Influence of Basic Variables on Micronuclei Frequency in General Population of FB & H

Mirela Mačkić-Đurović1, Izeta Aganović-Mušinović1, Orhan Lepara2, Slavka Ibrulj1

Center for genetics, Faculty of medicine, University of Sarajevo, Cekalusa 90, 71000 Sarajevo, B&H
Department of physiology, Faculty of medicine, University of Sarajevo, Cekalusa 90, 71000 Sarajevo, B&H

Abstract: The aim of this study was to determine the value of micronuclei test (MN) on peripheral blood lymphocytes from 200 healthy participants of both gender from general population of FB&H, as well as to determine if the gender, age or smoking habit have influence on MN frequency. Standard protocol for MN test cultivating and micronuclei analyzing from peripheral blood binuclear lymphocytes have been applied. Results have presented that range of single values are from 0 to 8 MN in 1000 binuclear cells. It has been determined that gender, age and smoking habit do have influence on MN frequency, especially on 2 MN frequencies. Females on average do have higher values of all variables of MN test than men. It has been proven that smoking habit do have influence on increased number of cells with 2MN, as well. The results of this study will help to form data base as start for comparative research in future.

Keywords: micronuclei, age, gender, smoking habit

1. Introduction

Biological monitoring or bio-monitoring is an important tool in assessing either professional or environmental exposure to physical and chemical mutagens and/or carcinogens.

It is based on direct measurement of one’s exposure to toxic substances in the environment by measuring the substances or their metabolites in human specimens, before the appearance of malignant and/or other diseases (1). The main postulate of making the effective and efficient use of biomarker knows its values in general, unexposed, healthy population.

Micronucleus test (MN) on peripheral blood lymphocytes is one of the most important methods employed in cytogenetic bio-monitoring. Besides MN-test, important are analyses of structural chromosomal aberrations (CA) and analyses of sister chromatid exchange (SCE), that are applied in observing professionally exposed populations. On molecular level is used comet assay was used for sensitive detection of the level of DNA damage (2). Chromosome aberrations are detected indirectly via chromatin loss from the nucleus leading to MN in the cytoplasm of the cell.

MN are defined as small additional nuclei, that contains DNA fragments, and are formed during cell division from rest of acentric chromosomal fragments or whole chromosome that are left during anaphase of cell cycle. In vitro MN test is reliable test for detection of mutagen factors (3). It is also reliable for genome instability detection that is related with increased risk of malignancies. Strong relationship between increased number of MN and some malignancies as with other disease (diabetes and cardiovascular disease) is evident (4, 5). All that justifies the use of MN test as suitable biomarker for long-term estimation of cytogenetic risk among human population.
2.2. Methods

Standard protocol of MN test for cultivating and micronucleus analyzes from peripheral blood binuclear lymphocytes was applied. Blood samples were coded in accordance to residence place, than they were cultivated on RPMI 1640-PBmax media (Invitrogen) and incubated on 37°C, 72 hours. At 44th hour to cultures was added citohalasin B (Sigma) that disrupts cytoplasm division, but do not block nucleus division, and by that effect promotes appearance of binuclear lymphocytes in which are micronuclei are clearly seen. After incubation, microscopic slides were treated by standard procedure (5). Final slides were died in 10% Giemsa water solution (Sigma) and analyzed by light microscope (1000 x magnitude). Per each sample were analyzed 1000 binuclear lymphocytes and determined total number of MN, number of cells with MN and their distribution (number in cells). Micronuclei were determined in accordance with recommended criteria HUMN (Human Micro Nucleus) (6).

2.3. Statistics

All variables were expressed as the medians and interquartile ranges for continuous data with or without a normal distribution, respectively. Binary logistic regression was used to analyze the influence of gender, age and smoking status on cells with 1 MN or 2 MN and how much is greater risk if any of the variables change. P-value <0.05 was considered statistically significant. All statistical analyses were performed using the computer software Statistical Package for the Social Sciences, version 20.0 (SPSS, Chicago, IL).

3. Results

The study population comprised of 198 participants, 98 males and 100 females divided each in 5 age groups (20-29, 30-39, 40-49, 50-59, and 60-69). In the research category MN median is determined to be (0, 00-2, 00), arith.median 1, 05±0, 07, while the range of single values was from 0 to 8 MN in 1000 binuclear cells. Median for cells with one MN (1 MN) is 2, 00, while fortwo MN (2MN) was 0, 00.

At 21 female and 25 male there were none MN found. Out of total female number (n=100), at 80 of them were found 1 MN. While at the male participants(n=98), 70 of them had 1 MN. 2 MN were found at 22/100 female participants, and only 17/98 at male participants. Correlation among gender and MN, for cells with 1 MN showed rho=0, 135 p=0, 059, while for cells with 2 MN showed rho=0, 170 p=0, 017. From this can be concluded that the correlation among gender and 2 MN is more significant than the one for 1 MN.

When the statistical analyze was performed for smoking status and the number of MN, it showed that smoking status and the number of cells with 1 MN do not correlate rho=0, 013 p=0, 859. Percentage part of 1MN among smokers and non-smokers is equal. While smoking status and the number of cells with 2 MN do correlate rho=0, 146 p=0, 04. Percentage part of 2 MN among smokers is larger, while the percentage part without 2 MN was smaller.

Binary logistic regression was used to analyze the influence of gender, age and smoking status on cells with 1 MN (0-doesn’t have; 1 has).

The age has statistical significance p<0, 0005. For each additional year the risk to have 1MN (odds ratio) is increased for additional 12%, 95% CI (8-16%) (Table 1).

Table 1: Analysis the influence of gender, age and smoking status on cells with 1 MN

<table>
<thead>
<tr>
<th>Step 1(a)</th>
<th>B</th>
<th>S.E</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
<th>95, 0% C.I. for EXP(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lower</td>
</tr>
<tr>
<td>Gender</td>
<td>0.656</td>
<td>0.396</td>
<td>2.474</td>
<td>1</td>
<td>0.097</td>
<td>1,926</td>
<td>0.887</td>
</tr>
<tr>
<td>Age</td>
<td>0.109</td>
<td>0.018</td>
<td>36.305</td>
<td>1</td>
<td>0.000</td>
<td>1.116</td>
<td>1.077</td>
</tr>
<tr>
<td>Smoking Status</td>
<td>0.741</td>
<td>0.421</td>
<td>3.096</td>
<td>1</td>
<td>0.078</td>
<td>2.098</td>
<td>0.919</td>
</tr>
<tr>
<td>Constant</td>
<td>-4.443</td>
<td>0.990</td>
<td>20.159</td>
<td>1</td>
<td>0.000</td>
<td>0.012</td>
<td></td>
</tr>
</tbody>
</table>

a Variable(s) entered on step 1: gender, age, smoking status

Binary logistic regression was used to analyze the influence of gender, age and smoking status on cells with 2MN (0-doesn’t have; 1 has).

The most significant influence is related to age p=0, 0005, follows smoking status p=0, 010 and on the end is gender p=0, 019.

For each additional year of age the risk to have 2 MN is increasing for 6%, 95% CI (3%-10%)

If the non-smoker switch in category of smokers the risk to have 2 MN (odds ratio) is increasing for 2, 8 times, 95% CI (from1 to 6 times).

Females have 3 x larger risk for 2MN, 95% CI (from 1to 6 times) (Table 2).
Table 2: Analysis the influence of gender, age and smoking status on cells with 2MN

<table>
<thead>
<tr>
<th>Step 1(a)</th>
<th>B</th>
<th>S.E.</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
<th>95.0% C.I. for EXP(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gender</td>
<td>.955</td>
<td>.409</td>
<td>5.457</td>
<td>1</td>
<td>.019</td>
<td>2.600</td>
<td>1.166 – 5.795</td>
</tr>
<tr>
<td>age</td>
<td>.062</td>
<td>.016</td>
<td>14.259</td>
<td>1</td>
<td>.000</td>
<td>1.064</td>
<td>1.030 – 1.098</td>
</tr>
<tr>
<td>Smoking status</td>
<td>1.040</td>
<td>.403</td>
<td>6.669</td>
<td>1</td>
<td>.010</td>
<td>2.828</td>
<td>1.285 – 6.225</td>
</tr>
<tr>
<td>Constant</td>
<td>-6.300</td>
<td>1.139</td>
<td>30.614</td>
<td>1</td>
<td>.000</td>
<td>.002</td>
<td></td>
</tr>
</tbody>
</table>

4. Discussion

Micronuclei from healthy population lymphocytes are indicator of genome damage of the single cell accumulated over the years, and the mutations that appears in the first in vitro cell division (1). Today, cytogenetics provides numerous different biomarkers for evaluating chromosomal instability and scoring of MN in lymphocytes is one that draws a lot of interest (7). In this study we have analyzed the level of cytogenetic damage in relatively healthy population from Bosnia and Herzegovina, both genders and within the range of age that is similar to one that is present at professionally exposed and actively working population, that could be controlled using MN-test, in the future. Upon evaluation of 5000 single person data from 23 world data base median value of 6, 5 MN on 1000 cells is established, the results were published in 2001 (8). Study of Milošević-Dorđević (7)on population of 164 participants, determined that the average is (8, 03±0, 42) MNon 1000 cells. Similar results had got Kopjar (1), where analyzing 200 participants he determined the average (6, 90±3, 32) MNon 1000 cells. Contrary to studies from literature, in our research we haven’t count the total number of micronuclei (1+2MN) but they have been presented as number of cells with 1 MN and number of cells with 2 MN. Considering that this study was on healthy participants that hadn’t been exposed to chemical and/or physical agents; and that they didn’t have any acute infections and medical exposures in previous months that could influence the values of cytogenetic analyzes, we have minimized the influence of large number of environmental factors on single MN test values. That is why we have only considered gender, age and smoking status as factors that could have the biggest influence on MN (9, 10).

Our research, as well as others presented that females do have more MN than males, in average (8). According to Fenech (11) the frequency of MN at females is larger 1.2 up to 1, 6times. In this research is presented that females have up to 3 times more cells with 2 MN than males, while this ratio is smaller when 1 MN is considered. One of the reasons why females do have increased frequency of MN is the loose of one of X chromosomes through MN (12, 13). Positive correlation among MN frequency and the age is declare in many studies (14, 15). According to our data, just age had statistical significance when considered 1 MN, as well as considered cells with 2MN. The research showed that for each additional year of age the risk to increase the number of cells with 2 MN is 6%, 95% CI, while that percentage is larger 12% considering cells with 1 MN. Research of Orta shows the increase in the frequency of micronuclei was first observed up to 50 years of age and this increase were followed by a decrease with a further increasing age. Milosevic-Djordjevic(7) showed a decrease of MN frequencies in older aged groups and explained this might be the result of declining in proliferation capacity of cells with an increasing age, as well. Norppa and Falck based upon extensive results analyzes of numerous studies conclude that 30% to 80% of spontaneously arisen MN comprise whole chromosomes. In contrast to sex chromosomes that are more often lost through MN, autosomes in MN appear randomly and cannot be lost only by ageing (17, 18). It’s also been noticed that apparently healthy people could have large number of MN in who is prevalent a specific chromosome (1).

One of the important factors that influence on MN is smoking. According to some studies the smoking is increasing the number of MN (19, 20), part of research did not established such relation (21). Our results presented that there were no statistic significant difference among smokers and MN, if 1 MN cells are considered. However, by use of binary logistic regression it is established that the smoking status influence on increased number of 2 MN cells. Accordingly, if the non-smoker become smoker the chance for 2 MN appearances is increased for 2, 8 times, 95% CI (from 1 to 6 times). Although, the smoking status did not influence on increased MN number in all studies, still should be considered in interpreting MN test analyzes since mutagens and genotoxic compound that arises during smoking of cigarettes could have synergic effects with other environmental agents, which has to be in consideration when questioning professionally exposed population (1). Upon present experience and knowledge, MN test has great advantage over rest of cytogenetic tests in comparing and interpreting analyzes in further research projects, medical diagnostics, control and bio-monitoring of carcinogenesis (23).

5. Conclusion

Results of MN test according to age, gender and smoking status from this study are in accordance with results determined on general healthy population in other laboratories. These results will allow forming research data base for multiple genetic categorization and as the base for comparing and interpreting analyzes in further research projects, medical diagnostics, control and bio-monitoring.
for professionally and environmentally exposed populations and others, where is applied character of this research, as well as the base for further development of laboratory data base.

References


