
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 5 Issue 1, January 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Optimization of Trust Management Scheme for
Multi Cloud Environment

Ruchira Tare
1
, Rupali Pandharpatte

2

1M.E. Student Department of Computer Engineering, KJ College of Engineering Management & Research, Savitribai Phule Pune

University, India

2Assistant Professor, KJ College of Engineering Management & Research, Savitribai Phule Pune University, India

Abstract: Cloud computing is the use of computing resources such as hardware and software that are delivered as a subscription-based

service and on demand services over a network. In cloud computing environments, there are two players: cloud providers and cloud

users. Users always want to send their most sensitive data to cloud service centers, which is based on the trust relationship established

between users and service providers. So we require such a middleware framework of trust management that can effectively reduce user

burden and improve system dependability. To increase the adoption of cloud services, a cloud broker should establish and provide trust

management capacity to alleviate the worries of their users. Using SOTS [Service Operator-aware Trust Scheme], the broker can

efficiently and accurately prepare the most trusted resources and thus provide more dependable resources to users. Traditionally cloud

providers provide assurances by specifying technical and functional descriptions in Service level agreements (SLAs) for the services they

offer. But the customers are not sure whether they can identify trustworthy cloud providers only based on its SLA. We address SOTS for

trustworthy resource matchmaking across multiple clouds. In this work we can facilitate the effective utilization of SOTS in a large scale

multi-cloud environment by using GTD based resource matchmaking algorithm and FSLA mechanism.

Keywords: Cloud broker, Multi-cloud environment, Trust Scheme, Resource Matchmaking.

1. Introduction

Oriented by requirement of trust management in multiple
cloud environments, a trust-aware service brokering scheme
for efficient matching cloud services (or resources) to satisfy
various user requests. First, a trusted third party-based
service brokering architecture is proposed for multiple cloud
environments, in which the Broker acts as a middleware for
cloud trust management and service matching. Then, Broker
uses a hybrid and adaptive trust model to compute the overall
trust degree of service resources, in which trust is defined as
a fusion evaluation result from adaptively combining the
direct monitored evidence with the social feedback of the
service resources. More importantly, Broker uses the
maximizing deviation method to compute the direct
experience based on multiple key trusted attributes of service
resources, which can overcome the limitations of traditional
trust schemes, in which the trusted attributes are weighted
manually or subjectively. Finally, Broker uses a lightweight
feedback mechanism, which can effectively reduce
networking risk and improve system efficiency.

The service operator-aware trust scheme (SOTS) for resource
matchmaking across multiple clouds. Through analyzing the
built-in relationship between the users, the broker, and the
service resources.Amiddleware framework of trust
management that can effectively reduce user burden and
improve system dependability. Based on multi-dimensional
resource service operators, we model the problem of trust
evaluation as a process of multi-attribute decision-making,
and develop an adaptive trust evaluation approach based on
information entropy theory. This adaptive approach can
overcome the limitations of traditional trust schemes,
whereby the trusted operators are weighted manually or
subjectively. As a result, using SOTS, the broker can
efficiently and accurately prepare the most trusted resources
in advance, and thus provide more dependable resources to

users. Our experiments yield interesting and meaningful
observations that can facilitate the effective utilization of
SOTS in a large-scale multi-cloud environment.

2. Related Work

Khan et al. reviewed trust in the cloud system from the user’s
perspective [1]. They analyzed issues of trust from a
cloudusers expectations, with respect to their data in terms of
security and privacy. So far, many innovative trust schemes
for cloud computing have been proposed by researchers, and
three main classes can be identified as follows:

2.1 Reputations-Based Schemes

Hwang et al. suggested using a trust-overlay network over
multiple data centers to implement a reputation system for
establishing trust between providers and data owners [2].
Data coloring and software watermarking techniques protect
shared data objects as well as massively distributed software
modules. However, the authors only focused on reputation-
based trust issues; they did not mention the trust problem at
server level.

2.2 Self-Assessment Schemes

Kim et al. presented a trust evaluation model to allocate
cloud resources based on providers’ self-assessment [3].
Their trust model collects and analyzes reliability based on
the historical server information in a cloud data center.
Although the model in [3] is a multiple attribute scheme, the
authors completely ignored the real time situation in trust
relationships, which may lead to an incomplete trust
decision-making outcome. In [19], Li et al. presented a
trusted data acquisition mechanism for scheduling cloud
resources and satisfying various user requests. Using their
trust mechanism, cloud providers can efficiently utilize their

Paper ID: NOV152563 35

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 5 Issue 1, January 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

resources, as well as provide highly trustworthy resources
and services to users. However, due to a lack of transparency,
these self-assessment schemes [3], [19] do not completely
eliminate users’ trust concerns.

2.3 TTP-Based Schemes

Habib et al. proposed a multi-attribute trust system for a
cloud marketplace[5].This system provides means for
identifying cloud providers in terms of different attributes
(e.g., security, performance, compliance) that are assessed by
multiple sources of trust information. However, measuring
these trust attributes without giving details. Although there
are some similar works available in literatures, e.g., [4], [19],
which discussed the multiple-attribute issues of trust, little
detail has been provided.

3. Proposed Work

The proposed middleware architecture consists of a number
of core modules, including the trusted resource matchmaking
and distributing module, the adaptive trust evaluation
module, the agent-based service operator acquisition
module, and the resource management module, among
others.

3.1 Adaptive Trust Evaluation Module.

This module is the core of the trust-aware cloud computing
system, and is the major focus of this paper. Using this
module, the broker can dynamically sort high-performance
resources by analyzing the historic resource information in
terms of providing highly trusted resources.

3.2 Trusted Resource Matchmaking and Distributing

Module

In general, each cloud manager registers its service resources
through the cloud broker. The service user negotiates with

the service broker on the Service-Level Agreement (SLA)
details; they eventually prepare an SLA contract. According
to this contract, the broker selects, and then presents highly
trusted resources to users from the trusted resource pool.

3.3 Resource Register Module.

It manages and indexes all the resources available from
multiple cloud providers, and obtains information from each
particular cloud resource, acting as pricing interface for
users, and updating the database when new information is
available.

Advantages

 The Broker is aware of the resources seeking and
providing with the matchmaking framework.

 It makes the resource availability with using security key
for sharing the content with highest security.

4. Simulation Results

4.1 CloudSim Extensions

CloudSim is a scalable, open-source simulation tool offering
features like support for modeling and simulation of large-
scale Cloud computing infrastructures, including datacenters,
brokers, hosts, and virtual machines (VMs) on a single host.
In addition, the support for custom developed scheduling and
allocation policies in the simulation made CloudSim an
attractive tool for Cloud researchers. In our simulation
environment, CloudSim is used to model large-scale and
heterogeneous Cloud providers. This allows us, for the
purpose of evaluation, to easily configure the amount of
Cloud provider resources accessible by the broker.
Nevertheless, some CloudSim extensions were needed to
allow the dynamic creation, destroying and monitoring of the
VMs.

Paper ID: NOV152563 36

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 5 Issue 1, January 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 1: Simulation Environment

4.2 Cloud Service Broker Implementation

We implemented the core broker services including the SLA
manager, deployment manager, the match maker, and the
monitoring manager as Java classes included in the Cloud
service broker package. The implemented match maker
functionality of the broker is extensible enough to permit the
easy integration and evaluation of different resource
matching policies. Furthermore, two persistence classes,
named ServiceRegistry and ProviderRegistry, are used to
store and query all the service and provider data stored using
the previously presented ontologies during the simulation.
The ontologies are implemented in the classes
ServiceRequest and Provider, which are the abstractions of a
composite service request and a Cloud provider respectively.

4.3 Intercloud Gateway Implementation

In order to simulate the Intercloud gateway component
serving as standard service frontend for Cloud providers, we
implemented, based on the open source Java implementation
for OCCI called OCCI4JAVA [120], an OCCI frontend for
CloudSim. In this way, the entire communication between
broker and providers is forwarded to the native
CloudSimDatacenterBroker class through standard OCCI-
interfaces.The use of an OCCI-based Intercloud gateway
allows us to model a multi-Cloud infrastructure consisting of
interoperable Clouds mediated by a Cloud service broker.

4.4 Request Generator

The simulation-based evaluation of the broker requires the
modeling of realistic service requests to achieve valuable
evaluation results. Thus, we implemented a service
RequestGenerator helper class that continuously generates
synthetic computing service requests with different VM types
at a configurable rate. The configuration of the VMs is
similar to the configuration of the compute instances
provided by current commercial Clouds.

4.5 Workload Reader

In order to have more realistic simulation results, we
included a WorkloadReader class to import the service
requests and resource workloads from real workload traces
like the Grid workload archive or the PlanetLab trace data .
The imported trace data is used then to dynamically generate
the CloudSim Cloudlets, which model the workload on the
requested VMs. The use of Grid traces is justified by the lack
of public accessible real Cloud traces.

The client provides Cloud users with an interactive user
interface to submit their service requests to the broker by
describing the functional and non-functional service
requirements. Moreover, the user is able to manage and
monitor the service after its deployment through a single
management console. The client includes support the
deployment of workflow applications on multi-Cloud. It
delivers the workflow tasks to the underlying Cloud service

Paper ID: NOV152563 37

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 5 Issue 1, January 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

broker and takes care of their dependencies. Additionally, a
replica catalog is used to manage data replicas.

5. Equations

Let resource has the required capabilities

I1: CPU frequency (direct evidence)
I2: memory size (direct evidence)
I3: hard disk capacity (direct evidence)

5.1 Reliability measurement based on a given time

window

For example, for a resource performing g computing tasks
within time window
I1(Δt) = g Σi=1 CPU(i)/g ,
I2(Δt) = g Σi=1 MEM(i)/g ,
I3(Δt) =g Σi=1HDD(i)/g ,

the i-th measured value of the response time. Measure
defined as:
M(Δt) = S(Δt)/(S(Δt) + U(Δt))

5.2 Entropy-based and Adaptive Weight Calculation

The information entropy of a discrete random variable X
with possible values e1, e2, · · · en is H(X) = E(S(X)). E is
the expected value function, and S(X) is the information
content or self-information of X.
H(X) = KnΣz=1 p(ez)S(et) = −K n Σz=1 p(ez) logb p(ez),

Global Trust Degree (GTD)
DNi(Δtn) = D × AT = n Σj=1 (H(X) × M(Δt)),
where A = {a(Δt1), a(Δt2), · · · , is the weights assigned to
each real trust of Reliability measurement

DSA is a Signature Scheme with Appendix. This means the
that the message must be presented to the verifier function.
This is in contrast to a Signature Scheme with Recovery. In a
recovery system, the message is folded into the signature, so
the message does not have to be sent with the signature. The
verification routine will extract the message from the
signature in a recovery system.

Key Generation

A DSA key is generated as follows [12]. Below, the size of q
is fixed by FIPS 186 at 160 bits. Though the original FIPS
186 specification [7] specifies p between 512 to 1024 bits
inclusive, FIPS 186-2 [11] fixes p at 1024. This means that
some libraries enforce a bit size of 1024 at step three.

1. Select a prime number q such that 2159<q< 2160
2. Choose t so that 0 ≤ t ≤ 8
3. Select a prime number p such that 2511+64t<p< 2512+64t

with the additional property that q divides (p-1)
4. Select a generator α of the unique cyclic group of order q

in Z*p
5. To compute α, select an element g in Z*p and compute

g(p-1)/q mod p
6. If α = 1, perform step five again with a different g
7. Select a random a such that 1 ≤ a ≤ q-1
8. Compute y = αa mod p

The public key is (p, q, α, y). The private key is a. We
usually encounter the private key specified as x.

Message Signing

To sign a document of arbitrary size using an appendix
scheme, two steps occur:
 hash the document
 decrypt the hash of the document as if it were an instance

of ciphertext using the private key

In DSA, the details of signing the binary message m
(document) of arbitrary length are as follows [12]. Notice
that we are signing a binary message (there is no notion of a
string at this level), and the message can be any length.
Because the message can be any length, the message is
digested with a hash function — h(m).
1. Generate a random per-message value k such that 0 <k<q
2. Compute r = (αk mod p) mod q
3. If r = 0, perform step one again with a different k
4. Compute k-1 mod q
5. Calculate s = k-1{h(m) + ar} mod q
6. If s = 0, perform step one again with a different k

The signature on m is (r, s). Message m and (r, s) should be
sent to the verifier. We need to observe that both r and s are
20 bytes, since a modular reduction is being performed (steps
2 and 5) using q, a 160 bit value. (which use the IEEE P1363
signature format) and Java (which uses a DER encoding of a
signature).

Message Verification

To verify a document of arbitrary size using an appendix
scheme, three steps occur:
 hash the document
 encrypt the previously generated document hash (from step

2 of Message Signing process) using the signer's public
key

 verify the recovered hash from step one of the Message
Verification process matches the calculated hash from step
two of the Message Verification process

The short story of the above is we are comparing our
calculated hash of the document with the signer's calculated
hash of the document after we remove the signer's encryption
operation. The DSA details are. Below, recall that (r, s) is the
signature on binary message m, with h(m) digesting the
arbitrary length message.
1. Obtain the public key (p, q, α, y)
2. Verify 0 <r<q and 0 <s<q (reject the signature

otherwise)
3. Compute w = s-1 mod q
4. Compute u1 = w•h(m) mod q
5. Compute u2 = rw mod q
6. Compute v = (αu1yu2 mod p) mod q
The signature is valid if and only if v = r.

References

[1] 2 MASS. 2MASS at IPAC.[Online],

2014.http://www.ipac.caltech.edu/
2mass/(accessed:2014-03-20).

Paper ID: NOV152563 38

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 5 Issue 1, January 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[2] Lifeng Ai, Maolin Tang, and Colin J. Fidge. Partitioning
composite web services for decentralized execution
using a genetic algorithm. Future Generation Comp.
Syst., 27(2):157–172, 2011.

[3] G. A. Akerlof. The market for lemons: Quality
uncertainty and the market mechanism. The Quarterly
Journal of Economics, 84(3):488–500, 1970.

[4] MohammadAlrifai, Thomas Risse, Peter Dolog, and
Wolfgang Nejdl. ―A scalable approach for qos-based
web service selection‖. In George Feuerlicht and
Winfried Lamersdorf, editors, Service-Oriented
Computing ICSOC 2008 Workshops, volume 5472 of
Lecture Notes in Computer Science, pages 190–199.
Springer Berlin Heidelberg, 2009.

[5] Amazon Elastic Compute Cloud. [Online],
2014.http://aws.amazon.com/ ec2/ (accessed: 2014-03-
20).

[6] Amazon Simple Storage Service. [Online], 2014.
http://aws.amazon.com/ (accessed: 2014-03-20).

[7] D. Ardagna, E. Di Nitto, P. Mohagheghi, S. Mosser, C.
Ballagny, F. D’Andria, G. Casale, P. Matthews, C.-
S.Nechifor, D. Petcu, A. Gericke, and C.
Sheridan.―Modaclouds: A model-driven approach for the
design and execution of applications on multiple
clouds‖. In Modeling in Software Engineering (MISE),
2012 ICSE Workshop on, pages 50–56, June 2012.

[8] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz,
A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I.
Stoica, and M. Zaharia. ―Above the Clouds: A Berkeley
View of Cloud Computing‖. Technical report, University
of California at Berkeley, February 2009.

[9] John Asker and Estelle Cantillon.―Properties of scoring
auctions‖. The RAND Journal of Economics, 39(1):69–
85, 2008.

[10] Microsoft Azure Platform. [Online],
2014.http://www.microsoft.com/windowsazure/
(accessed: 2014-03-20).

Author Profile

Ruchira Tare is pursuing her Masters of Engineering in the
Computer Networks, Computer Department, KJ Collegeof
Engineering Management & Research, and Savitribai Phule Pune
University. She received Bachelor of Engineering degree in
Computer Science & Engineering from Dr.Babasaheb Ambedkar
Marathwada University, Aurangabad, India.

Paper ID: NOV152563 39

