The Goldbach Conjectures

Jamel Ghanouchi

Abstract: We deal with two problems known by the name of Goldbach conjectures, weak and strong versions.

Keywords: Goldbach; Conjectures; Proof

1. The Goldbach Conjectures

They are two of the oldest and best-known problems of number theory and all mathematics. The first, known as the weak one, states that an odd number greater than 25 is always the sum of three prime numbers, when the strong Goldbach conjecture states that an even number greater than 22 is always the sum of two prime numbers. This last one has been shown to hold up through 4.10^{28} but remains unproven despite considerable effort. We present here a very elementary approach of the problems and prove them by the same way.

2. The Weak Goldbach Conjecture

We have 2k=4p+2m+1+2k'-1 that describes all even numbers from 4p+2k' until infinity when m describes all the integers.

Thus 2k+1=4p+2m+1+2k' describes all odd numbers from 4p+2k'+1 until infinity for the same m.

But 3p+2m describe all the odd numbers from 3p to infinity when m describes all the integers.

Hence, there always exists m' for which 3p+2m'=q is a prime number.

We deduce that 2k+1=p+3p+2m'+2(m-m')+2k'+1=p+q+2(m-m')+2k'+1 describes all the odd numbers from 4p+2k'+1 until infinity and this for every k'.

But 2(m-m')+2k'+1 describes all the odd numbers from 2(m-m')+1 to infinity when k' describes all the integers.

There always exists k''=k'' for which 2(m-m')+2k''+1=r a prime number.

In conclusion:

2k+1=p+q+r which describes the odds from 4p+2k'+1 to infinity is always the sum of three prime numbers.

We want to calculate the first value of 2k+1:

Let p=5 then 5+17+3=2k+1 means k=12=2p+k'=10+k' and we know now that the conjecture is true for all the odds from 25 to infinity!

3. The Strong Goldbach Conjecture

Also 2k=4p+2m+2k' describes all the even numbers from 4p+2k' to infinity when m describes all the integers and, we saw it, there always exists m' and q a prime number for which 3p+2m'=q.

Thus 2k=p+q+2(m-m')+2k' describes all the evens from 4p+2k' to infinity and this for every k'.

Particularly, there always exists k''=k''' for which : 2k'+2(m-m')=0 and 2k'=q describes all the evens from 4p+2k' to infinity and is the sum of two primes.

Practically:

For p=5 and 5+17=2k or k=11=2p+k'=10+k'. It means that the strong conjecture is true for all the evens from 22 to infinity!

4. Conclusion

Our approach was sufficient to demonstrate the Goldbach conjectures.

References
