
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 5 Issue 1, January 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

NoSQL Database: Cassandra is a Better Option to
Handle Big Data

Dr. Kishor H. Atkotiya

1
, Parag C. Shukla

2

1J.H Bhalodiya Women's College, Rajkot- 360005, India

2Atmiya Institute of Technology & Science, Rajkot – 360005, India

Abstract: Apache Cassandra is an open source distributed database management system designed to handle large amounts of data
across many commodity servers, providing high availability with no single point of failure. Cassandra offers robust support for clusters
spanning multiple datacenters,[1] with asynchronous master less replication allowing low latency operations for all clients. Like good
carpenters, data engineers know that different tasks require different tools. Picking the right tools -- and knowing how to use them --
can be the most important part of any job. Apache cassandra, a prime level Apache project born at Facebook and designed on Amazon’s
generator and Google’s huge Table, may be a distributed info for managing giant amounts of structured knowledge across several goods
servers, whereas providing extremely offered service and no single purpose of failure. cassandra offers capabilities that relative
databases and different NoSQL databases merely cannot match such as: continuous handiness, linear scale performance, operational
simplicity and simple knowledge distribution across multiple knowledge centers and cloud handiness zones [2]. Cassandra’s design is to
blame for its ability to scale, perform, and supply continuous time period. instead of employing a bequest master-slave or a manual and
difficult-to-maintain shared design, cassandra features a lordless “ring” style that's elegant, simple to setup, and simple to keep up.
Apache Cassandra is a massively scalable open source non-relational database that offers continuous availability, linear scale
performance, operational simplicity and easy data distribution across multiple data centers and cloud availability zones. Cassandra was
originally developed at Facebook, was open sourced in 2008, and became a top-level Apache project in 2010.

Keywords: NoSQL Database, Cassandra, BigData, BigData Analytics, RDBMS and NoSQL

1. Introduction

As it is understood that cassandra is Associate in Nursing
open supply management system that has been notably
designed for handling immense quantity of information
across several servers with none defaults at any regulated
purpose. this is often one in all the explanations why
cassandra has been picked up for large knowledge. massive
knowledge is needed for managing knowledge and
knowledge warehouses. however once the question involves
handling immense volumes of information, the information
warehouses fails to provide results. there's a demand for a
code which may regulate also as grasp immense volumes of
information. once a corporation or a corporation expands or
amalgamates itself, there ar several cross knowledge and
knowledge that needs to be discarded. additionally there ar
immense volumes of information that needs to extracted
freshly in its raw type. This has been compiled by the
cassandra massive knowledge services which may handle
these problems terribly simply with none failure or default.
massive knowledge solutions has been provided by
cassandra massive knowledge services, and one will relate
all the options and factors of cassandra and large knowledge.

Cassandra’s design is chargeable for its ability to scale,
perform, and provide continuous period. instead of
employing a bequest master-slave or a manual and difficult-
to-maintain shared design, cassandra incorporates a lordless
―ring‖ style that's elegant, straightforward to setup, and
straightforward to take care of.

2. Cassandra Architecture

The design goal of cassandra is to handle big data workloads
across multiple nodes with none single purpose of failure.
prophetess has peer-to-peer distributed system across its
nodes, and knowledge is distributed among all the nodes
during a cluster.

All the nodes during a cluster play constant role. every node
is freelance and at constant time interconnected to different
nodes. Each node during a cluster will settle for scan and
write requests, in spite of wherever the info is really placed
within the cluster. When a node goes down, read/write
requests will be served from different nodes within the
network.

3. Data Replication in Cassandra

In Cassandra, one or more of the nodes in a cluster act as
replicas for a given piece of data. If it is detected that some
of the nodes responded with an out-of-date value, Cassandra
will return the most recent value to the client. After
returning the most recent value, Cassandra performs a read
repair in the background to update the stale values.

The following figure shows a schematic view of how
Cassandra uses data replication among the nodes in a cluster
to ensure no single point of failure

Paper ID: NOV152557 24

https://en.wikipedia.org/wiki/Open_source_software
https://en.wikipedia.org/wiki/Distributed_database
https://en.wikipedia.org/wiki/Database_management_system
https://en.wikipedia.org/wiki/Single_point_of_failure
https://en.wikipedia.org/wiki/Apache_Cassandra#cite_note-1

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 5 Issue 1, January 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Cassandra uses the Gossip Protocol in the background to
allow the nodes to communicate with each other and detect
any faulty nodes in the cluster.

4. Cassandra Query Language

Users will access Cassandra through its nodes mistreatment
Cassandra command language (CQL). CQL treats the
information (Keyspace) as a instrumentality of tables.
Programmers use cqlsh: a prompt to figure with CQL or
separate application language drivers.

Clients approach any of the nodes for his or her read-write
operations. That node (coordinator) plays a proxy between
the consumer and also the nodes holding the information.

Write Operations

Every write activity of nodes is captured by the commit logs
written in the nodes. Later the data will be captured and
stored in the mem-table. Whenever the mem-table is full,
data will be written into the SStable data file. All writes are
automatically partitioned and replicated throughout the
cluster. Cassandra periodically consolidates the SSTables,
discarding unnecessary data.

Read Operations

During read operations, Cassandra gets values from the
mem-table and checks the bloom filter to find the
appropriate SSTable that holds the required data.

5. Features of Cassandra

Always on Architecture — A true masterless architecture
(unlike other master/slave RDBMS and NoSQL databases)
delivers continuous availability for your applications.

Natively Distributed — The gold standard in multi-data
center and cloud replication supplies real write/read
anywhere capabilities, allowing you to easily put data where
it’s needed anywhere in the world.

Fast Linear-Scale Performance — Enables millisecond
response times with linear scalability (double your
throughput with two nodes, quadruple it with four, and so
on) to deliver response time speeds your customers have
come to expect.

Flexible Data Model — The Apache Cassandra data model
allows for new entities or attributes to be added over time
and you’re not restricted to a rigid data model that can’t
evolve with the needs of the business application — such as
the addition of a new complicated data structure that may be
unique to your environment, or adding a new column to a
column family.

Language Drivers — Cassandra supports an incredible
array of language drivers to ensure that your application runs
optimally on Cassandra – whether Python, C#/.NET, C++,
Ruby, Java, Go, and many more.

Operational and Developmental Simplicity — With all
nodes in a cluster being the same, there is no complex
software tiers to manage so administration duties are greatly
simplified. Plus, the Cassandra Query Language (CQL)
looks and acts just like SQL, which makes moving to
Cassandra from any RDBMS very easy.

Strong Developer Community — There is a rich developer
community that surrounds Apache Cassandra that strives to
support developers working on the project, as well as those
developing applications that leverage the database. Active in
the IRC chat room and mailing lists, the Cassandra
developer community is one of the most active for an open
source project.

6. Cassandra Data Model

On the surface, Cassandra’s data model seems to be quite
relational. With this in mind, diving deeper into
ColumnFamilies, SuperColumns and the likes, will make
Cassandra look like an unfinished RDBMS, lacking features
like JOINS and most rich-query capabilities.

To understand why databases like Cassandra, HBase and
BigTable (I’ll call them DSS, Distributed Storage Services,
from now on) were designed the way they are, we’ll first
have to understand what they were built to be used for.

DSS were designed to handle enormous amounts of data,
stored in billions of rows on large clusters. Relational
databases incorporate a lot of things that make it hard to
efficiently distribute them over multiple machines. DSS
simply remove some or all of these ties. No operations are
allowed, that require scanning extensive parts of the dataset,
meaning no JOINS or rich-queries.

There are only two ways to query, by key or by key-range.
The reason DSS keep their data model to the bare minimum
is the fact, that a single table is far easier to distribute over
multiple machines, than several, normalized relations or
graphs. Think of the ColumnFamily model as a (distributed
Hash-)Map with up to three dimensions. The two-
dimensional setup consists of just a ColumnFamily with

Paper ID: NOV152557 25

http://planetcassandra.org/client-drivers-tools/
http://wiki.apache.org/cassandra/IRC
http://planetcassandra.org/apache-cassandra-mailing-lists/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 5 Issue 1, January 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

some columns in it, ―some‖ meaning a couple of billion if
you so wish. So a ColumnFamily is just a map of columns.

Data storage in Cassandra is row-oriented, meaning that all
contents of a row are serialized together on disk. Every row
of columns has its unique key. Each row can hold up to 2
billion columns. Furthermore, each row must fit onto a
single server, because data is partitioned solely by row-key.

One of Cassandra's strengths is high write throughput on
commodity hardware, which enables us to scale
infrastructure very quickly. Because we handle terabytes of
data, a high write rate is critical to us. And because it's hard
to predict loads, fast scalability translates into a competitive
business advantage.

7. Quick Comparision of RDBMS and NOSQL

Cassandra

Relational Database Cassandra

Handles moderate incoming
data velocity

Handles high incoming data
velocity

Data arriving from one/few
locations

Data arriving from many
locations

Manages primarily structured
data

Manages all types of data

Supports complex/nested
transactions

Supports simple transactions

Single points of failure with
failover

No single points of failure;
constant uptime

Supports moderate data
volumes

Supports very high data
volumes

Centralized deployments Decentralized deployments
Data written in mostly one

location
Data written in many locations

Supports read scalability (with
consistency sacrifices)

Supports read and write
scalability

Deployed in vertical scale up
fashion

Deployed in horizontal scale out
fashion

8. Conclusion

Cassandra gives us the ability to scale out by simply adding
a node to a cluster, and letting the cluster rebalance itself,
which saves on operational overhead. Maintaining high
write throughput with a minimal number of nodes lets us
manage infrastructure costs more effectively. When you're
running a business that provides real-time big data analytics,
keeping things simple and managing infrastructure costs
intelligently are critical objectives.

For IT professionals who are either planning new big data
applications under big data workloads, a move to DataStax
Enterprise and Cassandra makes both business and technical
sense. Switching to a modern, big data platform like
DataStax Enterprise will future-proof any application, and
provides confidence that the system will scale and perform
well both now and into a demanding future.

References

[1] Casares, Joaquin (2012-11-05). "Multi-datacenter
Replication in Cassandra". DataStax. Retrieved 2013-

07-25. Cassandra’s innate datacenter concepts are
important as they allow multiple workloads to be run
across multiple datacenters.

[2] http://www.planetcassandra.org/what-is-apache-
cassandra/

[3] https://en.wikipedia.org/wiki/Apache_Cassandra
[4] "Cassandra is an Apache top level project". Mail-

archive.com. 2010-02-18. Archivedfrom the original on

28 March 2010. Retrieved 2010-03-29.
[5] The Apache Software Foundation Announces Apache

Cassandra Release 0.6 : The Apache Software
Foundation Blog.

[6] Sylvain Lebresne (10 September 2014). "[VOTE
SUCCESS] Release Apache Cassandra 2.1.0". mail-
archive.com. Retrieved 11 December 2014.

[7] http://www.planetcassandra.org/blog/usingcassandra-
for-real-time-analytics-part-1/

[8] http://www.tutorialspoint.com/cassandra/cassandra_arc
hitecture.htm

[9] http://www.informationweek.com/strategic-cio/why-
we-picked-cassandra-for-big-data/a/d-id/1318250

[10] http://www.datastax.com/resources/faq
[11] http://blog.markedup.com/2013/02/cassandra-hive-and-

hadoop-how-we-picked-our-analytics-stack/

Paper ID: NOV152557 26

http://www.datastax.com/dev/blog/multi-datacenter-replication
http://www.datastax.com/dev/blog/multi-datacenter-replication
http://www.mail-archive.com/cassandra-dev@incubator.apache.org/msg01518.html
http://web.archive.org/web/20100328090322/http:/www.mail-archive.com/cassandra-dev@incubator.apache.org/msg01518.html
https://blogs.apache.org/foundation/entry/the_apache_software_foundation_announces3
https://blogs.apache.org/foundation/entry/the_apache_software_foundation_announces3
https://blogs.apache.org/foundation/entry/the_apache_software_foundation_announces3
http://www.mail-archive.com/dev@cassandra.apache.org/msg07512.html
http://www.mail-archive.com/dev@cassandra.apache.org/msg07512.html

