1, \theta_2^1, \theta_3^1) = 1 + 2Cos \ \theta_1;$ $f_3^2(\theta_1^2, \theta_2^2, \theta_3^2) = 1 + 2Cos \ \theta_2$, and (θ_1, θ_2) may be $0 \le r_1 \equiv 1 + 2Cos \ \theta_1 \le 3; \ 0 \le r_2 \equiv 1 + 2Cos \ \theta_2 \le 3.$ We use mathematical induction to show the general case. The hase cases k = 2 and k = 3 have already been shown. Assume that k > 3and suppose that $(C_1^k \cup C_2^k) = (A_1^k \cup A_2^k).$ Consider $f_{k+1}^{1}(\theta_{1}^{1},...,\theta_{k}^{1},\theta_{k+1}^{1}) \equiv e^{i\theta_{1}^{1}} + ... + e^{i\theta_{k}^{1}} + e^{i\theta_{k+1}^{1}};$ $f_{k+1}^{2} \left(\theta_{1}^{2}, \dots, \theta_{k}^{2}, \theta_{k+1}^{2} \right) \equiv e^{i\theta_{1}^{2}} + \dots + e^{i\theta_{k}^{2}} + e^{i\theta_{k+1}^{2}}.$ Let $z_1 = r_1 e^{i\beta_1}$ and $z_2 = r_2 e^{i\beta_2}$ are given with $0 \le r_1 \le k + 1, 0 \le r_2 \le k + 1$. We show that

 $r_1, r_2 \in (C_1^{k+1} \cup C_2^{k+1}).$ First, we show that $(A_1^{II} \cup A_2^{II}) \subseteq (C_1^{k+1} \cup C_2^{k+1})$. If k $\theta_1^2 = \ldots = \theta_1^2 = \pi.$ Then

$$f_{k+1}^{1}\left(\theta_{1}^{1},...,\theta_{k}^{1},\theta_{k+1}^{1}\right) = e^{i\theta_{1}^{1}} + e^{i\theta_{2}^{1}};$$

$$f_{k+1}^{2}\left(\theta_{1}^{2},...,\theta_{k}^{2},\theta_{k+1}^{2}\right) = e^{i\theta_{1}^{2}} + e^{i\theta_{2}^{2}}.$$

If k is odd, choose $\theta_{4}^{1} = ... = \theta_{k-1}^{1} = 0; \ \theta_{4}^{2} = ... = \theta_{k-1}^{2} = 0$ and $\theta_5^1 = \ldots = \theta_L^1 = \pi;$ $\theta_5^2 = \ldots = \theta_L^2 = \pi.$ Then $f_{k+1}^{1}(\theta_{1}^{1},...,\theta_{k}^{1},\theta_{k+1}^{1}) \equiv e^{i\theta_{1}^{1}} + e^{i\theta_{2}^{1}} + e^{i\theta_{3}^{1}};$ $f_{k+1}^{2}(\theta_{1}^{2},...,\theta_{k}^{2},\theta_{k+1}^{2}) \equiv e^{i\theta_{1}^{2}} + e^{i\theta_{2}^{2}} + e^{i\theta_{3}^{2}}.$

In that $(A_1^{II} \cup A_2^{II}) \subseteq (C_1^{k+1} \cup C_2^{k+1})$. Hence, we may assume further that $r_1, r_2 \ge 1$; that is, we need to show that $(r_1, r_2) \in (C_1^{k+1} \cup C_2^{k+1})$ for $1 \le r_1 \le k + 1; 1 \le r_2 \le k + 1.$

 $\theta_{k+1}^1 = 0; \theta_{k+1}^2 = 0,$ so Choose that $f_{k+1}^{1}(\theta_{1}^{1},...,\theta_{k}^{1},\theta_{k+1}^{1}) = f_{k}^{1}(\theta_{1}^{1},...,\theta_{k}^{1}) + 1;$ is even, choose $\theta_3^1 = ... = \theta_{k-1}^1 = 0;$ $f_{k+1}^2(\theta_1^2, ..., \theta_k^2, \theta_{k+1}^2) = f_k^2(\theta_1^2, ..., \theta_k^2) + 1$. Now, $\theta_3^2 = ... = \theta_k^2, = 0$ and $\theta_3^1 = ... = \theta_{k-1}^1 = 0;$ by our inductive burned. $\theta_3^2 = \dots = \theta_{k-1}^2 = 0$ and $\theta_4^1 = \dots = \theta_k^1 = \pi;$ $f_k^1 (\theta_1^1, \dots, \theta_k^1) + 1 = r_1; f_k^2 (\theta_1^2, \dots, \theta_k^2) + 1 = r_2$ has a solution since $0 \le r_1 - 1 \le k; 0 \le r_2 - 1 \le k$.

Lemma 3.1

Let
$$k \ge 2$$
 be a given integer. Let $(A_1^k \cup A_2^k) \equiv \{z_1 \in C; |z_1| \le k\} \cup \{z_2 \in C; |z_2| \le k\}$ and let $(C_1^k \cup C_2^k) \equiv \{\sum_{j=1}^k e^{i\theta_j^1}; \theta_j^1 \in R \text{ for } j = 1, ..., k\} \cup \{\sum_{j=1}^k e^{i\theta_j^2}; \theta_j^2 \in R \text{ for } j = 1, ..., k\}$ Then $(A_1^k \cup A_2^k) = (C_1^k \cup C_2^k)$.
I. The case $\mathcal{U}_{n \times n}$ $n \ge 2$, Lemma 2.7 guarantees that every

Let $\alpha_1, \alpha_2 \in C$ be given. Then there exist an integer $k \geq 2$ and $\theta_1^1, \theta_2^1, \dots, \theta_k^1; \theta_1^2, \theta_2^2, \dots, \theta_k^2 \in \mathbb{R}$ such that $\alpha_1 = f_k^1(\theta_1^1, ..., \theta_k^1); \alpha_2 = f_k^2(\theta_1^2, ..., \theta_k^2).$ Now,

 $\left(A_{\!_{1}}\cup A_{\!_{2}}
ight)\!\in\! C_{_{\!n imes n}}$ can be written as a sum of matrices in $\mathcal{U}_{n imes n}$. Lemma 3.2

$$\left(\alpha_{1}I_{1}\cup\alpha_{2}I_{2}\right)=\left(f_{k}^{1}\left(\theta_{1}^{1},\ldots,\theta_{k}^{n}\right)\right)$$

$$= \left(e^{i\theta_{1}^{l}} I_{1} + \dots + e^{i\theta_{k}^{l}} I_{1} \right) \cup \left(e^{i\theta_{1}^{2}} I_{2} + \dots + e^{i\theta_{k}^{2}} I_{2} \right)$$

is a sum of matrices in $\mathcal{U}_{n \times n}$.

When n=1, every $\alpha_1, \alpha_2 \in C$ can be written as a sum of elements of the set of all unitary bimatrices of order 1. When

Let n be a given positive integer. Then every $(\theta_k^1)I_1 \cup (f_k^2(\theta_1^2,...,\theta_k^1)I_2) \cup A_2 \in C_{n \times n}$ can be written as a sum of matrices

in $\mathcal{U}_{n\times n}$. Proof

Let $(A_1 \cup A_2) \in C_{n \times n}$ be given. We look at the number of matrices that make up the sum $(A_1 \cup A_2)$.

Volume 5 Issue 1, January 2016 www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Let $\alpha_1, \alpha_2 \in C$ be given. If $|\alpha_1|, |\alpha_2| \leq k$ for some positive integer k, then $(\alpha_1, \alpha_2) \in (A_1^k \cup A_2^k)$. Moreover, $(\alpha_1, \alpha_2) \in (A_1^m \cup A_2^m)$ for every integer $m \geq k$.

For any such *m*, Lemma 3.1 guarantees that there exist $\theta_1^1, \dots, \theta_m^1; \ \theta_1^2, \dots, \theta_m^2 \in \mathbb{R}$ such that $\alpha_1 = e^{i\theta_1^1} + \dots + e^{i\theta_m^1}; \ \alpha_2 = e^{i\theta_1^2} + \dots + e^{i\theta_m^2}.$

However, if $|\alpha_1|, |\alpha_2| < k$ then $\alpha_1, \alpha_2 \notin (A_1^k \cup A_2^k)$ and α_1, α_2 cannot be written as a sum of k elements of $\mathcal{U}_1(C)$.

Write $(A_1 \cup A_2) = (U_1 \cup U_2)(\Sigma_1 \cup \Sigma_2)(V_1 \cup V_2)$ where $(U_1 \cup U_2), (V_1 \cup V_2) \in C_{n \times n}$ are unitary bimatrices and

$$\begin{split} \Sigma_{1} &= diag_{B} \left(\sigma_{1}^{1},...,\sigma_{n}^{1}\right) & \text{with} \\ \sigma_{1}^{1} &\geq ... \geq \sigma_{n}^{1} \geq 0; \\ \Sigma_{2} &= diag_{B} \left(\sigma_{1}^{2},...,\sigma_{n}^{2}\right) & \text{with} \\ \sigma_{1}^{2} &\geq ... \geq \sigma_{n}^{2} \geq 0. \end{split}$$

Let k be the least integer such that $\sigma_1^1, \sigma_1^2 \leq k$. Suppose that $k \geq 2$. Then for each l, we have $\sigma_l^1, \sigma_l^2 \in (A_1^k \cup A_2^k)$. Moreover, $\sigma_1^1, \sigma_1^2 \notin (A_1^{k-1} \cup A_2^{k-1})$.

Hence, $(A_1 \cup A_2)$ cannot be written as a sum of *k*-1 unitary bimatrices. However, for each *l*, we have $\sigma_l^1 = e^{i\theta_{l1}^1} + \ldots + e^{i\theta_{lk}^2}; \ \sigma_l^2 = e^{i\theta_{l1}^2} + \ldots + e^{i\theta_{lk}^2},$ where each $(\theta_{l1}^1, \ldots, \theta_{lk}^1); (\theta_{l1}^2, \ldots, \theta_{lk}^2) \in R.$

II. The case $O_{n \times n}$ Let n=2. Let $\alpha_1, \alpha_2, \beta_1, \beta_2 \in C$ be given.

Set
$$(A_1(\alpha_1, \beta_1) \cup A_2(\alpha_2, \beta_2)) \equiv \begin{bmatrix} \alpha_1 & \beta_1 \\ -\beta_1 & \alpha_1 \end{bmatrix} \cup \begin{bmatrix} \alpha_2 & \beta_2 \\ -\beta_2 & \alpha_2 \end{bmatrix}$$
 (2)
Choose β_1, β_2 such that $\alpha_1^2 + \beta_1^2 = 1; \alpha_2^2 + \beta_2^2 = 1$

For each t = 1, ..., k, set $(U_1^t \cup U_2^t) = diag_B(e^{i\theta_{1t}^1}, ..., e^{i\theta_{nt}^1}) \cup diag_B(e^{i\theta_{1t}^2}, ..., e^{i\theta_{nt}^2})$. Then $(U_1^t \cup U_2^t) \in C_{n \times n}$ is unitary bimatrix and $\sum_{t=1}^k (U_1^t \cup U_2^t) = (\Sigma_1 \cup \Sigma_2)$. Hence, $(A_1 \cup A_2)$ can be written as a sum of k unitary bimatrices.

Suppose that k=1. If $\sigma_n^1 = 1$; $\sigma_n^2 = 1$, Then $(\Sigma_1 \cup \Sigma_2) = (I_1 \cup I_2)$ and $(A_1 \cup A_2)$ is unitary bimatrix. If $\sigma_n^1 \neq 1$; $\sigma_n^2 \neq 1$, then for each l, we have $\sigma_l^1, \sigma_l^2 \in (A_1^H \cup A_2^H)$, and $(A_1 \cup A_2)$ can be

written as a sum of two unitary bimatrices.

Theorem 3.3

Let $(A_1 \cup A_2) \in C_{n \times n}$ be given. Let k be the least (positive) integer so that there exist $(U_1^1 \cup U_2^1), (U_1^2 \cup U_2^2), ..., (U_1^k \cup U_2^k) \in \mathcal{U}_{n \times n}$ satisfying $(U_1^1 \cup U_2^1) + ... + (U_1^k \cup U_2^k) = (A_1 \cup A_2).$

1. If $A_1 \cup A_2$ is unitary bimatrix, then k=1.

2. If $A_1 \cup A_2$ is not unitary bimatrix and $\sigma_1^1(A_1) \cup \sigma_1^2(A_2) \le 2$ then k=2. 3. If $m \ge 2$ is an integer such that $m < \sigma_1^1(A_1) \cup \sigma_1^2(A_2) \le m + 1$ then k = m + 1. positive integers $m \ge k$, For we have $(A_1^k \cup A_2^k) \subseteq (A_1^m \cup A_2^m)$. Hence, every $(U_1 \cup U_2) \in \mathcal{U}_{n \times n}$ can be written as a sum of two or more elements of $\mathcal{U}_{n \times n}$.

It follows that every $(A_1 \cup A_2) \in C_{n \times n}$ that can be written as a sum of *k* elements of $\mathcal{U}_{n \times n}$ can be written as a sum of m elements of $\mathcal{U}_{n \times n}$.

and notice that

$$\begin{pmatrix} A_1(\pm\alpha_1,\pm\beta_1)\cup A_2(\pm\alpha_2,\pm\beta_2) \end{pmatrix} \in O_{2\times 2}$$

Set $\begin{pmatrix} A_1^I\cup A_2^I \end{pmatrix} \equiv \begin{pmatrix} A_1(\alpha_1,\beta_1)\cup A_2(\alpha_2,\beta_2) \end{pmatrix}$ and

$$\left(A_1^{II} \cup A_2^{II}\right) \equiv \left(A_1\left(\alpha_1, -\beta_1\right) \cup A_2\left(\alpha_2, -\beta_2\right)\right)$$

Then

$$(A_1^I \cup A_2^I) + (A_1^{II} \cup A_2^{II}) = 2 [\alpha_1 I_1^{II} \cup \alpha_2 I_2^{II}].$$

Lemma 2.7 guarantees that every $(A_1 \cup A_2) \in C_{2\times 2}$ can

be written as a sum of bimatrices from $O_{2\times 2}$.

We look at the case when n=3. Let $\alpha_1, \alpha_2, \beta_1, \beta_2 \in F$ be given. Set

$$\begin{bmatrix} B_{1}(\alpha_{1},\beta_{1}) \cup B_{2}(\alpha_{2},\beta_{2}) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \alpha_{1} & \beta_{1} \\ 0 & -\beta_{1} & \alpha_{1} \end{bmatrix} \cup \begin{bmatrix} 1 & 0 & 0 \\ 0 & \alpha_{2} & \beta_{2} \\ 0 & -\beta_{2} & \alpha_{2} \end{bmatrix},$$
(3)
set $\begin{bmatrix} C_{1}(\alpha_{1},\beta_{1}) \cup C_{2}(\alpha_{2},\beta_{2}) \end{bmatrix} = \begin{bmatrix} \alpha_{1} & 0 & \beta_{1} \\ 0 & 1 & 0 \\ -\beta_{1} & 0 & \alpha_{1} \end{bmatrix} \cup \begin{bmatrix} \alpha_{2} & 0 & \beta_{2} \\ 0 & 1 & 0 \\ -\beta_{2} & 0 & \alpha_{2} \end{bmatrix}$ (4)
and set $\begin{bmatrix} D_{1}(\alpha_{1},\beta_{1}) \cup D_{2}(\alpha_{2},\beta_{2}) \end{bmatrix} = \begin{bmatrix} \alpha_{1} & \beta_{1} & 0 \\ -\beta_{1} & \alpha_{1} & 0 \\ 0 & 0 & 1 \end{bmatrix} \cup \begin{bmatrix} \alpha_{2} & \beta_{2} & 0 \\ -\beta_{2} & \alpha_{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \cup \begin{bmatrix} \alpha_{2} & \beta_{2} & 0 \\ -\beta_{2} & \alpha_{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$ (5)

Choose
$$\beta_1, \beta_2$$
 so that $\alpha_1^2 + \beta_1^2 = 1; \ \alpha_2^2 + \beta_2^2 = 1.$
Then $\begin{bmatrix} B_1(\pm \alpha_1, \pm \beta_1) \cup B_2(\pm \alpha_2, \pm \beta_2) \end{bmatrix}, \begin{bmatrix} C_1(\pm \alpha_1, \pm \beta_1) \cup C_2(\pm \alpha_2, \pm \beta_2) \end{bmatrix}, \text{ and } \begin{bmatrix} D_1(\pm \alpha_1, \pm \beta_1) \cup D_2(\pm \alpha_2, \pm \beta_2) \end{bmatrix}, \text{ are all elements of } O_{3\times 3}$

$$\begin{pmatrix} B_1^I \cup B_2^I \end{pmatrix} \equiv \begin{bmatrix} B_1(\alpha_1, \beta_1) \cup B_2(\alpha_2, \beta_2) \end{bmatrix}, \begin{pmatrix} B_1^{II} \cup B_2^{II} \end{pmatrix} \equiv \begin{bmatrix} B_1(-\alpha_1, \beta_1) \cup B_2(-\alpha_2, \beta_2) \end{bmatrix}, \begin{pmatrix} C_1^I \cup C_2^I \end{pmatrix} \equiv \begin{bmatrix} C_1(\alpha_1, \beta_1) \cup C_2(\alpha_2, \beta_2) \end{bmatrix}, \begin{pmatrix} C_1^{II} \cup C_2^{II} \end{pmatrix} \equiv \begin{bmatrix} C_1(-\alpha_1, \beta_1) \cup C_2(-\alpha_2, \beta_2) \end{bmatrix},$$

$$(D_1^I \cup D_2^I) \equiv [D_1(\alpha_1, \beta_1) \cup D_2(\alpha_2, \beta_2)],$$

And

$$\begin{pmatrix} D_1^{II} \cup D_2^{II} \end{pmatrix} \equiv \begin{bmatrix} D_1(-\alpha_1, \beta_1) \cup D_2(-\alpha_2, \beta_2) \end{bmatrix}.$$

Then,

$$\begin{pmatrix} B_1^{I} \cup B_2^{I} \end{pmatrix} - \begin{pmatrix} B_1^{II} \cup B_2^{II} \end{pmatrix} + \begin{pmatrix} C_1^{I} \cup C_2^{I} \end{pmatrix} - \begin{pmatrix} C_1^{II} \cup C_2^{II} \end{pmatrix}$$

$$+ \begin{pmatrix} D_1^{I} \cup D_2^{I} \end{pmatrix} - \begin{pmatrix} D_1^{II} \cup D_2^{II} \end{pmatrix} = 2\begin{bmatrix} \alpha_1 I_1^{III} \cup \alpha_2 I_2^{III} \end{bmatrix}$$

Lemma 2.7 now guarantees that every $(A_1 \cup A_2) \in C_{3\times 3}$ can be written as a sum of bimatrices in $O_{3\times 3}$.

Let n=2m be a positive even integer, and let $\delta_1, \delta_2 \in C$ be given. Choose $(A_1^I \cup A_2^I), (A_1^{II} \cup A_2^{II}) \in O_{2\times 2}$ so that $\left[(A_1^I \cup A_2^I) + (A_1^{II} \cup A_2^{II}) \right] = \left[\delta_1 I_1^{II} \cup \delta_2 I_2^{II} \right].$

Set $(E_1^I \cup E_2^I) = (A_1^I \cup A_2^I) \oplus ... \oplus (A_1^I \cup A_2^I) (m \text{ copies})$ and set $(E_1^{II} \cup E_2^{II}) = (A_1^{II} \cup A_2^{II}) \oplus ... \oplus (A_1^{II} \cup A_2^{II}) (m \text{ copies}).$

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Then
$$(E_1^I \cup E_2^I), (E_1^{II} \cup E_2^{II}) \in O_{2m \times 2m}$$
, and $(A_1^I \cup A_2^I), (A_1^{II} \cup A_2^{II}) \in O_{2 \times 2}$ so that $\left[(E_1^I + E_1^{II}) \cup (E_2^I + E_2^{II}) \right] = (\delta_1 I_1^{2m} \cup \delta_2 I_2^{2m})$ $((A_1^I + A_1^{II}) \cup (A_2^I + A_2^{II})) = (\delta_1 I_1^{II} \cup \delta_2 I_2^{II})$.
Let $n = 2m + 1 \ge 3$ be an odd integer, and let $\delta_1, \delta_2 \in C$ be given. Choose Also, choose

$$\left(B_1^I \cup B_2^I\right), \left(B_1^H \cup B_2^H\right), \left(C_1^I \cup C_2^I\right), \left(C_1^H \cup C_2^H\right), \left(D_1^I \cup D_2^I\right), \left(D_1^H \cup D_2^H\right) \in O_{3\times 3}$$

Such that

7

$$\begin{split} \left[\begin{pmatrix} B_{1}^{I} - B_{1}^{II} \end{pmatrix} \cup \begin{pmatrix} B_{2}^{I} - B_{2}^{II} \end{pmatrix} \right] + \left[\begin{pmatrix} C_{1}^{I} - C_{1}^{II} \end{pmatrix} \cup \begin{pmatrix} C_{2}^{I} - C_{2}^{II} \end{pmatrix} \right] + \\ \left[\begin{pmatrix} D_{1}^{I} - D_{1}^{II} \end{pmatrix} \cup \begin{pmatrix} D_{2}^{I} - D_{2}^{II} \end{pmatrix} \right] = \begin{pmatrix} \delta_{1} I_{1}^{III} + \delta_{2} I_{2}^{III} \end{pmatrix} & \text{Let} \quad n \geq \\ \begin{pmatrix} A_{1} \cup A_{2} \end{pmatrix} \\ \text{Set} & \begin{pmatrix} A_{1} \cup A_{2}^{I} \end{pmatrix} \oplus \dots \oplus \begin{pmatrix} A_{1}^{I} \cup A_{2}^{I} \end{pmatrix} \oplus \begin{pmatrix} B_{1}^{I} \cup B_{2}^{I} \end{pmatrix} & \text{from } O_{n \times n} \\ \begin{pmatrix} m - 1 \text{ copies of } \left(A_{1}^{I} \cup A_{2}^{I} \right) \end{bmatrix} \\ \text{Set} & \begin{pmatrix} m - 1 \text{ copies of } \left(A_{1}^{II} \cup A_{2}^{II} \right) \oplus \dots \oplus \begin{pmatrix} A_{1}^{II} \cup A_{2}^{II} \end{pmatrix} \oplus \begin{pmatrix} -B_{1}^{II} \cup -B_{1}^{II} \cup -B_{2}^{II} \end{pmatrix} \\ \begin{pmatrix} m - 1 \text{ copies of } \left(A_{1}^{II} \cup A_{2}^{II} \right) \end{bmatrix} \\ \text{Set} & \text{where } \left(Q_{1} \\ \text{Set} \\ \begin{pmatrix} E_{1}^{III} \cup E_{2}^{III} \end{pmatrix} = \begin{pmatrix} I_{1}^{2m-2} \cup I_{2}^{2m-2} \end{pmatrix} \oplus \begin{pmatrix} C_{1}^{I} \cup C_{2}^{I} \end{pmatrix}, \\ \text{Set} & \text{so that } \begin{pmatrix} A_{1} A_{1}^{T} \cup A_{2}^{III} \end{pmatrix} \\ \begin{pmatrix} E_{1}^{III} \cup E_{2}^{III} \end{pmatrix} = -\begin{pmatrix} I_{1}^{2m-2} \cup I_{2}^{2m-2} \end{pmatrix} \oplus -\begin{pmatrix} C_{1}^{II} \cup C_{2}^{II} \end{pmatrix}, \\ \text{similar.} \\ \begin{pmatrix} A_{1} \cup A_{2}^{III} \end{pmatrix} \end{pmatrix} \\ \end{pmatrix}$$

 $I \setminus I$

Set

$$\begin{pmatrix} E_{1}^{V} \cup E_{2}^{V} \end{pmatrix} = \begin{pmatrix} I_{1}^{2m-2} \cup I_{2}^{2m-2} \end{pmatrix} \oplus \begin{pmatrix} D_{1}^{I} \cup D_{2}^{I} \end{pmatrix},$$

and
$$\begin{pmatrix} E_{1}^{VI} \cup E_{2}^{VI} \end{pmatrix} = -\begin{pmatrix} I_{1}^{2m-2} \cup I_{2}^{2m-2} \end{pmatrix} \oplus -\begin{pmatrix} D_{1}^{II} \cup D_{2}^{II} \end{pmatrix}$$

Then each $(E_1^j \cup E_2^j) \in O_{2m+1}$, and

$$(E_1^I \cup E_2^I) + \dots + (E_1^{VI} \cup E_2^{VI}) = (\delta_1 I_1^{2m+1} \cup \delta_2 I_2^{2m+1})$$

Hence, for every $\alpha_1, \alpha_2 \in C$ and for every integer $n \ge 2, (\alpha_1 I_1 \cup \alpha_2 I_2)$ can be written as a sum of bimatrices from $O_{n \times n}$. Lemma 3.2 guarantees that every $(A_1 \cup A_2) \in C_{n \times n}$ can be written as a sum of bimatrices from $O_{n \times n}$.

Let $n \ge 2$ be a given integer. Then every $(A_1 \cup A_2) \in C_{n \times n}$ can be written as a sum of bimatrices from $O_{n \times n}$.

Proof

Suppose that $\underline{(\boldsymbol{Q}_{1}^{\boldsymbol{A}})} \cup \boldsymbol{A}_{2} = \left[\left(\boldsymbol{Q}_{1}^{\boldsymbol{I}} + \boldsymbol{Q}_{1}^{\boldsymbol{I}} \right) \cup \left(\boldsymbol{Q}_{2}^{\boldsymbol{I}} + \boldsymbol{Q}_{2}^{\boldsymbol{I}} \right) \right],$ where $(Q_1^I \cup Q_2^I), (Q_1^{II} \cup Q_2^{II}) \in O_{n \times n}$. Then that $(A_1A_1^T \cup A_2A_2^T) = (Q_1^T A_1^T \cup Q_2^T A_2^T) (A_1 Q_1^{T} \cup A_2 Q_2^{T}),$ so that $\left(A_1A_1^T \cup A_2A_2^T\right)$ and $\left(A_1^TA_1 \cup A_2^TA_2\right)$ are similar. Theorem 13 of [3] ensures that $(A_1 \cup A_2) + (Q_1S_1 \cup Q_2S_2)$, where $(Q_1 \cup Q_2)$ is orthogonal bimatrix and $(S_1 \cup S_2)$ is symmetric bimatrix (or that $(A_1\cup A_2)$ has a $(Q_1S_1\cup Q_2S_2)$ bidecomposition).

has a $(Q_1S_1 \cup Q_2S_2)$ that Suppose now bidecomposition. Is it true that $(A_1 \cup A_2)$ can be written as a sum of two (complex) orthogonal bimatrices? Take the case n=1,and notice that every $(A_1 \cup A_2) \in C_{n \times n}$ is а scalar and has а

 $(Q_1S_1 \cup Q_2S_2)$ bidecomposition.

However, only the integers can be written as a sum of orthogonal bimatrices in this case.

Lemma 3.5

Let an integer $n \ge 2$ and $0 \ne \alpha_1; 0 \ne \alpha_2 \in \Box$ be given. If $(\alpha_1 I_1 \cup \alpha_2 I_2) = (Q_1 \cup Q_2) + (V_1 \cup V_2)$

is a sum of two bimatrices from $O_{n \times n}$, then there exists a skew-symmetric bimatrix $(D_1 \cup D_2) \in C_{n \times n}$ such that

$$(Q_1 \cup Q_2) = \left(\frac{\alpha_1}{2}I_1 \cup \frac{\alpha_2}{2}I_2\right) + (D_1 \cup D_2),$$

$$(V_1 \cup V_2) = \left(\frac{\alpha_1}{2}I_1 \cup \frac{\alpha_2}{2}I_2\right) - (D_1 \cup D_2),$$

and

$$\left(D_1D_1^T \cup D_2D_2^T\right) = \left\lfloor \left(1 - \frac{\alpha_1^2}{4}\right)I_1 \cup \left(1 - \frac{\alpha_2^2}{4}\right)I_2\right\rfloor$$

Conversely, if there exists a skew-symmetric bimatrix $(D_1 \cup D_2) \in C_{n \times n}$ such that

$$\left(D_1 D_1^T \cup D_2 D_2^T\right) = \left[\left(1 - \frac{\alpha_1^2}{4}\right)I_1 \cup \left(1 - \frac{\alpha_2^2}{4}\right)I_2\right], \text{ then}$$

$$(Q_1 \cup Q_2) \equiv \left(\frac{\alpha_1}{2}I_1 \cup \frac{\alpha_2}{2}I_2\right) + (D_1 \cup D_2)$$
 and

$$(V_1 \cup V_2) \equiv \left(\frac{\alpha_1}{2}I_1 \cup \frac{\alpha_2}{2}I_2\right) - (D_1 \cup D_2) \text{ are in } O_{n \times n}$$

and $(Q_1 \cup Q_2) + (V_1 \cup V_2) = (\alpha_1 I_1 \cup \alpha_2 I_2)$

Proof

Let an integer $n \ge 2$ and $0 \ne \alpha_1; 0 \ne \alpha_2 \in \Box$ be given. Suppose that $(\alpha_1 I_1 \cup \alpha_2 I_2) \in C_{n \times n}$ can be written as a sum of two orthogonal bimatrices, say $(\alpha_1 I_1 \cup \alpha_2 I_2) = (Q_1 \cup Q_2) + (V_1 \cup V_2),$ Write $(Q_1 \cup Q_2) = \begin{bmatrix} a_{ij}^1 \cup a_{ij}^2 \end{bmatrix} = \begin{bmatrix} q_1^1 \dots q_n^1 \end{bmatrix} \cup \begin{bmatrix} q_1^2 \dots q_n^2 \end{bmatrix}$ $(V_1 \cup V_2) = \left\lceil b_{ij}^1 \cup b_{ij}^2 \right\rceil = \left\lceil v_1^1 \dots v_n^1 \right\rceil \cup \left\lceil v_1^2 \dots v_n^2 \right\rceil.$ Then $b_{ii}^1 = -a_{ii}^1$ and $b_{ij}^2 = -a_{ij}^2$ for $i \neq j$. Now, for each i = 1, ..., n, we have

$$\sum_{i=1}^{n} a_{ij}^{1^{2}} = q_{i}^{1^{T}} q_{i}^{1} = 1 = v_{i}^{1^{T}} v_{i}^{1} = \sum_{j=1}^{n} b_{ij}^{1^{2}} = b_{ii}^{1^{2}} + \sum_{j \neq i, j=1}^{n} a_{ij}^{1^{2}}$$

and

$$\sum_{j=1}^{n} a_{ij}^{2^{2}} = q_{i}^{2^{T}} q_{i}^{2} = 1 = v_{i}^{2^{T}} v_{i}^{2} = \sum_{j=1}^{n} b_{ij}^{2^{2}} = b_{ii}^{2^{2}} + \sum_{j \neq i, j=1}^{n} a_{ij}^{2^{2}} \left(Q_{1} \cup Q_{2} \right) \equiv \left(\frac{\alpha_{1}}{2} I_{1} \cup \frac{\alpha_{2}}{2} I_{2} \right) + \left(D_{1} \cup D_{2} \right)$$

Hence,
$$b_{ii}^1 = \pm a_{ii}^1$$
 and $b_{ii}^2 = \pm a_{ii}^2$.
Because $(Q_1 \cup Q_2) + (V_1 \cup V_2) = (\alpha_1 I_1 \cup \alpha_2 I_2)$
and $\alpha_1 \neq 0; \alpha_2 \neq 0$ we have

$$b_{ii}^1 = a_{ii}^1 = \frac{\alpha_1}{2}; b_{ii}^2 = a_{ii}^2 = \frac{\alpha_2}{2}$$
 Set

$$(D_1 \cup D_2) = [d_{ij}^1] \cup [d_{ij}^2],$$
 with

$$d_{ij}^{1} = a_{ij}^{1}; d_{ij}^{2} = a_{ij}^{2}$$
 if $i \neq j$, and $d_{ii}^{1} = 0; d_{ii}^{2} = 0$, so

that
$$(Q_1 \cup Q_2) = \left(\frac{\alpha_1}{2}I_1 \cup \frac{\alpha_2}{2}I_2\right) + (D_1 \cup D_2)$$

and $(V_1 \cup V_2) = \left(\frac{\alpha_1}{2}I_1 \cup \frac{\alpha_2}{2}I_2\right) - (D_1 \cup D_2).$

Now, since $\left(Q_1 \cup Q_2
ight)$ and $\left(V_1 \cup V_2
ight)$ are orthogonal bimatrices, we have

$$\begin{pmatrix} Q_1 Q_1^T \cup Q_2 Q_2^T \end{pmatrix} = \begin{pmatrix} \frac{\alpha_1^2}{4} I_1 \cup \frac{\alpha_2^2}{4} I_2 \end{pmatrix} + \\ \left\lfloor \frac{\alpha_1}{2} (D_1 + D_1^T) \cup \frac{\alpha_2}{2} (D_2 + D_2^T) \right\rfloor + (D_1 D_1^T \cup D_2 D_2^T) \\ = (I_1 \cup I_2)$$

$$(6)$$

And
$$\left(V_1V_1^T \cup V_2V_2^T\right) = \left[\frac{\alpha_1^2}{4}I_1 \cup \frac{\alpha_2^2}{4}I_2\right] - \left[\frac{\alpha_1}{2}\left(D_1 + D_1^T\right) \cup \frac{\alpha_2}{2}\left(D_2 + D_2^T\right)\right] + \left(D_1D_1^T \cup D_2D_2^T\right) = \left(I_1 \cup I_2\right)$$

$$(7)$$

Subtracting equation (7) from equation (6), we get $(D_1 \cup D_2) = -(D_1^T \cup D_2^T)$, so that $(D_1 \cup D_2)$ is skew-symmetric bimatrix. Moreover

 $\left(D_1 D_1^T \cup D_2 D_2^T\right) = \left| \left(1 - \frac{\alpha_1^2}{4}\right) I_1 \cup \left(1 - \frac{\alpha_2^2}{4}\right) I_2 \right|$

For the converse, suppose that $(D_1 \cup D_2) \in C_{n \times n}$ is

$$\sum_{\substack{\neq i, j=1 \\ \neq i, j=1 \\ }} \alpha_{ij} \text{ skew-symmetric bimatrix and satisfies,}} \left(D_1 D_1^T \cup D_2 D_2^T \right) = \left[\left(1 - \frac{\alpha_1^2}{4} \right) I_1 \cup \left(1 - \frac{\alpha_2^2}{4} \right) I_2 \right]$$

Volume 5 Issue 1, January 2016 www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

and set

$$\left(V_1 \cup V_2\right) \equiv \left(\frac{\alpha_1}{2}I_1 \cup \frac{\alpha_2}{2}I_2\right) - \left(D_1 \cup D_2\right)$$

Then one checks that both $(Q_1 \cup Q_2)$ and $(V_1 \cup V_2)$ are orthogonal bimatrices and $[(Q_1 + V_1) \cup (Q_2 + V_2)] = (\alpha_1 I_1 \cup \alpha_2 I_2).$

Remark 3.6

When
$$\alpha_1 = 0$$
; $\alpha_2 = 0$, then for any orthogonal bimatrix
 $(Q_1 \cup Q_2)$, notice that
 $(\alpha_1 I_1 \cup \alpha_2 I_2) = \lfloor (Q_1 + (-Q_1)) \cup (Q_2 + (-Q_2)) \rfloor$
is a sum of two orthogonal bimatrices.

Let
$$n=2$$
 and $\alpha_1 \neq 0$, $\alpha_2 \neq 0$. Set
 $\beta_1 \equiv \sqrt{1 - \frac{\alpha_1^2}{4}}; \beta_2 \equiv \sqrt{1 - \frac{\alpha_2^2}{4}}$ (either square root).
Then $(D_1 \cup D_2) \equiv \begin{bmatrix} 0 & \beta_1 \\ -\beta_1 & 0 \end{bmatrix} \cup \begin{bmatrix} 0 & \beta_2 \\ -\beta_2 & 0 \end{bmatrix}$ is
skew-symmetric bimatrix and satisfies

$$\left(D_1 D_1^T \cup D_2 D_2^T\right) = \left[\left(1 - \frac{\alpha_1^2}{4}\right)I_1 \cup \left(1 - \frac{\alpha_2^2}{4}\right)I_2\right]$$

Lemma 3.5 guarantees that $(\alpha_1 I_1 \cup \alpha_2 I_2)$ can be written as a sum of two orthogonal bimatrices.

If n=2k and $\alpha_1 \neq 0$; $\alpha_2 \neq 0$, set $(E_1 \cup E_2) = (D_1 \cup D_2) \oplus ... \oplus (D_1 \cup D_2)$ (k copies) and notice that $(E_1 \cup E_2)$ is skew-symmetric bimatrix and satisfies

$$\left(E_1E_1^T \cup E_2E_2^T\right) = \left[\left(1 - \frac{\alpha_1^2}{4}\right)I_1 \cup \left(1 - \frac{\alpha_2^2}{4}\right)I_2\right]$$

Hence, if n=2k and if α_1 , α_2 be a scalar, then $(\alpha_1 I_1 \cup \alpha_2 I_2)$ can be written as a sum of two orthogonal bimatrices.

Theorem 3.7

Let *n* be a given positive integer. For each $\alpha_1, \alpha_2 \in \Box$ and each orthogonal bimatrix $(Q_1 \cup Q_2) \in C_{2n}, (\alpha_1 Q_1 \cup \alpha_2 Q_2)$ can be written as a sum of two orthogonal bimatrices.

Remark 3.8

Let an integer $n \ge 2$ be given. If $\alpha_1, \alpha_2 \in \{-2, 0, 2\}$ then one checks that $(\alpha_1 I_1 \cup \alpha_2 I_2) \in C_{n \times n}$ can be written as a sum of two orthogonal bimatrices.

Theorem 3.9

Let $\alpha_1, \alpha_2 \in \Box$ and let a positive integer *n* be given. Then $(\alpha_1 I_1 \cup \alpha_2 I_2) \in C_{2n+1}$ can be written as a sum of two bimatrices from $O_{n \times n}$ if and only if $\alpha_1, \alpha_2 \in \{-2, 0, 2\}$.

Proof

For the forward implication, let $\alpha_1, \alpha_2 \in \Box$ and let a positive integer *n* be given. Suppose that $(\alpha_1 I_1 \cup \alpha_2 I_2) \in C_{2n+1}$ can be written as a sum of two orthogonal bimatrices. Then $\alpha_1 = 0$; $\alpha_2 \neq 0$ (or) $\alpha_1 \neq 0$; $\alpha_2 \neq 0$. If $\alpha_1 = 0$; $\alpha_2 = 0$, then $\alpha_1, \alpha_2 \in \{-2, 0, 2\}$. If $\alpha_1 \neq 0$; $\alpha_2 \neq 0$, we show that $\alpha_1 = \alpha_2 = \pm 2$. Lemma 3.5 guarantees that there exists a skew-symmetric bimatrix $(D_1 \cup D_2) \in C_{n \times n}$ satisfying

$$\left(D_1D_1^T \cup D_2D_2^T\right) = \left[\left(1 - \frac{\alpha_1^2}{4}\right)I_1 \cup \left(1 - \frac{\alpha_2^2}{4}\right)I_2\right].$$

Now, since n is odd, the skew-symmetric bimatrix $(D_1 \cup D_2)$ is singular. Hence, $(D_1 D_1^T \cup D_2 D_2^T)$ is singular and $\alpha_1 = \alpha_2 = \pm 2$.

The backward implication can be show by direct computation.

References

- [1] Horn, R.A. and Johnson, C.R., "Matrix Analysis", Cambridge University Press, New York, 1985.
- [2] Horn, R.A. and Johnson, C.R., "Topics in Matrix Analysis", Cambridge University Press, New York, 1991.
- [3] Horn, R.A. and Merino, D.I., "Contragredient equivalence: a canonical form and some applications", *Linear Algebra Appl.*, 214 (1995), 43-92.
- [4] Ramesh, G. and Maduranthaki, P., "On Unitary Bimatrices", *International Journal of Current Research*, Vol. 6, Issue 09, September 2014, pp. 8395-8407.
- [5] Ramesh, G., Jothivasan, S., Muthugobal, B.K.N. and Surendar, R., "On orthogonal bimatrices", *International*

Volume 5 Issue 1, January 2016 www.ijsr.net

Journal of Applied Research, 1(11); 2015, pp. 1013-1024.

- [6] Vasantha Kandasamy, W. B., Florentin Samarandache and Ilanthendral, K., "Introduction to Bimatrices." 2005.
- [7] Vasantha Kandasamy, W. B., Florentin Samarandache and Ilanthendral, K., "Applications of bimatrices to some Fuzzy and Neutrosophic models." *Hexis, Phonix, Arizone*, 2005.