
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 9, September 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Auto-Scaling of Micro-Services Using
Containerization

Priyanka P. Kukade

1
, Prof. Geetanjali Kale

2

1, 2 Pune Institute of Computer Technology, Dhankawadi, Pune - 411 043, India

Abstract: Cloud computing has emerged as a new computing model, where storage, network and computation is provided as a service

to user, who can lease and release the service on demand. To enable the user of cloud environment to develop and deliver solutions, the

cloud provider has to build a robust set of services to support the customers. These are Platform services. The cloud service provider has

to adhere to strict customer (Service Level Agreement) SLAs. To support these SLAs, platform services need to be built with certain

principles. We present an approach of restructuring platform services into micro-services. These micro-services are nothing but loosely

coupled and independently deployable services. Deployment of service in cloud needs to be dynamic. You need to deal with failure cases

and provide high availability. It is required to manage more instances of application when the demand increases and to scale down for

fewer requests for conserving energy. The traditional use of virtual machine to deploy services lead to low performance. OS level

virtualization approach is adopted to deploy services. Here we have proposed an approach for elastic scaling of services in cloud

environment.

Keywords: Cloud Computing, Virtualization, PaaS, SLA.

1. Introduction

Cloud computing is an emerging computing model. It is an
on demand service model, which provides infrastructure,
platform and software as a service. That means software or
platform will be available in the form of service. Platform is
nothing but a set of services. Platform services provide a
platform and environment to allow developers to build
applications and services over the internet [9] [10].

Today more applications are being deployed cloud
environment. Just deployment of service in cloud is static.
You need to deal with failure cases and provide high
availability. If a container fails or service within the container
fails there should be mechanism to deal with it. Also
elasticity is the key concept in cloud, which allows
dynamically allocating and freeing resources as per request
[11] [12] [13]. There is need of scaling up and scaling down
the services requested by the customer. Thus there is need of
orchestration of container.

In the proposed system, micro-services approach is used to
overcome the draw-back of monolithic architecture. Use of
containers for the deployment of services in the proposed
system, instead of traditional use of virtual machines leads to
improvement in performance. An auto-scaling approach is
proposed which would scale the services based on request
and memory load.

2. Literature Survey

Elasticity property of cloud is gaining more attraction of
people. Horizontal and vertical scaling are the ways by which
scaling can be accomplished. Horizontal scaling deals with
adding or removing of resources that are of the same type.
Vertical scaling deals with replacing the existing resource
with the lower or higher capacity. Different approaches have
been followed by researcher, enhancing the scalability. Here

are the few strategies of application scaling in cloud.

Application scalability issues and strategies in different
Service model of cloud are explained by Vaquero, Luis M.,
Luis Rodero-Merino, and Rajkumar Buyya [1]. Scaling in
Infrastructure as a service (IaaS) can be done in two ways -
horizontal scaling and vertical scaling. Here author has
classified two ways of achieving scalability in Platform as a
service (PaaS) model- the container and the database
management system (DBMS) scalability. User component is
deployed and run in the software platform called container.
Different platforms can be used by different PaaS providers.
Author suggested that for the components hosted by PaaS,
platform type can define different lifecycles, services and
APIs. On the other hand, databases provide data persistence
support. It should address the demand for data transactions
support combined with big availability and scalability
requirements.

The auto-scaling problem for a more general application
model is explored and allows individual (non-uniform) job
deadlines [2]. Here the aim is to complete all jobs by using
resources that are less costly within the given deadline.
Deadlines are used as a performance requirements specified
by the users, and deadline misses are not strictly prohibited.
Web request response time, network latency and a program’s
running time is selected as a deadline. Deadline assignment
techniques are used to calculate an optimized resource plan
for each job and the number of instances using the Load
Vector idea is determined. Job scheduling and resource
scaling is addressed at the same time by considering both the
job-level and global-level cost-efficiency.

A lightweight approach is proposed by Han, Rui, et al for
achieving more cost efficient scaling of cloud resources at the
IaaS cloud provider’s side is proposed [3]. The multi-tiered
applications, which are already implemented using multiple
VM’s have improved resource utilization between VM’s as
application demands vary. It proposed the following: Fine-

Paper ID: SUB158576 1960

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 9, September 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

grained scaling approach, Improving resource utilization,
Implementation and experimental evaluation. They have
proposed an intelligent platform based on the LS (light
weight scaling) algorithm, which is implemented to automate
the scaling process of cloud applications.

Automatic scaling problem is summarized in the cloud
environment by Sharma, Tejinder, and Vijay Kumar Banga
[4]. It is modeled as a modified Class Constrained Bin
Packing (CCBP) problem. Here each server is a bin and each
class represents an application. Here an innovative auto
scaling algorithm to solve the problem and present a rigorous
analysis on the quality of it with provable bounds is made.
Compared to the existing Bin Packing solutions, item
departure is supported which can effectively avoid the
frequent placement changes caused by repacking. It support
green computing by adjusting the placement of application
instances adaptively and putting idle machines into the
standby mode.

To overcome the general lack of effective techniques for
workload forecasting and optimal resource allocation Roy et
al [5], made contributions. These contributions were -
discusses the challenges involved in auto scaling in the cloud.
Develope a model-predictive algorithm for workload
forecasting that is used for resource auto scaling. Finally,
their algorithm provided empirical results that demonstrate
that resources can be allocated and deallocated in a way that
satisfies both the application QoS while keeping operational
costs low.

An auto-scaling system, WebScale, was developed by Ching
et al [6], which is not subject to the aforementioned
constraints, for managing resources for Web applications in
data centers. They devised a new method for analyzing the
trend of workload changes after comparing the efficiency of
different scaling algorithms for Web applications. The
experiment results showed that even when facing sudden load
changing WebScale can keep the response time of web
applications low.

Feasibility simulation of using virtualization technology to
auto-scaling problem in cloud computing was proposed by
Thepparat et al [7]. It built two different models using
ARENA simulation software. There are auto-scaling without
server virtualization and auto-scaling with server
virtualization. The results demonstrated that life time of
servers and CPU utilization increases by employing
virtualization technology.

3. Proposed System

3.1 Micro-services

Micro services are a style of software architecture that
involves delivering systems as a set of very small, granular,
independent collaborating services [8]. The micro service
architectural style is an approach to developing a single
application as a suite of small services, each running in its
own process and communicating with lightweight
mechanisms, often an HTTP resource API.

In micro services pattern, a software system is comprised of a
number of independently deployable services, each with a
limited scope of responsibility. Less frequently, micro-
services may rely on lower level services. Here each micro-
service can be developed, managed and scaled independently
throughout its life-cycle. A well implemented micro services
architecture also ensures that the overall system is able to
gracefully degrade its functionality when one or more
services are offline.

3.2 Containerization

It is also known as Operating System Virtualization. As the
name implies, the abstraction is the operating system itself,
instead of the platform. It is an approach to virtualization in
which the virtualization layer runs as an application within
the operating system (OS). Here, the operating systems
kernel runs on the hardware with several isolated guest
virtual machines (VMs) installed above it. The isolated guest
virtual machines are called containers.

Figure 1: Containerization

Figure 2: Traditional hardware virtualization

Here the operating system provides a set of user-spaces that
are isolated from one another, but offers the abstraction
necessary such that applications believe that they are part of
the singular user-space on the host. With container-based
virtualization, the overhead associated with having each
guest run a completely installed operating system is not there.
Here there is just one operating system taking care of
hardware calls, thus it improves performance. However each
guest must use the same operating system the host uses,
which results in restriction for user.

Paper ID: SUB158576 1961

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 9, September 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

4. Auto Scaling Approach

Figure 3 shows architecture of the system. It is master slave
architecture. Here nodes are nothing but slave, where the
service containers are deployed. Master receives request for
the services and routes it to the running container. The auto
scaling module is added in master. It includes the following
module:
 Service Container Monitor

It is responsible to monitor the corresponding container for
each service. It also monitors the service URL for these
containers.

 Request Monitor

It is responsible for monitoring the request count for each
container of the service. If the request count for a container
exceeds threshold, new replica of container are started. If
the request count of container is below threshold then
container are scaled downed and a minimum of one replica
are maintained.

 Memory Load Monitor

It is responsible for monitoring the memory load for each
container of the service. If the memory load for a container
exceeds threshold, new replica of container are started. If
the memory load of container is below threshold then
container are scaled downed and a minimum of one replica
are maintained.

 Scale

This module is responsible for scaling the container up and
down. Here new containers are started and stopped as per
the request from memory load monitor and request
monitor.

Figure 3: System architecture

4.1 Data tables

For the scaling of the services a request monitor is used,
which monitors new request and updates the Service request
data table as shown in table 1. It contains the information
related to service name, Request Count elapsed time and
request per minute (rpm).

Table 1: Service request data

Service Name Request Count Elapsed time RPM

Audit 248 23 10
Keyword 5 0 5
Rabbitmq 1 0 1

Update 23 21 1

A memory monitor is used in auto-scaler module,
which monitors memory load of each service and updates the
Memory load data table as shown in table 2. It contains the
information related to service name, No of Container
Instances and Memory load for each container.

Table 2: Memory load data

Service Name No. of Container Memory load

Audit 1 62.0058
Keyword 1 64.6663
Rabbitmq 2 67.0605

78.4295
Update 1 69.5956

For scaling services, service container information is
maintained in Service container data table as shown in table 3
and is updated when the container instances increases or
decreases. It contains the information related to service name,
Replication Controller (RC), Replica, Max threshold
(THmax) and Min threshold (THmin) for each service.

Table 3: Service Container data

Service Name RC Replica THmax THmin
Rabbitmq Rc-rabbitmq 2 10 4

Audit Rc-audit 1 15 7
Keyword Rc-keyword 1 11 4
Update Rc-update 1 13 6

5. Results

The system is analyzed for auto-scaling approach by
increasing and decreasing the HTTP request for one of the
service. Request rate for the service is taken to be 60 requests
per minute. Figure 4 represents the scale up of container
instances of service when the request load increases.

Figure 4: Scale up

Paper ID: SUB158576 1962

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 9, September 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 5 represents the scale down of container instances of
service when the no more requests is send to the service.

Figure 5: Scale down

6. Conclusion

Today more applications are being deployed in cloud
environment. To overcome the problems of monolithic
application we are using micro-services approach. Virtual
machines are used traditionally to achieve isolation and resource
control. The use of virtual machines for deploying application
results in low performance and scalability. Thus here we are
using containerization instead of traditional virtualization.

Deployment of service using cloud is static. You need to deal
with failure cases and provide high availability. If a container
fails or service within the container fails there should be
mechanism to deal with it. So just deployment of service in
container is not enough. It is required to manage more instances
of application when the demand increases and to scale down for
less request for conserving energy. Thus use orchestration tool is
required for managing the health and elastic scaling of micro-
services.

We have presented the design of a system used for developing
and automatically deploying micro-services on cloud
infrastructure. Through the literature survey we have identified
and analyzed the existing solution for deployment of services in
cloud. We proposed an approach to elastic scaling of micro-
services in cloud.

References

[1] L. M. Vaquero, L. Rodero-Merino, and R. Buyya,
“Dynamically scaling applications in the cloud,” ACM
SIGCOMM Computer Communication Review, vol. 41,
pp. 45–52, April 2011.

[2] M. Mao and M. Humphrey, “Auto-scaling to minimize
cost and meet application deadlines in cloud
workflows,” in International Conference for High
Performance Computing, Networking, Storage and
Analysis, pp. 49–55, June 2011.

[3] R. Han, L. Guo, M. M. Ghanem, and Y. Guo,
“Lightweight resource scaling for cloud applications,” in
International Symposium on Cluster, Cloud and Grid
Computing (CCGrid), pp. 644–651, Sep. 2012.

[4] Z. Xiao, Q. Chen, and H. Luo, “Automatic scaling of
internet applications for cloud computing services,”

Computers, IEEE Transactions on, vol. 63, pp. 1111–
1123, July 2014.

[5] N. Roy, A. Dubey, and A. Gokhale, “Efficient
autoscaling in the cloud using predictive models for
workload forecasting,” in IEEE International Conference
on Cloud Computing (CLOUD), pp. 500–507, July
2011.

[6] C.-C. Lin, J.-J. Wu, J.-A. Lin, L.-C. Song, and P. Liu,
“Automatic resource scaling based on application
service requirements,” in IEEE 5th International
Conference on Cloud Computing (CLOUD), pp. 941–
942, Aug. 2012.

[7] T. Thepparat, A. Harnprasarnkit, D. Thippayawong, V.
Boonjing, and P. Chanvarasuth, “A virtualization
approach to auto-scaling problem,” in Eighth
International Conference on Information Technology:
New Generations, pp. 169–173, June 2011.

[8] M. fowler, “Micro-services.”
http://martinfowler.com/articles/microservices.html,
2015. [Online; accessed 2-July-2015].

[9] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing:
state-of-the-art and research challenges,” Journal of
internet services and applications, vol. 1, pp. 7–18, Dec.
2010.

[10] Y. Zhang, Y. Li, and W. Zheng, “Automatic software
deployment using userlevel virtualization for cloud-
computing,” Future Generation Computer Systems, vol.
29, pp. 323–329, Jan. 2013.

[11] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An
updated performance comparison of virtual machines
and linux containers,” technology, vol. 28, pp. 32–36,
Feb. 2014.

[12] R. Dua, D. Kakadia, et al., “Virtualization vs
containerization to support paas,” in International
Conference on Cloud Engineering (IC2E), pp. 610–614,
Aug. 2014.

[13] M. J. Scheepers, “Virtualization and containerization of
application infrastructure:A comparison,” 21st Twente
Student Conference on IT ,pp. 1–7, Feb. 2014.

Paper ID: SUB158576 1963

