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1. Introduction 
 
The concept of 2-metric space has been investigated initially 
by Gähler in a series of papers and has been developed 
extensively by Gähler and many others. A 2-metric space is 
a set X with a real-valued function d on XxXxX satisfying 
the following conditions: 
(M1) For two distinct point x, y  X, there is a point z  X 
such that d(x, y ,z)  0  
(M2) d(x, y ,z) = 0 if at least two of x, y, z are equal, 
(M3) d(x, y ,z) = d(x, z, y) = d(y, z, x)  x, y, z  X, 
(M4) d(x, y, z)  d(x, y, u) + d(x, u ,z) + d(u, y ,z)  x, y, z, 
u  X , 
 
The function d is called a 2-metric for the space X and ( X, 
d) denotes a 2-metric space. It has been shown by Gähler 
[18] that a 2-metric d is non-negative and although d is 
continuous function in any one of its three arguments, it 
need not be continuous in two arguments . A 2-metric d 
which is continuos in all of its arguments is said to be 
continuous. we use the concept of compatible mappings of 
type (P) in 2-metric spaces.  
 
In the last three decades, a many authors have studied the 
aspects of fixed point theory in the setting of 2-metric 
spaces. They have been motivated by various concepts 
already known for metric space and have thus introduced 
analogous of various concepts in the framework of the 2-
metric spaces.  
 

Definitions [1]: A sequence {xn} in a 2-metric space ( X, d) 
is said to be convergent to a point x  X, denoted by 
limnxn = x, if limnd(xn,x,z) = 0 for all z  X. The point 
x is said to be limit of sequence {xn} in X. 
 

Definition [2]: A sequence {xn} in a 2-metric space (X,d) is 
called a Cauchy sequence if d(xm,xn,z)   as n, m   for 
all z  X .  
 

Definition [3]: A 2-metric space in which every Cauchy 
sequence is convergent is called complete. 
 

Definition [4]: A mapping S from a 2-metric space (X, d) 
into itself is said to be sequentially continuous at a point x  
X if every sequence { xn} in X such that limn d( xn,x,z ) = 
0 for all z  X , limn d(Sxn,Sx,z) = 0. 
 

Definition [5]: Let S and T be mappings from a 2-metric 
space ( X,d ) into itself. The mappings S and T are said to be 
compatible of type (P) if limn d(SSxn, TTxn,z ) = 0 for all 
z  X, whenever {xn} is a sequence in X  
 

Proposition [1]: Let S and T be sequentially continuous 
mappings of a 2-metric space ( X, d ) into itself. If S and T 
are compatible if and only if they are compatible of type (P). 
 

Proof: Let {xn} be sequence in X such that  
limn Sxn = limn Txn = t for some t  X . Suppose that 
the mappings S and T are compatible.  
By ( M4), we have  
d(SSxn,TTxn,z)  d(SSxn, TTxn, STxn) + d(SSxn, STxn,z) + 
d(STxn, TTxn,z) 
  d(SSxn, TTxn, STxn) + d(SSxn, STxn,z) + d(STxn, TSxn,z)  
 + d(STxn, TTxn, TSxn) + d(TSxn, TTxn,z). 
letting n  since S and T are compatible and sequentially 
continuous, we have limn d( SSxn, TTxn,z ) = 0 for all z  
X. Conversely, suppose that S and T are compatible of 
type(P). By (M4), we have 
d(STxn,TSxn,z)  d(STxn, TSxn, SSxn) + d(STxn, SSxn,z) + 
d(SSxn, TSxn,z) 
  d(STxn, TSxn, SSxn) + d(STxn, SSxn,z) + d(SSxn, TTxn,z)  
 + d(SSxn, TSxn, TTxn) + d(TTxn, TSxn,z). 
letting n  since S and T are compatible of type(P) and 
sequentially continuous, we have limn d( STxn, TSxn,z ) = 
0 for all z  X. This completes the proof. 
 

Proposition [2]: Let S and T be compatible mappings of 
type(P) from a 2-metric space ( X, d ) into itself. If St = Tt 
for some t in X, Then STt = SSt = TTt = TSt. 
 

Proof : Suppose that {xn} is a sequence in X defined by xn = 
t , n = 1,2,3,... and St = Tt. Then we have linn Sxn = 
limn Txn = St. Since S and T are compatible mappings of 
type (P), we have d( SSt, TTt, z) = limn d(SSxn, TTxn, z) 
= 0. 
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Hence we have SSt = TTt. Therefore, STt = SSt = TTt = 
TSt. 
 

Proposition [3]: Let S and T be compatible mappings of 
type(P) from a 2-metric spaces (X,d) into itself. Suppose 
limnSxn = limnTxn = t for some tX. Then we have the 
following. 
(i) limnTTxn = St if S is sequentially continuous at t; 
(ii) limnSSxn = Tt if T is sequentially continuous at t; 
(iii) STt = TSt and St = Tt if S and T are Sequentially 
continuous at t. 
 

Proof: (i) Suppose that limn Sxn = limnTxn = t for some 
tX . Since S is sequentially continuous we have 
limnSTxn = St. We have 
d(TTxn,St,z)  d(TTxn, St, SSxn) + d(TTxn, SSxn,z) + 
d(STxn, St,z) 
Therefor, since S and T are compatible mappings of type(P), 
we have 
 limn TTxn = St. 
(ii) The proof of limnSSxn = Tt follows on the similar 
lines as argued in (i). 
(iii) Since T is sequentially continuous at t,we have TTxn = 
Tt. By (i) since S is sequentially continuous at t. we have 
also limnTTxn = St. Hence by the uniqueness of the limit, 
we have St = Tt and so PROPOSITION[2] STt = TSt. 
 Let R+ denote the set of all non-negative real numbers and F 
be the family of mappings  : (R+)5 R+ such that each  is 
upper-semi-continuous, non-decreasing in each coordinate 
variable, and for any t > 0, (t) = (t,t,a1t,a2t,t) < t, where  : 
R+  R+ is a mapping with (0) = 0 and a1+ a2 = 3. 
We have prove the following theorems: 
 

Theorem [1]: Let A, B, S and T be mappings from a 
complete 2-metric space (X, d) into itself , satisfying the 
following conditions: 
[1.1] A(X)  T(X) and B(X)  S(X), 
[1.2] S(X)  T(X) is a complete subspace of X. 
[1.3] [1+p{d(Ax,Sx,z) + d(By,Ty,z)}] d(Ax,By,z)  
p[d2(Ax,Sx,z) +d2(By,Ty,z)]  
 + ( d(Sx,Ty,z), d(Ax,Sx,z), d(By,Ty,z), d(Ax,Ty,z), 
d(By,Sx,z)) 
for all x,y,z  X, where   F. Then the pairs A, S and B, T 
have a coincidence point in X. 
For our theorems, we need the following LEMMAS: 
LEMMA [1]: For every t > 0, (t) < t if and only if limn 


n(t) = 0, where n denotes the n-times composition of . 
LEMMA [2] : Let A, B, S and T be mappings from a 
complete 2-metric space (X, d) into itself , satisfying the 
conditions [1.1], [1.3].  
 
Then we have the following : 
(a) For every n  N0, d(yn,yn+1,yn+2) = 0, 
(b)  For every i, j, k  N0, d( yi, yj, yk) = 0, where {yn} is the 
sequence in X defined by [1.4]. 
 

Proof of the Lemma: (a) By(1.1) since A(X)  T(X), for 
any arbitrary point x0  X, there exists a point x1  X such 
that Ax0 = Tx1. Since B(X)  S(X), for any arbitrary point x1 
 X, there exists a point x2  X such that Bx1 = Sx2 and so 

on. Inductively, we can define a sequence {yn} in X such 
that  
[1.4] y2n = Tx2n+1 = Ax2n and y2n+1 = Sx2n+2 = Bx2n+1 for n = 
0,1,2, … 
 
In [1.3], taking x = x2n+2, y = x2n+1 , z = x2n we have, 
[1+p{d(Ax2n+2,Sx2n+2,y2n) + d(Bx2n+1,Tx2n+1,y2n)}] 
d(Ax2n+2,Bx2n+1,y2n)  
 p[d2(Ax2n+2,Sx2n+2,y2n) +d2(Bx2n+1,Tx2n+1,y2n)]  + ( 
d(Sx2n+2,Tx2n+1,y2n), d(Ax2n+2,Sx2n+2,y2n), 
d(Bx2n+1,Tx2n+1,y2n),  
 d(Ax2n+2,Tx2n+1,y2n), 
d(Bx2n+1,Sx2n+2,y2n))[1+p{d(y2n+2,y2n+1,y2n) + 
d(y2n+1,y2n,y2n)}] d(y2n+2,y2n+1,y2n)   p[d2(y2n+2,y2n+1,y2n) 
+d2(y2n+1,y2n,y2n)] + (d(y2n+1,y2n,y2n),  d(y2n+2,y2n+1,y2n), 
d(y2n+1,y2n,y2n), d(y2n+2,y2n,y2n), d(y2n+1,y2n+1,y2n)) 
[1+p{d(y2n+2,y2n+1,y2n) + 0}] d(y2n+2,y2n+1,y2n)    
p[d2(y2n+2,y2n+1,y2n) + 0] + (0, d(y2n+2,y2n+1,y2n), 0, 0, 0) 
d(y2n+2,y2n+1,y2n)  (0, d(y2n+2,y2n+1,y2n), 0, 0, 0)  < 
d(y2n+2,y2n+1,y2n). 
 
Which is a contradiction. Thus we have d(y2n+2,y2n+1,y2n) = 0,  
 
Similarly, we have d(y2n+1,y2n,y2n-1) = 0.  
Hence , for n = 0,1,2 …., we have [3.1.4] d(yn+2,yn+1,yn) = 0. 
(b) For all z  X, let dn(z) = d(yn, yn+1,z) for n = 0,1,2,….. .  
By (a), we have  
d(yn, yn+2,z)  d(yn, yn+2, yn+1) + d(yn, yn+1,z) + d(yn+1, yn+2,z) 
d(yn, yn+2,z)  d(yn, yn+1,z) + d(yn+1, yn+2,z) 
d(yn, yn+2,z)  dn(z) + dn+1(z)  
Taking x = x2n+2 and y = x2n+1 in [3.1.3],  
we have 
 
[1+p{d(Ax2n+2,Sx2n+2,z) + d(Bx2n+1,Tx2n+1,z)}] 
d(Ax2n+2,Bx2n+1,z)  
  p[d2(Ax2n+2,Sx2n+2,z) +d2(Bx2n+1,Tx2n+1,z)]  
 + ( d(Sx2n+2,Tx2n+1,z), d(Ax2n+2,Sx2n+2,z), 
d(Bx2n+1,Tx2n+1,z),  
 d(Ax2n+2,Tx2n+1,z), d(Bx2n+1,Sx2n+2,z)) 
[1+p{d(y2n+2,y2n+1,z) + d(y2n+1,y2n,z)}] d(y2n+2,y2n+1,z)  
  p[d2(y2n+2,y2n+1,z) +d2(y2n+1,y2n,z)] + ( d(y2n+1,y2n,z),  
 d(y2n+2,y2n+1,z), d(y2n+1,y2n,z), d(y2n+2,y2n,z), d(y2n+1,y2n+1,z)) 
[1.5] [1+p{d2n+1(z) + d2n(z)}] d2n+1(z) 
 p[d2

2n+1(z) +d2
2n(z)] + (d2n(z),d2n+1(z), d2n(z), 

 {d2n(z)+d2n+1(z)}, 0) 
Now, we shall show that { dn(z)} is a non increasing 
sequence in R+ . In fact, let dn+1(z) > dn(z) for some n. 
By [1.5] we have, d2n+1(z) < d2n+1(z), which is a contradiction 
in R+. 
Now, we claim that dn(ym) = 0 for all non negative integers 
m, n. 
Case 1. n  m. Then we have 0 = dm(ym)  dn(ym). 
Case 2. n < m. By ( M4), we have  
 dn(ym)  dn(ym-1) +dm-1(yn)  dn(ym-1) + dn(yn) = dn(ym-1) 
By using the above inequality repeatedly, we have 
 dn(ym)  dn(ym-1)  dn(ym-2)  …… dn(yn) = 0, 
which completes the proof of our claim. 
Finally, let i, j, and k be arbitrary non-negative integers. We 
may assume that i < j. By ( M4),  
we have d(yi,yj,yk)  di(yj) + di(yk) + d(yi+1, yj, yk) = d(yi+1,yj, 
yk). 
Therefore, by repeatition of the above inequality, we have 
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 d(yi,yj,yk)  d(yi+1,yj, yk)  ……  d(yi,yj, yk) = 0. 
This completes the proof. 
LEMMA [3]: Let A, B, S and T be mappings from a 2-
metric space (X, d) into itself satisfying the following 
conditions [1.1] and [1.3]. Then the sequence {yn} defined 
by [1.4] is a Cauchy sequence in X. 
PROOF OF THE LEMMA : In the proof of LEMMA [2], 
since dn(z) is a non increasing sequence in R+ , by [1.3], we 
have , 
[1+p{d(Ax2,Sx2,z) + d(Bx1,Tx1,z)}] d(Ax2,Bx1,z)  
 p[d2(Ax2,Sx2,z) 
+d2(Bx1,Tx1,z)] 
+ ( d(Sx2,Tx1,z), d(Ax2,Sx2,z),d(Bx1,Tx1,z), 
d(Ax2,Tx1,z), d(Bx1,Sx2,z)) 
[1+p{d(y2,y1,z) + d(y1,y0,z)}] d(y2,y1,z) 
 p[d2(y2,y1,z) +d2(y1,y0,z)]+ ( d(y1,y0,z), d(y2,y1,z), 
 d(y1,y0,z), d(y2,y0,z),d(y1,y1,z)) 
[1+p{d1(z) + d0(z)}] d1(z)  
 p[d2

1(z) +d2
0(z)]  

+ (d0(z), d1(z), d0(z), {d0(z)+d1(z)}, 0) 
 d1(z)  (d0(z), d0(z), d0(z), {d0(z)+d0(z)}, 0) 
 d1(z)  (d0(z)) 
and d2(z)  (d1(z))  ((d0(z)) = 2(d0(z)).  
In general, we have dn(z)  n(d0(z)).  
Thus, if d0(z) > 0, by LEMMA [1] limndn(z) = 0. If d0(z) = 
0, we have clearly lim n dn(z) = 0 since dn(z) = 0 for n = 
1,2, … 
Now, we shall prove that {yn} is a Cauchy sequence in X. 
Since limndn(z) = 0, it is sufficient to show that a 
subsequence { y2n} of { yn } is a Cauchy sequence in X. 
Suppose that the sequence {y2n} is not a Cauchy sequence in 
X. Then there exist a point z  X, an  > 0 and strictly 
increasing sequences {m(k)}, {n(k)} of positive integers 
such that k  n(k) < m(k), 
[1.6] (y2n(k),y2m(k),z)   and d(y2n(k),y(2m-2)(k), z) <  
for all k = 1,2,….. By LEMMA[2] and (M4), we have  
 d(y2n(k), y2m(k), z) – d(y2n(k), y2m(k-2), z)  d(y2m(k-2),y2m(k), z)  
d2m(k-2)(z) + d2m(k-1)(z) 
Since {d(y2n(k), y2m(k), z) - } and {- d(y2n(k), y2m(k-2), z)} are 
sequences in R+ and limn dn(z) = 0, we have  
[1.7] limk d(y2n(k),y2m(k), z) =  and limk d(y2n(k), y2mk-2, 
z) =  
Note that, by (M4), we have 
[1.8] | d(x,y,a) – d(x,y,b)|  d(a,b,x) + d(a,b,y) 
for all x, y, a, b  X. Taking x = y2n(k), y = a, a = y2m(k-1) and 
b = y2m(k) in [1..8] and using LEMMA [2] and [1.7], we have  
[1.9] limk d(y2n(k), y2m(k-1), z) = . 
Once again, by using LEMMA[2], [1..7] and [1.8], we have 
[1.10] limk d(y2n(k)+1, y2m(k), z) =  and limk d(y2n(k-1), 
y2m(k-1), z) = . 
Thus, by [1.3], we have,  
[1.13] 
[1+p{d(Ax2m(k),Sx2m(k),z)+d(Bx2n(k+1),Tx2n(k+1),z)}]d(Ax2m(k),
Bx2n(k+1),z)  
  p[d2(Ax2m(k),Sx2m(k),z) +d2(Bx2n(k+1),Tx2n(k+1),z)] + ( 
d(Sx2m(k),Tx2n(k+1),z),  
 d(Ax2m(k),Sx2m(k),z), 
d(Bx2n(k+1),Tx2n(k+1),z),d(Ax2m(k),Tx2n(k+1),z), 
 d(Bx2n(k+1),Sx2m(k),z)) 
[1+p{d(y2m(k),y2m(k-1),z) + d(y2n(k+1),y2n(k),z)}] 
d(y2m(k),y2n(k+1),z)  

  p[d2(y2m(k),y2m(k-1),z) +d2(y2n(k+1),y2n(k),z)] + ( d(y2m(k-

1),y2n(k),z),  
 d(y2m(k),y2m(k-1),z), d(y2n(k+1),y2n(k),z),d(y2m(k),y2n(k),z), 
d(y2n(k+1),y2m(k-1),z)). 
As k  in [1.11] and noting that d is continuous, we have 
   ( , 0, 0, ,  ) < () <  
which is a contradiction. Therefore, { y2n} is a Cauchy 
sequence in X and so the sequence { yn} is a Cauchy 
sequence in X. This completes the proof. 
 
Proof of the Theorem : By LEMMA[3], the sequence { yn} 
defined by [1.2] is a Cauchy sequence in S(X)  T(X). 
Since S(X)  T(X) is a complete subspace of X, {yn} 
converges to a point w in S(X)  T(X). On the other hand, 
since the subsequences { y2n} and { y2n+1} of {yn} are also 
Cauchy sequences in S(X)  T(X), they also converge to the 
same limit w. Hence there exist two points u, v in X such 
that Su = w and Tv = w, respectively.  
By [1.3], we have  
[1+p{d(Au,Su,z) + d(Bx2n+1,Tx2n+1,z)}] d(Au,Bx2n+1,z)  
 p[d2(Au,Su,z) +d2(Bx2n+1,Tx2n+1,z)] + ( d(Su,Tx2n+1,z), 
d(Au,Su,z), 
 d(Bx2n+1,Tx2n+1,z),d(Au,Tx2n+1,z), d(Bx2n+1,Su,z)) 
[1+p{d(Au,Su,z) + d(y2n+1,y2n,z)}] d(Au,y2n+1,z)  
 p[d2(Au,Su,z) + d2(y2n+1,y2n,z)] + (d(Su,y2n,z), 
d(Au,Su,z),  
 d(y2n+1,y2n,z), d(Au,y2n,z),d(y2n+1,Su,z)) 
Since limndn(z) = 0 in the proof of LEMMA[2], letting 
n, we have 
[1+p{d(Au, w,z) + d(w, w,z)}] d(Au, w,z)  
 p[d2(Au, w,z) +d2(w, w, z)] + ( d(w, w,z), d(Au, w,z),d(w 
,w,z), 
d(Au, w,z),d(w, w,z)) 
d(Au, w,z)  ( 0, d(Au, w,z), 0,d(Au, w,z),0) <  (d(Au, 
w,z)) < d(Au, w,z) 
which is contradiction . Hence Au = w = Su , that is u is a 
coincidence of A and S.  
Similarly, we can show that v is a coincidence point of B 
and T. 
Theorem [2] : Let A, B, S and T be mappings from a 2-
metric spaces ( X,d) into itself satisfying the conditions 
[1.1], [1.3], [1..10] and the following: 
[2.1] the pairs A, S and B,T are compatible mappings of type 
(P). 
[2.2] the pairs A,S and B, T are sequentially continuous at 
their coincidence points. 
Then A, B, S and T have a unique common fixed point in X. 
 

Roof of Theorem : By THEOREM [1], there exist two 
points u, v in X such that Au = Su = w and Bv = Tv = w, 
respectively, since A and S are compatible mappings of 
type(P), by PROPOSITION[3], ASu = SSu = SAu = AAu, 
which implies that Aw = Sw, Similarly B and T are 
compatible mapping of type(P) we have Bw = Tw. Now, we 
prove that Aw = w. If Aw  w, then by [1.3], we have 
 
 [1+p{d(Aw,Sw,z) + d(Bx2n+1,Tx2n+1,z)}] d(Aw,Bx2n+1,z)  
 p[d2(Aw,Sw,z) +d2(Bx2n+1,Tx2n+1,z)] + ( 
d(Sw,Tx2n+1,z),d(Aw,Sw,z),  
d(Bx2n+1,Tx2n+1,z), d(Aw,Tx2n+1,z), d(Bx2n+1,Sw,z)) 
[1+p{d(Aw,Sw,z) + d(y2n+1,y2n,z)}] d(Aw,y2n+1,z)  
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 p[d2(Aw,Sw,z)+d2(y2n+1,y2n,z)] +(d(Sw,y2n,z), 
d(Aw,Sw,z), d(y2n+1,y2n,z), 
d(Aw,y2n,z), d(y2n+1,Sw,z)) 
Since limn dn(z) = 0 in the proof of Lemma2, letting 
n, we have 
[1+p{d(Aw, w,z) + d(w, w,z)}] d(Aw, w,z)  
 p[d2(Aw, w,z) +d2(w, w, z)] + ( d(w, w,z), d(Aw, w,z), 
d(w ,w,z), 
d(Aw, w,z), d(w, w,z)) 
d(Aw, w,z)  ( 0, d(Aw, w,z), 0,d(Aw, w,z),0) <  (d(Aw, 
w,z)) < d(Aw, w,z) 
which is contradiction .  
Hence Aw = w = Sw. 
Similarly, we have Bw = Tw = w. 
This means that w is a common fixed point of A, B, S and T.  
The uniqueness of the fixed point w follows from [3.1.3].  
 
This complete the proof. 
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