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Abstract: To understand the cropped areas and assess seasonal water supply for irrigation, remote sensing-based crop classification 
was conducted on satellite imagery data for a pilot area in the Bekaa Valley, Lebanon, during the 2011-2012 growing years. The crop 
classification was achieved using three sets of RapidEye and Landsat7 ETM+ (Enhanced Thematic Mapper Plus) images acquired in 
early (May), mid (July) and late (September) of 2011 and 2012 growing years, respectively. Field crop data were obtained throughout the 
growing seasons in well-defined farmers’ plots before the images acquisitions using a hand-held GPS (Global Positioning System) Unit. 
Ten crop classification profiles and three non-crop profiles were derived for each year from the different class signatures in the pre-
selected bands of the two satellite data. Then, image-derived results were checked for accuracy and used to produce cropping maps 
within GIS (Geographic Information System).These maps enabled us to define different cropping calendars and determine seasonal 
irrigation water requirements (IWRs) at the pilot area level. IWRs were calculated for the surveyed crops as the product of the produced 
cropping maps and net irrigation requirements (NIR)calculated by means of MOPECO(Economic Optimization Model for Irrigation 
Water Management). The results were compared with the Litani River Authority Database (LRAD) and found a good agreement. The 
classification results of RapidEye images (2011) compared quite well in the whole test area with Landsat derived crop maps (2012). The 
overall accuracy of the classification against the field data ranges from 84% to 95%. In addition, crop classification profiles appeared 
consistent with field crop observations, even though a slight variation was noted. The examination of the crop maps showed decreases of 
as much as 7%, 30% and 5%inbareland, woodland and fallow areas, respectively, in 2012 when compared to 2011. Data showed that 
these decreases were reported as increases in wheat (15%), fruit trees (11%), olive (6%), and vineyard (3%). The increased cropland that 
was observed in 2012 was accompanied by an increase in the amount of water allocated from the Canal 900 irrigation conveyor in 
comparison with that of 2011. This study presented an example of remote sensing application for water allocation in agriculture. It was 
concluded that satellite imagery was essential for the definition of the existing cropping patterns in the pilot area and helped better 
estimate seasonal irrigation needs at the scheme level. The proposed methodology may help irrigation deciders to better assess water 
resources with respect to the surveyed cropped areas. 
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1. Introduction 
 
The unavailability of reliable hydrological information about 
the actual water used by crops within irrigation schemes or 
at the whole basin level is a major constraint for sustainable 
management of water resources. Therefore, an estimation of 
the spatially distributed crop areas is important to determine 
crop water requirements and account for water balance at 
different scales of the irrigation scheme. This would 
promote efficient management of the limited water resources 
allocated to agriculture. 
 
Information concerning crop areas distribution and 
variability is becoming increasingly important for effective 
irrigation management. Remote sensing can resolve 
difficulties in determining and classifying crop types and 
acreage within irrigation schemes or at the water basin level. 

Remote sensing imagery obtained during the growing season 
can be used to generate crop maps for both in-season 
irrigation management and off-season cropping 
management. Therefore, remote sensed images can be useful 
for addressing water and other production-related issues 
within the irrigation scheme. On top of that, crop 
classification maps will help managers and decision-makers 
to allocate sufficient water quantities to assure economic 
yields over large geographic areas within the irrigation 
scheme. However, despite the commercial availability and 
increased use of satellite images for crop classification, 
many water utilities managing irrigation schemes are not 
equipped with them. Partly for a lack of financial resources 
and also for a lack of skilled personnel in charge of 
analyzing the images and interpreting them into readable 
maps. 
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Remote sensing, particularly satellite images, offers an 
immense source of data for studying spatial and temporal 
variability of the environmental parameters [1]. Remote 
sensing has shown a great promise in identifying crops 
within an agricultural area or irrigation scheme. The 
resultant information has been found to be useful for 
cropping patterns and allocation of water resources for 
improved crop production [2], [3], [4]. Practical applications 
using airborne or space borne broadband imagery and 
narrowband hyperspectral data have been focused on 
irrigated land identification and land use/land cover 
classification [5], [6], [7], [8], [9], [10], [11], monitoring of 
crop biophysical features and growth performance [12], 
[13], [14], [15], [16], [17], estimation of the crop 
evapotranspiration (ET), water consumption and 
hydrological cycle [18], [19], [20], [21], and biomass 
production and yield [12], [22], [23], [24], [25], [26]. 
 
For water consumption estimation, it is necessary to 
understand where the land is irrigated. This can be achieved 
by classification on satellite and airborne images to 
identifythe irrigated land [5], [9], [11], [26], [27] or by 
simple logical operation in combination of vegetation 
indices such as NDVI with land surface temperature(LST) to 
separate irrigated from non-irrigated land [10]. This 
procedure allows one to understand the distribution of the 
irrigated cropland and other land use pattern, and crop 
performance, in which the results provide useful reference 
for farmers and decision-makers, as water allocation can be 
made based on the balance between the availability of water 
and demand of croplands and other land use [18], [28]. 
 
However, remote sensing processing and interpretation 
should be based on and validated by ground-truth data [15], 
[16], [17]. Thus, land use investigation and soil surveys can 
be very helpful to identifying crop signatures and 
understanding the causes of stresses, for example, disease, 
water-deficiency and soil salinity [16], [17]. Satellite 
imagery in conjunction with ground sampling provides a 
possibility for crop classification in large areas where a little 
or no information is available on crop variability. In 
addition, images acquired on different dates of a cropping 
season will allow us to explore the phonological features and 
changes of crops. 
 

In this study, three RapidEye and three Landsat ETM+ 
satellite images acquired on different dates during the 2011- 
2012 growing years were used for a pilot area in the South 
Bekaa Irrigation Scheme (SBIS) in Lebanon. The aims were 
to analyze information from satellite images of varying 
spatial and temporal resolutions to derive crop maps and 
conduct intra-season and year-to-year monitoring to 
calculate the percentage change of crops in the growing 
years and assess irrigation water requirements at crop and 
the whole irrigation scheme levels for better water allocation 
strategies. 
 
2. Materials and Methods 
 

2.1. Study Area 

 
The study site, a pilot area of 2000 ha, is located in the 
South Bekaa Valley in Lebanon and constitutes a part of the 
South Bekaa Irrigation Scheme (SBIS). The scheme is 
divided into three irrigation districts distributed on the left 
bank (6700 ha), right bank (9200 ha) and northern bank 
(5600 ha) of the Litani River, thus totaling 21500 ha of 
irrigated land (Figure 1a). In 1994 the Litani River Authority 
(LRA), the public water utility responsible for irrigation 
projects along the Litani River Basin, entered a new water 
dispensation, which saw the rehabilitation of existing 
irrigation schemes including SBIS. LRA realized the 
importance of conducting irrigation studies and awarded a 
tender to equip SBIS with a pressurized irrigation network. 
For economic constraints, only a pilot area of 2000 ha is for 
the time being equipped with a pressurized irrigation 
network, while the rest of the scheme is still relying on 
ground wells for irrigation purposes. 
 
The pilot area is situated on the left bank of the Litani River 
and is inserted between the Canal 900 (900 m in average 
above the sea level) and the Litani River (860 m in average 
above the sea level). The pilot area is being supplied with 
water through the Canal 900,which is 18km in length and 
gains water by pumping from the adjacent Qaraoun Lake 
(220 x 106 m3 at full capacity). The irrigation pilot area is 
subdivided into three sub-sectors; K1 (257 ha), K2 (450 ha) 
and Joub Jennine (1293 ha), as indicated in Figure 1b, all 
being equipped with pressurized irrigation networks. 
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Figure 1(a): Geographic location of South Bekaa Irrigation Scheme (21500 ha) and the study test area (2000 ha), (b): 

Geographical location of Canal 900 irrigation conveyor (K1, K2, and Joub Jennine subsectors; AVIS stands for the canal flow 
control system). 

 
The study area is characterized by a Mediterranean semi-arid 
climate, hot and dry from May to September, and cold and 
wet extending for the remainder of the year. Average 
seasonal rainfall is 850 mm, with 95% of the rain recorded 
from October to May and only 5% in April-May, calling 
most often for a drought during this period of the year, 
which coincides with the grain filling stage for wheat. No 
rain record in summer period in history (June - September). 
Generally, rain pattern shows a great year-to-year and 

monthly variability. In the 2010-2011 growing year, rain 
totaled 618 mm with 90% falling between October and 
March and 10% in April-May; whereas in the 2011-2012 
growing year,99% of the total rain (613 mm)fell between 
October and March and only 1% in April-May (Figure 2). 
Average annual potential evapotranspiration (ETp) as 
calculated by the FAO-modified Penman-Monteith equation 
[29] is 1185 mm, justifying the need for irrigation during 
late spring and summer periods. 
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Figure 2: Monthly rain pattern and average air temperature during the surveyed growing years (2010-2011 and 2011-2012) 
compared to the long-run averages (1990-2010) recorded at Kherbet Kanafar Training and Extension Center (SD = Standard 

Deviation). 
 
Temperature is strongly seasonal, with frequent frost periods 
in winter time that markedly limit vegetation development 
and slow wheat growth. Average winter temperature is 
10.8C, but minimum temperatures below -5C are 
common. Average temperature in summer is 25.8C, 
although maximum temperatures over 42C are frequent 
[30]. The 2011-2012 growing year was somehow cooler 
than the 2010-2011 growing year. This was observed by the 
lowest average monthly air temperatures that were recorded 
in 2011-2012 compared to 2010-2011 (Figure 2). Soils in the 
study area are characterized by high clay content and 
relatively low organic matter. Field slope is less than 2% and 
totally available water within the top 100 cm of soil profile 
is 190 mm [30]. 
 

Agricultural land in the study area consists of one-third of 
wheat and other winter cereals, mainly barley, one-third of 
potato and summer vegetables and one third of fruit trees, 
olive and vineyard and land kept as fallow during the in-
between seasons [31]. Wheat receives supplemental 
irrigation in April-May, and often, but not always, followed 
in the same fields by late-sown potato in July. In some years, 
the land cropped with wheat is left as fallow in summer till 
the next wheat sowing time in autumn (October-November). 
Summer vegetables include tomatoes, green beans, 
watermelon, cucumbers and bell pepper. Fruit trees include 
apples and peaches. Table 1 summarizes the different 
cropping patterns that exist in the test area. 
 

Table 1: Different cropping patterns that exist in the irrigated test area 

 
* Means ‘Fallow’ 
 
Usually, data of the irrigated areas per type of crop in the 
South Bekaa Irrigation Scheme can be obtained from the 
Litani River Authority Database (LRAD). However, LRAD 
is not often updated to permit an accurate estimation of crop 
types and acreage. This left farmers exposed to year-to-year 
fluctuations of supply and demand trends, which 
necessitated the requirement for more reliable crop 
production information. The Litani River Authority realized 
the importance of conducting accurate estimates of irrigated 
land per type of crop and conferred to the Litani River Basin 
Management Support Program (LRBMS), a five-year 
development program (2009-2014), the mandate to develop 
and implement a system to estimate cropped areas and 
forecast water allocation at yearly basis from the Canal 900 
irrigation conveyor to irrigate cropland and increase yields 
based on a geographic point sampling frame that is stratified 
according to crop types and areas. A system was designed 
and implemented by LRBMS where satellite imagery was 
used as a first step to stratify the Upper Litani River Basin 
(ULRB) across the Bekaa Valley by separating all non-
agricultural areas from agricultural areas. The agricultural 
areas were further classified into three crop categories: 
winter crops, spring and summer crops and fruit trees. A 
point grid was generated by LRBMS across the Upper Litani 

River Basin, which was used for a geographic systematic 
random selection of points, with an increased sampling rate 
in higher cultivation areas. These selected points were 
surveyed by LRBMS field staff to gather information on 
crop types and areas planted. In combining and integrating 
satellite imagery, remote sensing and GIS, a downscale 
system was developed for the test area of 2000 ha over the 
command area of the Canal 900 irrigation conveyor to 
demonstrate the feasibility of such a method and further 
application within the South Bekaa Irrigation Scheme. 
 

2.2.    Image processing and classification 
 

2.2.1 Satellite imagery and field data 

The selection and acquisition of imagery were important to 
provide a solid foundation for crop classification within the 
test area. For this purpose, three RapidEye and three Landsat 
ETM+ images were acquired over the pilot area in May, July 
and September to detect the vegetation types and assess the 
soil occupancy (Table 2). The dates of images acquisition 
were carefully defined on the basis of crop calendars, 
provided by the Litani River Authority. 
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Table2: Dates of RapidEye and Landsat7ETM+images 
taken in this study. 

Date Sensor 

23 May 2011 RapidEye 
15July 2011 RapidEye 

26 September 2011 RapidEye 
6May 2012 Landsat7ETM+ 
9July 2012 Landsat7ETM+ 

27September 2012 Landsat7ETM+ 
 
RapidEye satellites provide multispectral images, which 
consist of five bands (three in the visible region – blue, 
green and red, one in the red edge and one in the near 
infrared regions). This product has a high spatial resolution 
(5 m), which enables to detect relatively small features on 
the ground. With this fine ground sampling, RapidEye 
constitutes a high potential for the application of agricultural 
monitoring [32]. With this fine ground sampling, RapidEye 
constitutes a high potential for the application of agricultural 
monitoring. However, given that its imagery only contains 
two bands in the infrared range, it restricts the differentiation 
between elements with characteristics that are similar to 
each other. For example, by using RapidEye images we can 
identify small planted areas, but we cannot neither 
distinguish between two types of fruit trees (e.g., apple and 
peach) nor use it for evapotranspiration (ET) estimation 
since there is no thermal band. This product was used in this 
study for the analysis during the 2011 cropping year. 
 
Landsat7ETM+imagesprovide multispectral images that can 
be downloaded for free from the USGS server 
(http://glovis.usgs.gov/). Spectral bands include three in the 
visible range (blue, green, and red),one in the near-infrared, 
two in the mid-infrared, and two in the thermal infrared 
regions, and last, one panchromatic band. This product has a 
relatively lower spatial resolution (15-30 m), which prevents 
us from detecting small areas, but given its wider spectral 
coverage, it enables us to detect more different types [33], 
[34], [35]. This product was used for the analysis during the 
2012 survey year. 
 
RapidEye and Landsat data were considered suitable for this 
study as these satellites were designed mainly for monitoring 
agricultural and natural resources either based on multi-
temporaland time-seriesanalysis to understand land use 
dynamics and biophysical change in time or using 
classification-based techniques to quantify and qualify the 
land cover features of the observation time point [26], [27], 
[32], [36]. In addition, multi-temporal analysis based on 
several image acquisitions can serve to identify different 
croplands and also filter out the temporarily harvested 
agricultural fields or fallows in terms of the phonological 
cycles of crops. Other types of land such as forest, 
woodland, urban areas and water bodies, can be efficiently 
extracted from single RapidEye and Landsat ETM+ images 
by classification or decision-tree techniques. 
 
In order to detect the different crop types and generate a 
signature for each crop type, we conducted pre-image 
acquisition field surveys to observe location and 
performance of different crops using a handheld Geographic 
Position System (GPS) device. In general, it is 
recommended to collect 3-4 field samples per type of crop to 

generate an accurate and comprehensive signature. 
However, as the study area had to be covered by multiple 
images taken at different dates, we decided to take an 
average of eight samples per crop type to guarantee the 
availability of field samples within all of these various 
images. 
 
In this study, thirteen spectral classes including ten crop 
classes and three non-crop classes were defined based on the 
field survey and other ancillary data from the National 
Agricultural Census Database [37]. These data allowed us to 
categorize and identify the following classes of crops: (i) 
wheat, (ii) winter legumes, (iii) potatoes, (iv) summer 
vegetables, and (v) fruit trees. At this point we also made 
decisions on which classes can be grouped together into a 
single land use type. As a result, eight classes out of the ten 
identified agricultural classes were re-assigned to the eight 
major crops in the area (corn, field crops, fruit trees, olive, 
potato, tobacco, vineyard and wheat), while two classes 
were re-assigned to bareland that is uncropped land and land 
kept as fallow in the intra-season periods. Most of the bare 
areas included degraded soils and areas not accessible for 
agriculture. Crops with substantial overlap in the signature 
were grouped in the same spectral class. In the case of fruit 
trees the selected crops were apple and peach, while in the 
case of field crops they were bean, peas, lettuce, onion, and 
tomato. In addition, three classes namely urban, water and 
woodland were retained as non-agriculture classes. For the 
scope of this study, only those classes associated with crops 
were retained for analysis. 
 
2.2.2 Processing methodology 

The methodology used for generating crop coverage during 
the various images dates was the supervised classification of 
multispectral satellite images, which is one of the major 
techniques available in remote sensing [11], [27], [36], [38], 
[39], [40]. By using the supervised classification procedure, 
and selecting the maximum likelihood classifier, a zonal 
majority function can be used to assign a crop class to each 
field boundary polygon based on the raster classification. 
Ferreira et al. (2006) [38] have demonstrated that this 
procedure can give accurate results as per crop identification 
and classification, however, may contain confusion for land 
cover categories which are intergrading in spectral features, 
e.g., from urban to bareland [11]. Certain post-classification 
processing such as visual interpretation and re-allocation of 
the misclassified pixels to their proper classes is necessary 
[11]. Signature files can be generated for each cropland 
taking the phenology of each crop type into consideration. 
 
The supervised classification involves first of all a selection 
and definition of appropriate training samples of particular 
signatures for different types of crop and other land cover. 
These signatures form a solid foundation for the subsequent 
crop classification [41]. The classification can be conducted 
on the whole images including all bands as input, or on a 
reasonable combination of bands, e.g., bands 7, 4 and 1 for 
Landsat TM and ETM+ imagery, because bands 1, 2 and 3 
are correlated with each other and so are bands 5 and 7 [42]. 
To avoid information redundancy in bands and to save 
classification time, we can select one of the three bands in 
the visible region, one in the near infrared (i.e., band 4) and 
one in the shortwave spectral region (band 5 or 7) for this 
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purpose. It is also possible to choose the first three Principal 
Components (PCs), e.g., PC1, PC2 and PC3, to compose the 
most relevant band combination [42] to discriminate 
different crop types in the study area. Generally, the red 
band along with the infrared bands provides the strongest 
contrast in reflectance of vegetation and hence may facilitate 
the crop separation [15], [38]. In addition, the red edge band 
(690-730 nm) allows better estimation of the ground cover 
and chlorophyll content of the vegetation [43], [44], [45]. 
 
By overlapping field samples to the satellite images, the 
spectral signature for each crop type was then calculated 
based on the coincidence of these samples with the various 
available bands. Using the maximum likelihood classifier 
and combining the generated signatures as training areas, it 
was possible to classify the whole pilot site into the defined 
land cover classes. With this classification, images 
underwent a series of enhancement techniques to remove 
noises and cleanup the boundaries between adjacent areas of 
different types, and eventually convert different classes into 
vector polygons for further analysis and mapping. It is 
important to note that this methodology is based on a 
probabilistic approach and has to be repeated several times 
for each image until an accurate result is reached. An 
accurate result is defined as a result that matches 80% or 
more of the field samples [46]. 
 
After the supervised classification procedure, a zonal 
majority function can be applied to assign a crop type to 
each field boundary polygon. This step generated an 
ArcView shape file with a crop type for each field during a 
specific season for the study area, and even for the entire 
province if necessary, providing a basis for various queries 
and analysis. 
 

2.2.3 Statistical Tests 

Intra year and inter year comparisons of mapped irrigated 
areas of the various surveyed crops were made using the 
percent difference (Pd) method [47]. This method is used to 
compare two quantities neither of which is known to be 
correct [48]. Equation 1 was used to calculate the percent 
difference: 

 (1) 

Where A and B are the remotely sensed irrigated areas for a 
given crop class at two different dates. For inter year 
comparisons, „A‟ and „B‟ represent the remotely sensed 
irrigated areas in 2011 and 2012, respectively. For intra year 
comparisons, „A‟ and „B‟ represent the remotely sensed 
irrigated areas of the different crops classes in two 
successive surveyed times: the first is May-July and the 
second July-September. As a result, a positive value 
obtained with equation (1) indicates an increase in the 
irrigated area, while a negative value indicates a decrease in 
the irrigated area. 
 

2.2.4 Accuracy determination 

Each classification test was evaluated in terms of overall 
accuracy (OA) and kappa coefficient, by comparing the 
reference data with the classified images, pixel by pixel [33]. 
Despite the fact that both the OA and Kappa coefficient 
measure the agreement between the classified map and the 
reference data, Kappa is often considered a better indicator 
of classification performance because it excludes chance 
agreement [49]. Gonçalvez et al. (2007) [50] demonstrated 
that overall accuracy and kappa coefficient are common 
statistics used to validate remotely sensed data. In this study, 
we used both indicators to evaluate our classification results. 
 

2.3. Determination of irrigation water requirements 
 
Irrigation water requirements during the 2011-2012 growing 
seasons were estimated using the MOPECO model [51], 
which uses the methodology proposed by Allen et al. (1998) 
[29]. For the daily simulation of the soil-water balance, the 
model requires the reference evapotranspiration (ETo), the 
single crop coefficient (Kc), the group of evapotranspiration, 
the soil properties as water content at field capacity and 
permanent wilting point, the root depth, the effective 
rainfall, and the irrigation schedule. 
 
2.3.1 Effective precipitation 

Effective rainfall (Pe) was estimated by using the USDA 
“curve number 2 methodology” (NRCS, 2004). The curve 
number used was different according to the crop (Table 3), 
while the rest of parameters were: Hydrologic soil group 
“D”; “Good” hydrologic condition; and “Contoured labor” 
(land slope < 2%). 
 

Table 3: Crop parameters used by MOPECO for simulating the irrigation water requirements 

Crop 

Start. 

date 

Harv. 

date 

Curve 

nb 

ET 

Group 
Kc 

(initial)3 
Kc 

(mid)3 
Kc 

(end)3 
Root 

depth3 TU TL Duration (GDD ºC)18 

month month dimensionless dimensionless (m) (ºC) (ºC) 
Kc 

(I) 

Kc 

(II) 

Kc 

(III) 

Kc 

(IV) 

Potato Mar July 83 11 0.45 1.05 0.75 0.6 264 24 170.9 487.1 1076.5 1661.1 
Maize May Sept 83 41 0.30 1.20 0.60 1.7 305 85 189.5 551.7 1149.8 1588.7 
Wheat Nov June 83 31 0.70 1.15 0.40 1.8 4017 66 147.5 537.8 901.6 1359.9 

Tobacco June Sept 83 41 0.35 1.10 1.10 0.6 35 15 196.2 609.7 748.6 875.2 
Olive April Nov 86 41 0.65 0.70 0.70 1.7 4017 3.57 312.1 1931.8 2955.1 3601.6 

Grapes April Sept 86 21 0.30 0.70 0.45 2.0 4017 108 92.7 633.3 1296.6 1638.6 
Apple April Sept 86 31 0.45 0.95 0.70 2.0 369 59 179.6 1009.4 2250.5 2696.1 
Peach April July 86 32 0.45 0.90 0.65 2.0 3510 710 142.5 707.3 1665.9 2100.0 
Bean May July 83 31 0.50 1.05 0.90 0.7 3211 5.112 216.2 674.5 1207.2 1589.7 
Peas Mar July 83 22 0.50 1.15 1.10 1.0 3213 -1.112 308.2 738.4 1370.5 1728.1 

Lettuce April June 84 12 0.70 1.00 0.95 0.5 2214 614 125.7 405.8 590.8 732.8 
Onion April Aug 84 11 0.70 1.05 0.75 0.6 4017 515 105.4 320.0 1322.8 1975.4 

Tomato May Aug 84 21 0.60 1.15 0.70 1.5 3516 7.316 162.6 521.9 1148.5 1622.1 
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Where: Kc (I): Initial; Kc (II); Crop development; Kc (III): 
Mid-season; Kc (IV): Late season; TL: lower threshold 
temperature for development; TU: upper threshold 
temperature at which the rate of development begins to 
decrease; GDD: growing-degree-days; 1 Danuso et al. 
(1995); 2 Based on Doorenbos and Kassam (1979); 3 Allen et 
al. (1998); 4 Montoya (2013); 5 López-Bellido (1991); 6 
Rawson et al. (2007); 7 Bignami et al. (1999); 8 WSU 
(2015); 9 Lachapelle (2012); 10 Marra et al. (2002); 11 
Hernandez-Armenta et al. (1989); 12 Raveneau et al. (2011); 
13 SARE (2012); 14 Brunini et al. (1976); 15 Lancaster et al. 
(1996); 16 Jaworski and Valli (1964); 17 if the crop is not 
affected by TU a value equal to 40ºC was considered, which 
is higher than the maximum temperature in the area; 18 
Lebanese Agricultural Research Institute (LARI). 
 
2.3.2 Reference evapotranspiration 

Reference evapotranspiration (ETo) was calculated using the 
model of FAO modified Penman-Monteith [29] at daily 
bases during the 2011-2012 growing seasons. Average 
monthly values of precipitation, barometric pressure, relative 
humidity, solar radiation, temperature, and wind speed data 
used to calculate reference evapotranspiration were obtained 
from the weather station of Kherbet Kanafar Training and 
Extension Center of Litani River Authority. The FAO 
modified Penman-Monteith model was shown to have a 
large application in arid and sub-humid areas [29]. 
 

2.3.3 Crop evapotranspiration 

Daily ETm is calculated using the equation proposed by 
Doorenbos and Pruitt (1977) [52], which requires values for 
Kc at each growth stage and daily reference 
evapotranspiration (ETo) [29] (Table 3). 

    (2) 

ETm and ETo are expressed in mm day-1 and Kc is 
dimensionless. 
 

2.3.4 Determination of the duration of the crop stages 

The climatic conditions of any particular year may affect the 
duration of days in the phenological stages. Thermal time 
expressed as accumulated growing-degree-days (GDD) is a 
widely used methodology [53]. To obtain the length of each 
growth stage in terms of GDD (Table 3), the double 
triangulation method [54] was used. This methodology 
requires the value of the lower threshold temperature for 
development (TL) and the upper threshold temperature at 
which the rate of development begins to decrease (TU) 
(Table 1). The development stages considered in this study 
were those corresponding to each Kc stage: Kc (I): initial; Kc 
(II): crop development; Kc (III): mid-season; and Kc (IV): 
late season [29]. The length of each stage was determined 
using experimental data conducted on the surveyed crops 
during the period of 1998-2009 at the Department of 
Irrigation and Agro-Meteorology of the Lebanese 
Agriculture Research Institute. 
 

2.3.5 Determination of net irrigation requirements  

Under no deficit irrigation conditions, the amount of 
irrigation water to be supplied to the crop is calculated by 
the model in order to maintain the soil moisture content 
between field capacity and the soil moisture content when 
the crop would be stressed by water deficit. The 

methodology used for determining the daily value of this 
point is described by Danuso et al. (1995) [55] and is based 
on the evapotranspiration group of the crop (Table 3), and 
the Kc and ETo values. 
 
Due to tree crops (grape, olive, apple, and peach) are 
irrigated using drip irrigation systems, a localization 
coefficient was included in the model. The value used by the 
model is the enclosed average of the values calculated by the 
methodologies proposed by Aljibury et al. (1974) [56]; 
Hoare et al. (1974) [57]; Keller and Karmeli (1974) [58]; 
Savva and Frenken (2002) [59]. The frame of plantation and 
the diameter of the top are the required data (Table 4). 

 

Table 4: Localization coefficient (Kl) of tree crops 
Crop Top diameter 

(m) 
Plantationframe 

(m × m) 
Kl 

(dimensionless) 
Olive 3.00 7.0 × 5.0 0.31 

Grapes 0.75 2.8 × 1.4 0.23 
Apple 1.50 3.0 × 3.0 0.31 
Peach 1.00 3.0 × 2.0 0.25 

 

2.3.6 Determination of gross irrigation requirements 

Net irrigation requirements (NIR) calculated by MOPECO 
for each crop and year were translated into gross irrigation 
requirements (GIR), which was obtained by dividing the net 
irrigation requirements (NIR) by irrigation efficiency at unit 
farm level (Eu): 

                (3) 

Eu is the product of the irrigation system efficiency (Eis), 
distribution uniformity (DU) and conveyance efficiency 
(Ec). In the case of sprinkler irrigation, Eu was equal to 0.70 
(87% of irrigation system efficiency, 85% of distribution 
uniformity and 95% of conveyance efficiency), while in the 
case of drip irrigation it was equal to 0.85 (95% of irrigation 
system efficiency, 95% of distribution uniformity and 95% 
of conveyance efficiency) [60], [61], [62], [63]. 
 
Water demand (in m3) per crop was obtained by multiplying 
GIR (in mm) by the area (in hectares) determined for each 
crop by the satellite imagery. Total water demand (in m3) 
within the test area was then obtained by summing up water 
demand of each individual crop and/or group of crops. Since 
“Fruit trees” and “Field crops” categories do not distinguish 
among individual crops, the main crops under these two 
categories were selected for determining NIR and GIR. For 
“Fruit trees” the selected crops were apple and peach, while 
for “Field crops” they were bean, peas, lettuce, onion, and 
tomato (Table 5). The percentage of each single crop within 
these two classes was determined as the ratio of the 
cultivated area of the crop over the total area of the crop 
class, both obtained from the FAOSTAT database for 
Lebanon [64]. 
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Table 5: Percentage of individual crops in the area of “Tree 
crops” and “Field crops” categories 

  Area1(ha) Percentage (%) 

Fruit trees 
Apple 14000 79.3 
Peach 3650 20.7 

Field 
crops 

Bean (green) 2550 17.9 
Peas 1000 7.0 

Lettuce 2800 19.6 
Onion (dry) 3400 23.9 

Tomato 4500 31.6 
1 FAOSTAT/Lebanon (2015). 
 
3. Results and Discussion 
 

3.1. Image Crop Classification 

 
The results of the supervised crop classification in the 
surveyed periods are given in Table6. In order to understand 
the different cropping patterns that may occur in a given 
irrigation scheme, one should know the rotation of crops in 
the same patch of land. Satellite images taken at three 
different times of the growing season allowed us to identify 
twenty-six crop rotation patterns for the nine surveyed 
agricultural classes (corn, fallow, field crops, fruit trees, 
olive, potato, tobacco, vineyard and wheat), in addition to 
one for bareland and three for the non-agricultural classes 
(water, urban and woodland). Total imaged area was 2697.1 
ha in 2011 and 2597.59 ha in 2012 (Table 6). The twenty-six 
crop rotation patterns identified in Table 6 represent the 
different agricultural combinations that may take place in the 
test area in the growing season. For example, early grown 
potato that is sown in March and harvested in July gives two 
different cropping combinations, which are potato-fallow-
fallow (combination 17) and potato-fallow-field crop 
(combination 18). Moreover, late-grown potato can follow 
early-grown potato in the same plot, giving thus other two 
crop rotation patterns, which are potato-potato-corn 
(combination 19) and potato-potato-fallow (combination 
20). 
 
The first results obtained for the test area indicate that both 
agricultural and non-agricultural features can be detected 
with high accuracy. For the test area, Table 6 shows that 
445.30 ha (16.5%) out of 2697.10 ha is non-agricultural land 
in 2011, while it was 455.50 ha (17.5%) out of 2597.59 ha in 
2012. The potentially agricultural land accounts for 83.5% in 
2011 and 82.5% in 2012.Bareland and woodland were 
correctly validated as non-agricultural areas and account for 
14.2% and 3.9%, respectively, in 2011 and 13.7% and 3.1%, 
respectively, in 2012, of the total surveyed area.  
 
By combining and summarizing the imaged crops and their 
cover areas in Table 6, a table containing the total area of 
each crop can be generated for each surveyed period (Table 
7). In 2011, the cultivated areas were 2259.9 ha in May, 
2260.0 ha in July and 2235.5 ha in September, giving thus 
an average of 2251.8 ha, while in 2012 the cultivated areas 
were 2169.8 ha in May, 2122.0 ha in July and 2134.5 ha in 

September, giving an average of 2142.09 ha. When we 
compare the percent difference (Pd) values of the different 
surveyed features during the growing periods, non-
agricultural features (bareland, water, urban and woodland) 
show no or very little change in land cover, while 
agricultural features show significant intra-season changes, 
except for fruit trees, olive and vineyard, where intra-season 
changes were reported null (Table 7). In the case of potato, 
being the most important crop in the study area, the percent 
difference values in May-July were 60.2% and 1.8% in 2011 
and 2012, respectively. Based on Pd values, we found that 
the overall classification for single years 2011 and 2012 was 
not significantly different from each other, but there were 
significant differences for all crop classifications in the 
different periods as shown in the inter-year comparisons in 
Table 7. From this table, a comparison made between years 
leads to observe that the cultivated areas in 2012 decreased 
by 3.0%, 4.8% and 3.4% in May, July and September, 
respectively, compared to the same periods in 2011. An 
average comparison made between the 2011 data versus data 
for the 2012 growing year shows a minor decrease of 3.8% 
of the cultivated land in 2011 compared to 2012 (Table 8). 
In addition, Table 8 demonstrated that average percentage of 
agricultural land over total land was 83.5% in 2011 and 
82.5% in 2012. 
 
In both years, 27% of the surveyed area was land kept as 
fallow, while the percentage of bareland was 17% (Figure 
3). In 2011, field crops occupied 14%, followed by potatoes 
(12%), vineyard (10%), fruit trees (8%), wheat (7%) and 
corn (2%). In 2012, potato occupied 14%, followed by 
vineyard (11%), fruit trees (9%), wheat (9%) and 5% as 
corn, as shown in Figure 3. 
 

 
Figure 3: Comparison of agricultural land use in both 

surveyed years (2011 and 2012). 
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Table 6: Results of the supervised crop classification 
Combination 

Num. 

Set 1 

(May-June) 

Set 2 

(July-Aug) 
Set 3 (Sept-Oct) 

Area (ha) Cover  (%) Area (ha) Cover  (%) 

2011 2012 
1 Bareland Bareland Bareland(1) 382.70 14.19 356.50 13.72 
2 Corn Corn Fallow 3.21 0.12 3.09 0.12 
3 Fallow Corn Fallow 9.61 0.36 9.26 0.36 
4 Fallow Fallow Fallow 146.99 5.45 121.44 4.68 
5 Fallow Fallow Field Crop 40.41 1.50 38.92 1.50 
6 Fallow Field Crop Fallow 36.90 1.37 35.54 1.37 
7 Fallow Field Crop Field Crop 99.93 3.71 96.26 3.71 
8 Fallow Potato Fallow 57.62 2.14 55.49 2.14 
9 Fallow Tobacco Fallow 1.27 0.05 1.23 0.05 
10 Fallow Tobacco Field Crop 4.49 0.17 4.32 0.17 
11 Field Crop Corn Corn 29.25 1.08 28.18 1.08 
12 Field Crop Corn Fallow 7.02 0.26 6.76 0.26 
13 Field Crop Fallow Alfalfa 78.37 2.91 75.49 2.91 
14 Field Crop Fallow Fallow 128.76 4.77 124.00 4.77 
15 Fruit Tree Fruit Tree Fruit Tree 168.58 6.25 190.30 7.33 
16 Olive Olive Olive 70.10 2.60 74.10 2.85 
17 Potato Fallow Fallow 2.42 0.09 2.33 0.09 
18 Potato Fallow Field Crop 2.93 0.11 2.82 0.11 
19 Potato Potato Corn 25.30 0.94 24.37 0.94 
20 Potato Potato Fallow 64.88 2.41 62.48 2.41 
21 Tobacco Tobacco Fallow 4.83 0.18 4.65 0.18 
22 Tobacco Tobacco Field Crop 4.71 0.17 4.54 0.17 
23 Urban Urban Urban(2) 335.20 12.43 368.40 14.18 
24 Vineyard Vineyard Vineyard 236.60 8.77 242.60 9.34 
25 Water Water Water(3) 4.70 0.17 6.40 0.25 
26 Wheat Corn Corn 8.02 0.30 7.72 0.30 
27 Wheat Corn Fallow 54.47 2.02 52.47 2.02 
28 Wheat Fallow Fallow 233.17 8.65 244.65 9.42 
29 Wheat Fallow Potato 349.24 12.95 272.60 10.49 
30 Woodland Woodland Woodland(4) 105.40 3.91 80.70 3.11 

Total surveyed area 2,697.10 100.00 2,597.59 100.00 
Area of agricultural combinations 2251.8 83.48 2142.09 82.46 

Area of non-agricultural combinations 445.30 16.52 455.50 17.54 
(1), (2), (3), (4) are non-agricultural combinations 

 

Table 7: Intra-year and inter-year crop changes in the test area as observed by RapidEye and Landsat7 ETM+during the 2011 
and 2012 growing years, respectively 

Study area 

Class 

Intra-season comparisons (2011) 

(ha) 

Intra-season comparisons (2012) 

(ha) 

Inter-year comparisons 

(%) 

 

MAY JUL SEP MAY-JUL JUL-SEP MAY JUL SEP MAY-
JUL 

JUL-
SEP MAY JUL SEP 

Bareland 382.7 382.7 382.7 0.0 0.0 356.5 356.5 356.5 0.0 0.0 -7.1 -7.1 -7.1 
Corn 3.5 63.5 57.6 178.9 -9.6 0.0 72.2 247.1 200.0 109.5 -200.0 12.9 124.3 

Fallow 418.0 587.7 787.9 33.7 29.1 135.2 678.7 887.0 133.6 26.6 -102.2 14.4 11.8 
Field crops 251.9 138.0 531.0 -58.4 117.5 199.9 96.7 47.2 -69.6 -68.8 -23.0 -35.2 -167.4 
Fruit trees 169.7 169.7 169.7 0.0 0.0 190.3 190.3 190.3 0.0 0.0 11.4 11.4 11.4 

Olive 70.1 70.1 70.1 0.0 0.0 74.1 74.1 74.1 0.0 0.0 5.6 5.6 5.6 
Potato 237.3 596.3 0.0 86.1 -200.0 403.5 410.9 89.8 1.8 -128.3 51.9 -36.8 200.0 

Tobacco 9.1 15.5 0.1 51.6 -197.4 0.1 0.1 0.0 0.0 -200.0 -195.7 -197.4 -200.0 
Vineyard 236.6 236.6 236.6 0.0 0.0 242.6 242.6 242.6 0.0 0.0 2.5 2.5 2.5 

Wheat 481.0 0.1 0.1 -199.9 0.0 567.8 0.1 0.1 -199.9 0.0 16.5 0.0 0.0 
Cultivated area (ha) 2259.9 2260.0 2235.7 0.0 -1.1 2169.9 2122.2 2134.6 -2.2 0.6 -4.1 -6.3 -4.6 

Water 4.7 4.7 4.7 0.0 0.0 6.4 6.4 6.4 0.0 0.0 30.6 30.6 30.6 
Urban 335.2 335.2 335.2 0.0 0.0 368.4 368.4 368.4 0.0 0.0 9.4 9.4 9.4 

Woodland 105.4 105.4 105.4 0.0 0.0 80.7 80.7 80.7 0.0 0.0 -26.5 -26.5 -26.5 
Total area (ha) 2705.2 2705.3 2681.0 0.0 -0.9 2625.4 2577.7 2590.1 -1.8 0.5 -3.0 -4.8 -3.4 

Cultivated area as a 
% of total area 83.5 83.5 83.4   82.7 82.3 82.4   -1.1 -1.5 -1.2 
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Table 8: Summary of the comparisons of crop classification 

between 2011 and 2012 

 
Inter-year comparison 

Class 

2011 
(ha) 

2012 
(ha) 

Change (%) 
(+ increase, - 

decrease) 
Bareland 382.7 356.5 -7.1 

Corn 41.5 106.4 87.7 
Fallow 597.8 567.0 -5.3 

Field crops 307.0 114.6 -91.3 
Fruit trees 169.7 190.3 11.4 

Olive 70.1 74.1 5.6 
Potato 277.9 301.4 8.1 

Tobacco 8.2 0.1 -196.8 
Vineyard 236.6 242.6 2.5 

Wheat 160.4 189.3 16.5 
Cultivated area (ha) 2251.9 2142.2 -5.0 

Water 4.7 6.4 30.6 
Urban 335.2 368.4 9.4 

Woodland 105.4 80.7 -26.5 
Total area (ha) 2697.2 2597.7 -3.8 

Cultivated area as a % of 
total area 83.5 82.5 -1.2 

 
Figure 4 shows stacked images composed by different 
detected crop classes and taken at three consecutive periods 
across the growing season from May through October. 
Analysis of the stacked crop maps clearly highlights 
permanent bare areas, natural woodland and water bodies. 
The cropped areas appear to be either one of the eight crop 
classes or land kept as fallow in the intra-season periods in 
preparation of the next growing season. The latter represents 
18.4, 24.2 and 33.1% of the cultivated area in May, July and 
September 2011, respectively, and 6.2, 31.9 and 36.8% in 
the same periods, respectively, in 2012. On the maps, the 
land kept as fallow appears in red color, while a light-brown 
color indicates potential bare areas, whereas pale yellow as 
corn, dense green as field crops, light violet as fruit trees, red 
as olive, dark brown as potato, light green as tobacco, dense 
violet as vineyard and earth color as wheat. Woodland 
appears in dense green color. Our results showed that the 
inclusion of all nine agricultural classes, along with the 
bareland class and non-agricultural classes versus land use 
resulted in almost identical maps (Figure 4). 

 

 
Figure 4: Maps showing temporal crop classification results in 2011 and 2012 growing years (crop type labels for real data: 

yellow = corn, red = fallow, dark green = field crop, pink = fruit trees, light red = olive, brown = potato, light green = tobacco, 
violet = vineyard, light brown = wheat). 
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The results of the accuracy assessment of the classified 
maps, including overall accuracy (OA) and kappa 
coefficient, are presented in Table 9. As shown in this table, 
there was a good agreement between the classified maps and 
ground-truth data, which varied between 84% and 95% in 
overall accuracy, and between 0.71 and 0.91 in Kappa 
coefficient. We believe that our crop classification is of high 
reliability. 
 
3.2. Estimation of irrigation needs based on satellite 

images 

 
Table 10 shows irrigated crop areas in Canal 900 test area as 
determined by the remote sensing images, net irrigation 
requirements (NIR) and gross irrigation requirements (GIR) 
as simulated by MOPECO model during the 2011 and 2012 
growing seasons. The simulations show that there were 5.16 
Mm3 (million cubic meter) and 5.58 Mm3 of water used to 
irrigate the remotely sensed 1271.3 ha and 1218.7 ha of 
cropland in the test area during the 2011 and 2012 growing 
seasons, respectively. The simulations also demonstrated 
that 28.4% and 32.6% of the simulated irrigation volume 
were used for potato in 2011 and 2012, respectively, while 
wheat consumptions were 12.2% and 18.6% of total water 
demand in 2011 and 2012, respectively. Simulations also 
showed that corn irrigation use has increased from 6% of 
total water demand in 2011 to 16.1% in 2012, as the area 
cropped with corn increased by 87.7% in 2012 with 
comparison to 2011 (41.5 ha). In addition, table 10 
demonstrates that gross irrigation requirements of field crops 
(beans, peas, lettuce, onion and tomatoes) decreased from 
40% in 2011 to 18.3% in 2012. This decrease in irrigation 
water demand was mainly due to a sharp decrease in the area 
cultivated with field crops from 307 ha in 2011 to 114.6 ha 
in 2012, as marked in table 8. The ratio of irrigation volume 
(in m3) to total irrigated area (in ha) gives the irrigation 
module (in m3/ha), which equaled 4060.3 m3/ha in 2011 and 
4579.4 m3/ha in 2012, and both were lower than the 
irrigation module of 6500 m3/ha set by the Litani River 
Authority. 
 

Figure 5 compares simulated irrigation demand from the 
remotely sensed data and MOPECO model with that 
obtained by the Litani River Basin Database (LRAD) for 
Canal 900 test area during the 2011 and 2012 growing years. 
The comparison shows a good agreement between 
simulations and observations in 2011 but not in 2012. 
Irrigation water demand obtained by LRAD was 5.74 Mm3in 
2011 and 7.16 Mm3 in 2012, thus overestimating by 10% 
and 22% the simulated irrigation volumes by MOPECO in 
2011 and 2012, respectively. Most probably the differences 
between simulations and observations that were found in 
2012 may be caused by corn, the one cropped area increased 
remarkably in 2012 with comparison to 2011, thus 
increasing irrigation requirements by 65% in 2012 with 
comparison to 2011. Indeed, data reported by Litani River 
Authority observed 20% increase in total irrigation demand 
in 2012 with comparison to 2011 within Canal 900 test area. 
This increase might be attributed to the relatively high 
irrigation requirements of corn with comparison to other 
cultivated crops in the area. Karam et al. (2003) [65] 
demonstrated that corn seasonal evapotranspiration in the 
Bekaa Valley of Lebanon varies between 900 and 1000 mm 
for a growing season of 120-130 days from sowing till 
harvest. It is necessary therefore that farmers efficiently use 
water resources for irrigation of corn and other crops in 
South Bekaa Irrigation Scheme (SBIS) for better water 
supply-demand management. 
 

Table 9: Overall accuracy and Kappa coefficient of each 
classification for both sensors according to the selected 

images 

Sensor type Acquisition date Overall 
accuracy (%) 

Kappa 
coefficient 

RapidEye 23 May 2011 87.80 0.7754 
15 July 2011 94.40 0.9005 
26 September 

2011 
85.40 0.7277 

Landsat ETM+ 6 May 2012 84.80 0.7155 
9 July 2012 95.20 0.9151 

27September 84.40 0.7074 
 

Table 10: Irrigated crop areas in Canal 900 test area (ha) as determined by remote sensing images, net irrigation requirements 
(NIR) and gross irrigation requirements (GIR) as simulated by MOPECO model during the 2011 and 2012 growing seasons. 

  
Area (ha) NIR (mm) GIR (m3) Irrigation module (m3/ha) 

2011 2012 2011 2012 2011 2012 2011 2012 
Corn 41.5 106.4 629.1 846.2 308065.1 900328 

    

Bean 54.9 20.5 516.4 484.6 334786.9 138371.2 
Peas 21.5 8 383.8 328.8 97581.4 36813.9 

Lettuce 60.3 22.5 319.9 323.5 227685 101415.5 
Onion 73.2 27.3 743.9 860 643009.5 327410.7 

Tomato 96.9 36.2 685 827.1 783634.1 416756.4 
Apple 134.6 150.9 153.6 143.5 231600.4 286226.3 
Peach 35.1 39.4 99.9 98.3 39271.3 51137.3 
Olive 70.1 74.1 176.4 194 138464.1 189949.3 
Potato 277.9 301.4 446.7 434.3 1464736.3 1822656.8 

Tobacco 8.2 0 531.2 484 51397.2 0 
Vineyard 236.6 242.6 78.8 86.4 208724.7 277049.3 

Wheat 160.3 189.3 334.6 391.8 632845.5 1032825.2 
  1271.3 1218.7             

Total water demand (m3)         5161801.4 5580940 4060.3 4579.4 
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Figure 5: Comparison of observed and MOPECO simulated irrigation water use in 2011 and 2012 growing years 

 
4. Conclusions 
 
The methodology proposed in this paper offers a 
management tool for annual inventory and monitoring of 
cultivated lands in the test area within the South Bekaa 
Irrigation Scheme (SBIS). Using RapidEye and Landsat 
ETM+ imagery, a supervised classification of multi-
temporal data was performed that quantified agricultural and 
non-agricultural areas at the growing seasons. Preliminary 
results clearly indicate that multi-temporal remote sensing 
classification can effectively contribute to differentiate 
between croplands and non-croplands, which are considered 
unsuitable for agriculture although further attempts to 
validate this methodology in other irrigation scheme is 
necessary. 
 
Understanding the contribution of spatial and temporal 
monitoring of the vegetation variation is critical to estimate 
irrigation needs of the various crops within a given scheme. 
However, information on vegetation cover in the temporal 
dimension is most often unavailable. This approach provides 
a convenient pathway towards the discussion about a 
relevant crop classification plan in a given area. Such a plan 
may lead to a wealth of crop information within the temporal 
dimension, based on the understanding that remotely sensed 
spatio-temporal crop information is imperative for effective 
agricultural management. 
 
Through integrating and combining remote sensing 
technology it was possible to identify crop type and cropped 
area estimates for the irrigation needs in a test area in the 
South Bekaa Irrigation Scheme, while generating multi-
temporal maps showing the spatial distribution of crop type 
patterns. It was thus possible to extract information on the 
irrigation requirements of the different mapped crops within 
the test area. This provides decision-makers with 
possibilities of spatial analysis, which were not previously 
available for the water utility. It was concluded that remote 
sensing images serve as trustable information for decision-
making related to crops monitoring and mapping over a pre-
selected test area. Even though multispectral images give 
details on the overall vegetation map in the given area [66], 
this technique is still having a limitation use due to the broad 
wavelength and spatial resolution that imped us 
differentiating crops of similar type. In that specific case, 
hyperspectral images would perform better as they contain 
more concrete and detailed spectral signature [67] and their 

higher spatial resolutions may enable greater distinction of 
vegetation classes [48], [68], [69]. 
 
Results obtained in this study showed that it is possible to 
map agriculture for small areas using RapidEye (5 m) and 
Landsat (30 m) data with overall accuracies of about 84-
95%. In addition, our results showed that water demand can 
be decreased by 10-22% when remote sensing data are used. 
This represents a significant saving portion of the water 
resources that are allocated for irrigation purposes and can 
be used to bring additional land into irrigation within the 
scheme. 
 
We concluded that multi-temporal crop classification and 
mapping provides spatially explicit information of crop 
rotation and crop area data. This approach demonstrates the 
importance of spatial processes in determining water 
allocation in a given irrigation scheme, and in assisting 
decision-making of accounting for the quantity of seasonal 
water requirements that should be allocated by the irrigation 
system. A further validation of the results is planned with 
more reliable ground truth data, available from the annual 
field inspection conducted by the Litani River Authority in 
the selected agriculture parcels from the South Bekaa 
Irrigation Scheme. 
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