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1. Introduction

The concept of 2-metric space has been investigated initially
by Géhler in a series of papers and has been developed
extensively by Gihler and many others. A 2-metric space is
a set X with a real-valued function d on XxXxX satisfying
the following conditions:

(M) For two distinct point x, y € X, there is a point z € X
such that d(x, y ,z) # 0

(M) d(x, v ,z) = 0 if at least two of x, y, z are equal,
M3)d(x,y,2)=d(x,z,y)=d(y,z,X) VX, y,z € X,

My) d(x,y,z) <d(x, y, u) + d(x, u,z) + d(u, y ,2) V X, Y, z,
ue X,

The function d is called a 2-metric for the space X and ( X,
d) denotes a 2-metric space. It has been shown by Géhler
[18] that a 2-metric d is non-negative and although d is
continuous function in any one of its three arguments, it
need not be continuous in two arguments . A 2-metric d
which is continuos in all of its arguments is said to be
continuous. we use the concept of compatible mappings of
type (P) in 2-metric spaces.

In the last three decades, a many authors have studied the
aspects of fixed point theory in the setting of 2-metric
spaces. They have been motivated by various concepts
already known for metric space and have thus introduced
analogous of various concepts in the framework of the 2-
metric spaces.

Definitions [1]: A sequence {x,} in a 2-metric space ( X, d)
is said to be convergent to a point x € X, denoted by
lim, X, = X, if lim,_,,,d(x,,X,z) = 0 for all z € X. The point
x is said to be limit of sequence {x,} in X.

Definition [2]: A sequence {x,} in a 2-metric space (X,d) is
called a Cauchy sequence if d(X;;,X,,Z) — 0 as n, m — oo for
allze X.

Definition [3]: A 2-metric space in which every Cauchy
sequence is convergent is called complete.

Definition [4]: A mapping S from a 2-metric space (X, d)
into itself is said to be sequentially continuous at a point x €
X if every sequence { x,} in X such that lim,_,., d( x,,x,z ) =
0 forall z € X, lim,_,,, d(Sx,,Sx,2) = 0.

Definition [5]: Let S and T be mappings from a 2-metric
space ( X,d ) into itself. The mappings S and T are said to be
compatible of type (P) if lim,_,.,, d(SSx,, TTx,,z ) = 0 for all
z € X, whenever {x,} is a sequence in X

Proposition [1]: Let S and T be sequentially continuous
mappings of a 2-metric space ( X, d ) into itself. If S and T
are compatible if and only if they are compatible of type (P).

Proof: Let {x,} be sequence in X such that

lim,_,,, Sx, = lim,_,.,, Tx, =t for some t € X . Suppose that
the mappings S and T are compatible.

By ( M,), we have

d(SSx,, TTx,,z) < d(SSx,, TTx,, STx,) + d(SSx,, STx,,z) +
d(STx,, TTx,,z)

< d(SSx,, TTx,, STx,) + d(SSx,, STx,,z) + d(STx,, TSx,,z)
+ d(STx,, TTX,, TSx,) + d(TSx,, TTX,,2).

letting n —oo since S and T are compatible and sequentially
continuous, we have lim,_,,, d( SSx,, TTx,,z)=0 forall z €
X. Conversely, suppose that S and T are compatible of
type(P). By (M,), we have

d(STx,,TSx,,z) < d(STx,, TSx,, SSx,) + d(STx,, SSx,,z) +
d(SSx,, TSx,,z)

< d(STx,, TSx,, SSx,) + d(STx,, SSx,,z) + d(SSx,, TTx,,z)
+ d(SSx,, TSx,, TTx,) + d(TTx,, TSx,,z).

letting n —oo since S and T are compatible of type(P) and
sequentially continuous, we have lim,_,,, d( STx,, TSx,,z ) =
0 for all z € X. This completes the proof.

Proposition [2]: Let S and T be compatible mappings of
type(P) from a 2-metric space ( X, d ) into itself. If St = Tt
for some t in X, Then STt = SSt=TTt = TSt.

Proof : Suppose that {x,} is a sequence in X defined by x, =
t, n=12.3,.. and St = Tt. Then we have lin,_,, Sxn =
lim,_,,, Txn = St. Since S and T are compatible mappings of
type (P), we have d( SSt, TTt, z) = lim,_,,, d(SSx,, TTx,, z)
=0.

Volume 4 Issue 9, September 2015

WWW.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Paper ID: SUB158427

1425




International Journal of Science and Research (1JSR)
ISSN (Online): 2319-7064
Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Hence we have SSt = TTt. Therefore, STt = SSt = TTt =
TSt.

Proposition [3]: Let S and T be compatible mappings of
type(P) from a 2-metric spaces (X,d) into itself. Suppose
lim,_,..Sx, = lim,_,,,Tx, = t for some teX. Then we have the
following.

(1) lim,_,,, TTx, = St if S is sequentially continuous at t;

(i1) lim,_,,,SSx, = Tt if T is sequentially continuous at t;

(iii)) STt = TSt and St = Tt if S and T are Sequentially
continuous at t.

Proof: (i) Suppose that lim,_,,, Sx, = lim,_,,,Tx, =t for some
teX . Since S 1is sequentially continuous we have
lim,_,..STx, = St. We have

d(TTx,,St,z) < d(TTx,, St, SSx,) + d(TTx,, SSx,z) +
d(STx,, St,z)

Therefor, since S and T are compatible mappings of type(P),
we have

lim,_,,, TTx, = St.

(i) The proof of lim,,,,SSx, = Tt follows on the similar
lines as argued in (i).

(iii) Since T is sequentially continuous at t,we have TTx, =
Tt. By (i) since S is sequentially continuous at t. we have
also lim,_,,,TTx, = St. Hence by the uniqueness of the limit,
we have St =Tt and so PROPOSITION[2] STt = TSt.

Let R" denote the set of all non-negative real numbers and F
be the family of mappings ¢ : (R")> -R" such that each ¢ is
upper-semi-continuous, non-decreasing in each coordinate
variable, and for any t > 0, y(t) = ¢(t,t,a;t,a,t,t) <t, where y :
R" — R is a mapping with y(0) = 0 and a,+ a, = 3.

We have prove the following theorems:

Theorem [1]: Let A, B, S and T be mappings from a
complete 2-metric space (X, d) into itself , satisfying the
following conditions:

[1.1T A(X) < T(X) and B(X) < S(X),

[1.2] S(X) N T(X) is a complete subspace of X.

[1.3] [1+p{d(Ax,Sx,z) + d(By,Ty,z)}] d(Ax,By,z) <
pld*(Ax,Sx,z) +d*(By,Ty,2)]

+ ¢( d(Sx,Ty,z), d(Ax,Sx,z), d(By,Ty,z), d(Ax,Ty,z),
d(By,Sx,z))

for all x,y,z € X, where ¢ € F. Then the pairs A, S and B, T
have a coincidence point in X.

For our theorems, we need the following LEMMAS:
LEMMA [1]: For every t > 0, y(t) <t if and only if lim,_,
Y(t) = 0, where y" denotes the n-times composition of y.
LEMMA [2] : Let A, B, S and T be mappings from a
complete 2-metric space (X, d) into itself , satisfying the
conditions [1.1], [1.3].

Then we have the following :

(a) For everyn € NO, d(Yn>Yn+1,Yn+2) = O,

(b) Forevery 1, j, k € NO, d( yi, yj, y«) = 0, where {y,} is the
sequence in X defined by [1.4].

Proof of the Lemma: (a) By(1.1) since A(X) < T(X), for
any arbitrary point X, € X, there exists a point x; € X such
that Axq = Tx;. Since B(X) < S(X), for any arbitrary point X,
e X, there exists a point X, € X such that Bx; = Sx;, and so

on. Inductively, we can define a sequence {y,} in X such
that

[1.4] yan = TXoni1 = AXpn and yoni1 = SXonia = BXopiy for n =
0,1,2, ...

In [1.3], taking X = Xop0, ¥ = Xons1 , Z = Xpp, We have,
[1+p {d(AX2n+2,SX20+42,Y20) + d(BXon+1, TX2n+1,¥20) } ]
d(Axzn+2,BX2n+1,¥20)

< pld(AXgpin,SXoni2,Yan)  +d (BXane1, TXont1,Y20)]
d(Sxon+2, TX2n+1,Y20)5
d(BXaq+1, TX20+1,¥20),
d(AXan42, TXont1,¥20),
d(BXan+1,S%on+2, Y20 ) 1P {A(Y2n+2, Y2n+1,Y 20) +
d(Yant1,Y20Y20) ] d(Yoni2sYone1s¥n) < p[dz(YZn+2)y2n+1 »Y2n)
+d2(Y2n+1,Y2mY2n)] + O(d(yan+1,Y20:Y20) d(Y2n+2,Y20+15Y20)s
d(Yant1,¥20,Y20)5 d(Y2042,Y20:Y2n)s d(yan+1,Y2041,Y20))
[14p{d(yan2,Yon15y20)  + 0}]  d(Y2ns2,¥20¢1,¥20) <
P[dZ(Y2n+z,}’2n+1aan) + O] + d)(oa d(y2n+23y2n+1ay2n)a 09 09 0)
d(Yzmz,}’znﬂ,}’zn) < ¢(03 d(y2n+23y2n+17y2n)9 0: 09 0) <
d(Yan+2,Y2041,Y2n)-

+d(
d(AX2n+2,SX2n+2,Y2n)s

Which is a contradiction. Thus we have d(Yan2,Y20+1,¥20) = 0,

Similarly, we have d(Van+1,Y20,Y2n-1) = O.

Hence, forn=0,1,2 ...., we have [3.1.4] d(Vn+2,Yn+1,¥n) = 0.
(b) Forall z € X, let dy(z) = d(Yp, Yni1,2) forn=0,1,2,..... .
By (a), we have

d(Yn, Yn2:2) < d(¥n, Yne2s Yne1) T Ao Yns1,2) + d(Yne1s Yae2sZ)
d(Yn, Yn2:2) < d(¥n, Yne1,2) + A(Yar1, Yni2.2)

d(Yns Yn+2,2) < dn(2) + dpi1(2)

Taking X = X,,+2 and y = X441 in [3.1.3],

we have

[1+p {d(AX2n+2,S%20+42,2) +
d(Axoq+2,BXon+1,2)

< Pl (AXzni2,S%X04:2,2) +d* (BXape1, TX2n41,2)]

+ o( d(Sxan+2, TX20+1,2), d(AX2n+2,5%2n42,2),
d(Bxan+1, TXon+1,2),

d(AXan+2, TX20+1,2), A(BXon+1,5X20+2,2))

[1+p{d(y2ns2,Y20+1,2) + A(Y2n+1,Y20.2) } ] d(Yon+2,Y20+1,2)

< P[dz(}’znu,}’znﬂ,z) +dz(}’Zrﬁla}’sz)] + ¢ d(Yan+1,Y2052),
d(yan+2,Y20+152)s d(Yaur1,Y20,2)5 d(Yan2,Y20,2)5 d(Yon+1,Y20+1,2))
[1.5] [1+p{d2n+1(z) + dn(2)}] d2ns1(2)
< p[d*01(2) +d*20(2)] + G(don(2),doni1(2), don(2),
{d2n(2)+d2ni1(2)}, 0)
Now, we shall show that { d,(z)} is a non increasing
sequence in R" . In fact, let d,.+1(z) > d,(2) for some n.
By [+1 .5] we have, dy,+1(z) < dyu+1(2), which is a contradiction
inR".
Now, we claim that d,(y,,) = 0 for all non negative integers
m, n.
Case 1. n > m. Then we have 0 = d;;,(ym) = du(Ym)-
Case 2. n <m. By ( M), we have

dn(ym) < dn(Ym-l) +dm-l(Yn) < dn(Ym-l) + dn(yn) = dn(Ym—l)
By using the above inequality repeatedly, we have

dn(ym) < dn(Ym-l) < dn(Ym-2) <l < dn(Yn) = 0;
which completes the proof of our claim.
Finally, let i, j, and k be arbitrary non-negative integers. We
may assume that i <j. By ( My),
Wf; have d(y:,y;.yi) < di(y;) + di(yi) + d(yist, ¥i> Y1) = d(¥isry;
Yi)-
Therefore, by repeatition of the above inequality, we have

d(Bxan+1,TX2n41,2) } ]
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d(yiypy) < d(¥ien,yi Yo < ..o <d iy, yi) = 0.

This completes the proof.

LEMMA [3]: Let A, B, S and T be mappings from a 2-
metric space (X, d) into itself satisfying the following
conditions [1.1] and [1.3]. Then the sequence {y,} defined
by [1.4] is a Cauchy sequence in X.

PROOF OF THE LEMMA : In the proof of LEMMA [2],
since d,(z) is a non increasing sequence in R", by [1.3], we
have ,

[1+p{d(Ax,,Sx,,2) + d(Bx;,Tx,2)} ] d(Ax,,Bx,2)

< pld*(Ax,,8%2,2)
+d*(Bx,,Tx,,2)]

+ o( d(Sx,,Tx1,2), d(AX,,SX%,,2),d(Bx;,Tx1,2),

d(Ax,,Txy,z), d(Bx,,5%,,2))

[1+p{d(y2.y1.2) + d(y1.¥0,2)}] d(¥2,¥1,2)

< pld*(y2,y1,2) +d* (1,502 1+ O d(¥1,Y0,2), d(¥2,y1,2),
d(ylayoaz)’ d(y2’yovz)3d(y13y132))

[14p{di(2) + do(2)}] di(2)

< pld*(2) +d"(2)]
+¢(do(2), di(2), do(2), {do(2)+di(2)}, 0)

di(2) < ¢(do(2), do(2), do(2), {de(2)+do(2)}, 0)

di(2) < v(do(2))

and dy(2) < ¥(d1(2)) < Y(¥(do(2)) = v(do(2)).

In general, we have d,(z) < v"(do(2)).

Thus, if do(z) > 0, by LEMMA [1] lim,_,.,d,(z) = 0. If dy(z) =
0, we have clearly lim ,_,,, d,(z) = 0 since d,(z) = 0 for n =
1,2, ...

Now, we shall prove that {y,} is a Cauchy sequence in X.
Since lim,,,d,(z) = 0, it is sufficient to show that a
subsequence { y»,} of { y, } is a Cauchy sequence in X.
Suppose that the sequence {y,,} is not a Cauchy sequence in
X. Then there exist a point z € X, an ¢ > 0 and strictly
increasing sequences {m(k)}, {n(k)} of positive integers
such that k < n(k) < m(k),

[1.6] (Yan()Y2m@»2) = € and d(YansYem2)a» 2) < €
forallk=1,2,..... By LEMMAJ2] and (M), we have
d(Yanmp» Y2maos Z2) — AYoncs Yam2y Z) < d(Yomk-2)sYamey» Z2) <
Dom2)(2) + damae1y(2)

Since {d(Y2n(k), Yom(k) Z) - 8} and {8- d(yZn(k), Yom(k-2) Z)} are
sequences in R" and lim,_,., d,(z) = 0, we have

[1.7] limy 0 d(YoncsYamey» 2) = € and limy_,q, d(Yang> Yomk-2s
zZ)=¢

Note that, by (M), we have

[1.8] ] d(x,y,a) — d(x,y,b)| < d(a,b,x) + d(a,b,y)

forall X, y, a, b € X. Taking X = Yan), ¥ = @, @ = Yom(k1y and
b = Yama in [1..8] and using LEMMA [2] and [1.7], we have
[1.9] limy_,0 d(Yang)» Yam@e-1)» Z) = €.

Once again, by using LEMMA[2], [1..7] and [1.8], we have
[1.10] limy o, d(Yonao+1> Yom 2) = € and limy ., d(Yanaerys

Yam(k-1)» Z) = E.
Thus, by [1.3], we have,
[1.13]

[1+p {d(AXam(k), SXam(i)»Z)TA(BXanir 19, TXank+1,2) } (A Xome),s
BXon(k+1),2)

< p[dz(AXZm(k),SXZm(k);Z) +d2(BX2n(k+l),TXZn(kH),Z)] + (
d(SXZm(k)sTXZn(kH):Z)a

d(AXZm(k)sSX2m(k)sz)a

d(Bxankr 1), TXon(c+1),2),d(AXom(k), TXoncr1),2),
d(szn(kﬂ),Ssz(k),Z))

[1+p {d(Y2m(x)Yom(k-1),Z) +
d(y2m(k):y2n(k+l):z)

d(Yan(+1),Y2n0052) } 1

< PLd(YamaosYome192) Yo Yana0:2)] T O d(Yamee
1),Y2n(k)>Z),
d(Y2m(k),Y2m(k-1),Z),
d(y2n(k+1)sy2m(k—1)az))-
As k >0 in [1.11] and noting that d is continuous, we have
€<d(e,0,0,e,8)<y(e)<e

which is a contradiction. Therefore, { y,,} is a Cauchy
sequence in X and so the sequence { y,} is a Cauchy
sequence in X. This completes the proof.

d(y2n(k+l ),Y2n(k),Z) 7d(y2m(k)9y2n(k)’z)s

Proof of the Theorem : By LEMMA[3], the sequence { y,}
defined by [1.2] is a Cauchy sequence in S(X) N T(X).
Since S(X) n T(X) is a complete subspace of X, {y,}
converges to a point w in S(X) N T(X). On the other hand,
since the subsequences { y,,} and { yon1} of {y.} are also
Cauchy sequences in S(X) N T(X), they also converge to the
same limit w. Hence there exist two points u, v in X such
that Su=w and Tv = w, respectively.

By [1.3], we have

[1+p{d(Au,Su,z) + d(Bxon1,TXons1,2) } ] d(Au,Bx;p11,2)

< p[d*(Au,Su,2) +d*(BXoni1, TXoni1,2)] + ¢( d(SU,TXop41,2),
d(Au,Su,z),

d(BXan+1,TXon+1,2),d(A0, TX2p+1,2), d(BX2n11,Su,2))
[1+p{d(Aussusz) + d(YZnH»YZmZ)}] d(Au5y2rl+l’Z)

< p[dz(Au’SuaZ) + dz(y2n+lny2nnz)] + ¢(d(sua}’2mZ),
d(Au,Su,z),

d(¥an+1,Y20,2), d(AU,Y20,2),d(Y20+1,50,2))

Since lim, ,.d,(z) = 0 in the proof of LEMMAJ2], letting
n—»o, we have

[1+p{d(Au, w,z) + d(w, w,z)}] d(Au, w,z)

< p[d*(Au, w,z) +d*(w, w, 2)] + ¢( d(w, w,z), d(Au, w,z),d(w
SW,2),

d(Au, w,z),d(w, w,z))

d(Au, w,z) < ¢( 0, d(Au, w,z), 0,d(Au, w,z),0) < y (d(Au,
w,z)) < d(Au, w,z)

which is contradiction . Hence Au =w = Su, that isu is a
coincidence of A and S.

Similarly, we can show that v is a coincidence point of B
and T.

Theorem [2] : Let A, B, S and T be mappings from a 2-
metric spaces ( X,d) into itself satisfying the conditions
[1.1],[1.3],[1..10] and the following:

[2.1] the pairs A, S and B, T are compatible mappings of type
(P).

[2.2] the pairs A,S and B, T are sequentially continuous at
their coincidence points.

Then A, B, S and T have a unique common fixed point in X.

Roof of Theorem : By THEOREM [1], there exist two
points u, v in X such that Au =Su=w and Bv=Tv =w,
respectively, since A and S are compatible mappings of
type(P), by PROPOSITION([3], ASu = SSu = SAu = AAu,
which implies that Aw = Sw, Similarly B and T are
compatible mapping of type(P) we have Bw = Tw. Now, we
prove that Aw = w. If Aw # w, then by [1.3], we have

[1+p{d(AW,Sw,z) + d(BXpp+1, [X2n11,2) } ] d(AW,BX3441,2)

< pldAw,Sw,z) P BxonnTxXomnz)]  + (
d(Sw,Tx5441,2),d(AW,Sw,z),

d(BXaq+1,TX20+1,2), (AW, TX24+1,2), d(BX2q+1,SW,2))
[1+p{d(AW,Sw,z) + d(yan+1,Y20:2) } ] d(AW,y2011,2)
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< p[d*(AW,SW,2)+d*(Yans1,Y2n2)] +O(A(SW,y20.2),
d(AW,SW,Z), d(Y2n+1,Y2mZ),

d(AW7y2mZ)’ d(anﬂ,SW,Z))

Since lim,_,, dy(z) = 0 in the proof of Lemma2, letting
n—>o0, we have

[1+p{d(Aw, w,z) + d(W, w,z)} ] d(Aw, W,Z)

< p[d(Aw, w,z) +d*(w, w, 2)] + d( d(w, w,2), d(Aw, w,z),
d(w ,w,z),

d(Aw, w,z), d(w, w,z))

d(Aw, w,z) < ¢( 0, d(Aw, w,z), 0,d(Aw, w,z),0) <7y (d(Aw,
w,z)) < d(Aw, w,z)

which is contradiction .

Hence Aw = w = Sw.

Similarly, we have Bw = Tw = w.

This means that w is a common fixed point of A, B, S and T.
The uniqueness of the fixed point w follows from [3.1.3].

This complete the proof.
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