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Abstract: In this paper, the maximum likelihood and Bayes estimators for the Constant-stress partially accelerated life testing are 

considered when the lifetimes of test units are assumed to follow the two-parameter Birnbaum-Saunders distribution. Based on type-II 

censored samples, the maximum likelihood estimates (MLEs) for the parameters of the model are derived. Simulation study is carried 

out to investigate the precision of the MLEs for the parameters involved. Bayesian estimation has been considered using reference prior 

with partial information for the parameters of the model under squared error loss function. Due to the complexity of the model, 

Markovchain Monte Carlo using Gibbs sampling are used to develop a Bayesian estimation for Constant-stress partially accelerated life 

testing model. 
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1. Introduction  
 
Under continuing quest for improvement in the 
manufacturing design, it is more difficult to obtain failure 
information quickly for products tested at the normal use 
condition since test units have a long life and lengthy 
applied tests tend to be far too expensive. For this reason, all 
or some of test units may be subjected to more severe 
conditions than normal ones. These conditions are called 
stresses with may be in the form temperature, voltage, 
pressure, load, humidity, vibration …etc, or some 
combination of them. This kind of testing is called 
accelerated life testing (ALT) or partially accelerated life 
testing (PALT). In ALT, the test units are tested only at 
accelerated conditions; data collected at accelerated 
conditions are then extrapolated through a physically 
appropriate statistical model to estimate the life distribution 
at design condition. The major assumption in ALT is that the 
relationship between life and stress must be known or can be 
assumed. There are situations where a life stress relationship 
is not known and cannot be assumed, i.e., the data obtained 
from ALT cannot be extrapolated to use conditions. In such 
situations, partially accelerated life testing (PALT) is used. 
In PALT, test units are run at both use and accelerated 
conditions. The object of a PALT is to collect more failure 
data in a limited time without necessarily using high stress to 
all test units. Constant-stress PALT and step-stress PALT 
are two commonly used methods. In constant-stress PALT 
products are tested at either normal use or accelerated 
condition only until the test is terminated. In step-stress 
PALT, a sample of test units is first run at use condition and, 
if it does not fail for a specified time, then it is run at 
accelerated condition until a prespecified numbers of 
failures are obtained or a prespecified time has reached.  
 
A few research articles are available for constant-stress 
PALT, which is the main topic of this paper, (for example, 

see, Bai & Chung[1992], Abdel-Ghaly etal.[2008], Abdel-
Hamid[2009], Ismail[2004, 2009], Ismail et al.[2011], 
Cheng and Wang [2012], Zarrin et al.[2012], Srivastava and 
Mittal [ 2013], Srivastava and Sharma [ 2014], ). 
 
Birnbaum and Saunders [1969a] proposed a two-parameter 
failure time distribution for fatigue failure caused under 
cyclic loading. Fatigue failure based on a model which 
assumes that failure is due to the development and growth of 
a dominant crack. This distribution is known as the two-
parameter Birnbaum-Saunders ( BS) distribution or as the 
fatigue life distribution.  
 
Statistical analysis for the BS distribution has for the most 
part, been limited to complete data by several authors, ( for 
example, see Dupuis and Mills [1998], Kevin [1999], Xu 
and Tang [2010, 2011]). little work has been based on 
censored data, (for example, see Rieck [1995], Jeng [2003], 
Ng et al. [2006], Wang et al[2006] and Artur et al. [2011] ). 
Constant-stress ALT for two-parameter BS distribution is 
introduced by Owen [1997] for complete data. Recently, 
Constant-stress ALT and step-stress PALT for two-
parameter BS distribution based on censoring are introduced 
by Attia et al. [2013a, b] and Abd el Sattar [2014]). 
 
In this paper, we discuss the MLE and the Bayesian 
estimators of constant-stress PALT for two-parameter BS 
distribution under type-II censored data. This model is 
described in detail and the MLEs of the parameters of the 
model are derived and its simulation study in section 2. In 
section 3, explains the Bayesian estimation for this model 
under a squared error loss function and the steps of the 
Markov chain Monte Carlo simulation are presented. 
Finally, conclusions are included in section 4. 
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2. Model Description  
 
The lifetime T is assumed to have a two parameters BS 
distribution with the shape and scale parameters α and β 
respectively. So, the probability density function of T is 

 𝑓 𝑡; 𝛼, 𝛽 =
1

2𝛼 2𝜋𝛽

 𝑡 + 𝛽 
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The scale parameter 𝛽 is the median of the 𝐵S distribution 
which has a wide use in reliability studies. The cumulative 
distribution function is as follows:  

 𝐹 𝑡; 𝛼, 𝛽 = Φ 
1
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Where Φ (.) denotes the standard normal distribution.  
And the reliability function of 𝐵𝑆 distribution in (1) take the 
form: 

 𝑅 𝑡 = 1 − Φ 
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Specifically, in a constant-stress PALT the test units run at 
either normal use or accelerated condition only. That is, the 
n sample units are divided into two groups according to a 
certain proportion p such that np units are randomly selected 
and allocated to run under normal use conditions while the 
remaining n(1-p) units are allocated to run under accelerated 
conditions. Suppose that the lifetime of a unit at normal use 
conditions is denoted by T, then the lifetime of that unit at 
accelerated conditions is = 𝜆−1𝑇. Each test unit runs until 
failures without altering the test conditions. 

For an unit tested at normal use condition, the probability 
density function is given by: 

 𝑓𝑇(𝑡) =
1
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While for a unit tested at accelerated condition, the 
probability density function is given by: 

 𝑓𝑍 𝑧 =
𝜆
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Where, 𝑧 ≥ 0, 𝛼, 𝛽 > 0, and 𝜆 > 1 

The constant-stress PALT under type-II censoring takes 
place by running np test units under normal use conditions 
while n(1-p) units will be running under accelerated 
conditions and the test continues until a pre-specified 
number of failures, r, occurs. Then the observed lifetimes 
𝑡 1 ≤ 𝑡 2 ≤ ⋯𝑡 𝑛𝑢  ≤ 𝑅 𝑎𝑛𝑑 𝑧 1 ≤ 𝑧 2 ≤ ⋯𝑧 𝑛𝑎  ≤ 𝑅 
are the ordered failures times at normal use and accelerated 
conditions, respectively, where 𝑅 = 𝑋 𝑟  which is the time 
of the rth failures at which the test is terminated, nu and na are 
the numbers of items failed at use and accelerated 
conditions, respectively. The following two indicators are 
then defined, 𝛿𝑢𝑖

≡ 𝐼 𝑡𝑖 ≤ 𝑅 , 𝑖 = 1, 2, … , 𝑛𝑝  

𝑎𝑛𝑑 𝛿𝑎𝑗
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. 

 

2.1 Maximum Likelihood Estimation  

The maximum likelihood estimators of  ,   and   are 
those values of the parameters that maximize likelihood 
function or, equivalently, its nature logarithm. The natural 
logarithm of the likelihood function is given by: 
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The first derivatives of the (7) with respect to 𝛼, 𝛽 𝑎𝑛𝑑 𝜆 are 
given by: 
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To obtain ̂ , ̂  and ̂ at which the log likelihood 
function is maximized, equating the equations (8-10) to zero, 
Since the closed form solution to thesis equations do not 
exist. Iterative method will be used to solve these equations 
numerically. To estimate the variance-covariance matrix of 
the estimated parameters, we use the second derivatives of 
the logarithm of the likelihood function defined in equation 
(7). The second derivatives are used to get the information 
matrix and by substituting α  for, 𝛼, 𝛽  for 𝛽 and 𝜆  for 𝜆, 
hence the asymptotic variance-covariance matrix is its 
inverse. Then, the second partial derivates are given as 
follows: 
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Such that ∶  H` y = −yH y +  H2 y  
 The approximate confidence intervals of the parameters are 
derived based on the asymptotic distribution of the MLEs of 
the elements of the vector of unknown parameters =
(α, 𝛽, 𝜆). It is known that the asymptotic distribution of the 

MLEs of 

 

−

 𝑣𝑎𝑟  
 

  

can be approximated by a standard 

normal distribution, where 𝑣𝑎𝑟  
 

  is estimated as the 
asymptotic variance, then, the approximate 100 1 −
𝛾% two sided confidence interval for α, 𝛽, 𝜆 are, 
respectively, given by: 

α ± 𝑍𝛾/2 var(α ), 𝛽 ± 𝑍𝛾/2 var( 𝛽 ) 𝑎𝑛𝑑 𝜆 

± 𝑍𝛾/2  var 𝜆    17  

Where 𝑍𝛾/2 is the 100 𝛾/2 standard normal percentile. 
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2.2 Simulation Study 

 
In this section simulation study has been performed using 
Mathcad (14) and is conducted to investigate the 
performances of the MLEs through their estimators, their 
absolute relative bias (RABias) and mean square error 
(MSE).The Simulation procedures will described as follows: 
Step1. 1000 random samples of sizes 100(100)500 were 
generated from the BS distribution. Different initial values 
for all sets of parameters (α0, 𝛽0and 𝜆0 ) are selected.  
 
Step2. For all sample sizes and for all sets of parameters, the 
parameters of the model were estimated under type-II 
censored samples, Where 𝑝 = 0.25 𝑎𝑛𝑑 𝑟 = 0.7 𝑛.  
 
Step3. All equations under type-II censored samples were 
solved by using the numerical iteration method.  
 
Step4. The estimators, RABias and MSE were tabulated for 
all sets of parameters in tables (1-3) for type-II censoring.  
 
Step5. The confidence limit with confidence level  1 − 𝛾 =
0.95 were tabulated for all sets of parameters in table (4-6) 
for type-II censoring. So, simulation results are summarized 
in Tables (1-6).  
 

3. Bayesian Estimation of the Parameters 
 
For Bayesian estimation, Desmond (1986) pointed out, 
statistical analysis of the two parameters BS distribution is 
more difficult. In this section we will introduce Bayesian 
estimation of the constant-stress PALT model for the BS 
distribution when the data are type-II censored. The BS 
distribution has for the most part, been limited to complete 
data. Achcar [1993], used the Jeffrey's priors and reference 
priors to obtain the marginal posterior densities of 
parameters of interest using Laplace s method for 
approximation, Xu and Tang [2010], used the reference 
priors to obtain the marginal posterior densities of 
parameters of interest using Lindley's method and Gibbs 
sampling for approximations, and showed through 
simulations that these two methods outperform the Laplace's 
method. Xu and Tang [2011], proved that the reference prior 
is not suitable to proceed Bayesian estimation and 
introduced reference prior with partial information for type-I 
censoring data. Attia et al.(2013), used the reference prior 
with partial information for type-I censoring data to obtain 
the marginal posterior densities of parameters of interest 
using Gibbs sampling. 
 
In Bayesian estimation we assume that α is independent of 
𝜆 and 𝛽, so we use gamma prior for α and the reference 
prior with partial information for 𝜆 and 𝛽, see, ( Xu and 
Tang (2011) and Attia et al.(2013)). Suppose that there is a 
subjective prior density (Gamma prior) for 𝜆 and the 
conditional noninformative prior for 𝛽, then the joint prior 
of the parameters is  

𝜋 𝛼, 𝛽, 𝜆 ∝ 𝜋 𝛼 ∗ 𝜋 𝜆 ∗ 𝜋 𝛽 𝜆  

 𝜋 𝛼, 𝛽, 𝜆 ∝ 𝛼𝑎1−1 ∗   𝜆a2−1 ∗
1

𝛽
𝑒𝑥𝑝 −𝛼𝑏1 − 𝜆𝑏2  (18) 

Combined with (6), the joint posterior density of 𝛼, 𝛽 𝑎𝑛𝑑 𝜆 
can be written as: 

 𝜋 𝛼, 𝛽, 𝜆  𝑡  =
𝐿 𝑡 𝛼, 𝛽, 𝜆  𝜋 𝛼, 𝛽, 𝜆 

   𝐿 𝑡 𝛼, 𝛽, 𝜆  𝜋 𝛼, 𝛽, 𝜆 𝑑𝛼𝑑𝛽𝑑𝜆
∞

𝜎

∞

𝜎

∞

𝜎

 

Then 𝜋 𝛼, 𝛽, 𝜆  𝑡   is proportional to  
 𝜋 𝛼, 𝛽, 𝜆  𝑡  ∝ 𝛼𝑎1−n0−1 ∗  𝜆a2+na−1

∗
1

 𝛽n0+1
𝑒𝑥𝑝 −𝛼𝑏1 − 𝜆𝑏2  

   
ti + β

ti

3
2

 exp  −
1

2α2
 

ti

β
+

β

ti

− 2   

δu i
np

i=1

  1

− Φ 
1

α
  

R

β
−  

β

R
   

δu i
     

  

   
λzj + β

(λzj)
3
2

 exp  −
1

2α2
 
λzj

β
+

β

λzj

− 2   

δa jnq

j=1

  1

− Φ 
1

α
  

λR

β
−  

β

λR
   

δa j
     

 (19) 

 Therefore, the posterior mean of any function of α, 𝛽 and 𝜆 
say g(α, 𝛽, 𝜆), under the mean squared error loss function is: 

𝐸(𝑔 α, 𝛽, 𝜆 ) ∝    𝑔

∞

0

∞

0

∞

0

 α, 𝛽, 𝜆 𝜋 α, 𝛽, 𝜆 𝑡  𝑑𝛼𝑑𝛽𝑑𝜆 (20) 

 
Generally, it is impossible for [20] to have a closed form. 
Therefore, Monte Carlo integration is used for the 
approximate evaluation of the integral [20]. So, we develop 
a Bayesian estimation of the BS model using Gibbs 
sampling, this technique aims to find a Markov chain which 
has as a limiting distribution the target posterior, and then 
the simulated sample or chain can be used to compute any 
desired characteristic. This means that rather than direct 
computation of the posterior, the simulated Markov chain 
after some burn- in will have realizations that are viewed as 
simulated from the posterior distribution. Then the generated 
samples are used to estimate the parameters of BS model. In 
order to apply the Gibbs sampling, we have to derive the full 
conditional distributions for unknown parameters form the 
posterior by removing all factors that are unrelated to the 
parameter of interest. 
 
The Gibbs sampling can be carried out using the Win BUGS 
program (Bayesian inference using Gibbs sampling). With 
Win BUGS we need only to make some general 
specification about the model of interest and the software 
will computes all the required univariate marginal's. In order 
to apply the Gibbs sampling, the full conditional posterior 
distribution of α, 𝛽 and 𝜆 are obtained from the posterior 
given in [19]. Then the full conditional distribution of α is 
proportional to  
 𝜋 𝛼 𝑡 , 𝛽, 𝜆 ∝ 𝛼𝑎1−n0−1𝑒𝑥𝑝 −𝛼𝑏1  
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 (21)  
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The full conditional distribution for 𝛽 is proportional to 

𝜋 𝛽 𝑡 , 𝛼, 𝜆 ∝
1

 𝛽n0+1    
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 (22)  
The full conditional distribution for 𝜆 is proportional to 
𝜋  𝜆 𝑡 , 𝛼, 𝛽 
∝  𝜆a2+na−1

∗ 𝑒𝑥𝑝 −𝜆𝑏2    
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 (23)  
Now, we write the Gibbs sampling steps as follows: 
1) Derive the full conditional distributions for the α, 𝛽 and 𝜆 

from the posterior as was explained on equation [21-23].  
2) Select the initial values such as MLEs, that are close to 

the center of the posterior distribution, say 
𝛼0, 𝛽0 𝑎𝑛𝑑  𝜆0, respectively, and initialize the counter 
j=0 

3) Move the counter from j to j+1 and 
generate 𝛼1, 𝛽1  𝑎𝑛𝑑  𝜆1 respectively as follows: 

𝛼1~ 𝜋 𝛼 𝑡, 𝛽0,  𝜆0  
𝛽1~ 𝜋 𝛽 𝑡, 𝛼1 ,  𝜆0  
 𝜆1~ 𝜋 𝑃 𝑡, 𝛼1 , 𝛽1  
4- Move the counter from j+1 to j+2 and generate 
𝛼2, 𝛽2  𝑎𝑛𝑑 𝜆2 as follows 
𝛼2~ 𝜋 𝛼 𝑡, 𝛽1 , 𝜆1  
𝛽2~ 𝜋 𝛽 𝑡, 𝛼2, 𝜆1  
𝜆2~ 𝜋 𝜆 𝑡, 𝛼2, 𝛽2  

5) Repeat steps 3 and step 4 until get 𝛼5000 , 𝛽5000  𝑎𝑛𝑑 𝜆5000 . 
This sequence of draws constitutes a Markov chain 
because the values at step N depend on the values at step 
N-1.  

6) Discard the first K iterates, where ( K=1000) is the 
number of burn-in sample 

7) Apply Monte Carlo estimation to the generated sample or 
chain to obtain the Bayesian estimators of 
 Θ 𝑡  𝑏𝑦 

1

𝑁−𝑘
 𝑔 Θ𝑁−𝐾 

𝑁
𝐽=𝑘+1 , also, standard deviation, 

MC errors and credible intervals of 
 𝛼, 𝛽 𝑎𝑛𝑑 𝜆 . Bayesian MCMC results are summarized in 
Table (7).Table (7) give the point estimates, standard 
deviation, MC errors and credible intervals of all 
parameters.  

 

4. Conclusion 
 
In this paper, we present Bayesian estimation for the 
unknown parameters of the constant-stress PALT model for 
the BS distribution when the data are type-II censored and 
perform two simulation studies to assess the performance of 
MLE and Bayesian estimators. It is observed that the 
maximum likelihood estimators cannot be obtained in closed 
form and we have proposed to use the numerical method to 
compute them. The performances of the MLEs are 
investigated by simulation study and from results of Tables 
(1-6). It is observed that: 
1) The maximum likelihood estimators for the all sets of 

initial values of parameters have good statistical 
properties for all sample sizes. As the sample size 
increases the MSE of estimators decreases.  

2) As the sample size increases the interval of the estimators 
decreases.  

3) As the acceleration factor increases it is evident that the 
MSE of the estimated parameters tend to increase and the 
variance increases for all values of n.  

4) As the value of α0  𝑎𝑛𝑑 𝛽0 decrease, it is evident that the 
MSE of the estimates decrease. 

5) The results of Bayesian analysis obtained from 
WinBUGs are showed in Table (7).It is observed that: 
The Bayesian estimators have good statistical properties.  

 

 

Table 1: The Estimates, RABias and MSE of the parameters  𝛼, 𝛽, 𝜆  under type II censoring 

n Parameters (α0 = .25, 𝛽0 = 1, 𝜆0 = 1.1) (α0 = .5, 𝛽0 = 1, 𝜆0 = 1.1) 
Estimators RABias MSE Estimators RABias MSE 

100 
α 0.102 0.592 0.022 0.199 0.601 0.091 
𝛽 0.7 0.3 0.091 0.496 0.504 0.255 
𝜆 0.764 0.305 0.114 0.54 0.509 0.315 

200 
α 0.106 0.572 0.021 0.21 0.583 0.085 
𝛽 0.698 0.302 0.091 0.494 0.506 0.257 
𝜆 0.83 0.244 0.072 0.637 0.421 0.215 

300 
α 0.111 0.556 0.019 0.218 0.564 0.08 
𝛽 0.698 0.302 0.091 0.493 0.507 0.258 
𝜆 0.858 0.22 0.059 0.677 0.385 0.179 

400 
α 0.113 0.548 0.019 0.222 0.557 0.078 
𝛽 0.697 0.303 0.092 0.492 0.508 0.259 
𝜆 0.876 0.203 0.05 0.706 0.359 0.156 

500 
α 0.117 0.534 0.018 0.23 0.544 0.074 
𝛽 0.696 0.304 0.093 0.5 0.509 0.26 
𝜆 0.884 0.197 0.047 0.718 0.347 0.146 
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Table 2: The Estimates, RABias and MSE of the parameters  𝛼, 𝛽, 𝜆  under type II censoring 

n Parameters (α0 = .25, 𝛽0 = 1, 𝜆0 = 1.1) (α0 = .25, 𝛽0 = 2, 𝜆0 = 1.1) 
Estimators  RABias MSE  Estimators  RABias MSE  

100 
 α 0.102 0.592 0.022 0.102 0.592 0.022 
 𝛽 0.7 0.3 0.091 1.4 0.3 0.362 
 𝜆 0.764 0.305 0.114 0.76 0.305 0.114 

200 
 α 0.106 0.572 0.021 0.106 0.572 0.021 
 𝛽 0.698 0.302 0.091 1.39 0.302 0.365 
 𝜆 0.83 0.244 0.072 0.83 0.244 0.072 

300 
 α 0.111 0.556 0.019 0.111 0.556 0.019 
 𝛽 0.698 0.302 0.091 1.39 0.302 0.366 
 𝜆 0.858 0.22 0.059 0.858 0.22 0.059 

400 
 α 0.113 0.548 0.019 0.113 0.548 0.019 
 𝛽 0.697 0.303 0.092 1.4 0.303 0.369 
 𝜆 0.876 0.203 0.05 0.876 0.203 0.05 

500 
 α 0.117 0.534 0.018 0.116 0.534 0.018 
 𝛽 0.696 0.304 0.093 1.4 0.303 0.368 
 𝜆 0.884 0.197 0.047 0.884 0.196 0.047 

 

Table 3: The Estimates, RABias and MSE of the parameters  𝛼, 𝛽, 𝜆  under type II censoring 

n Parameters (α0 = .25, 𝛽0 = 1, 𝜆0 = 1.1) (α0 = .25, 𝛽0 = 1, 𝜆0 = 1.5) 
Estimators  RABias MSE  Estimators  RABias MSE  

100 
 α 0.102 0.592 0.022 0.102 0.592 0.022 
 𝛽 0.7 0.3 0.091 0.7 0.3 0.091 
 𝜆 0.764 0.305 0.114 1.04 0.305 0.211 

200 
 α 0.106 0.572 0.021 0.106 0.575 0.021 
 𝛽 0.698 0.302 0.091 0.698 0.302 0.091 
 𝜆 0.83 0.244 0.072 1.14 0.244 0.134 

300 
 α 0.111 0.556 0.019 0.111 0.556 0.019 
 𝛽 0.698 0.302 0.091 0.698 0.302 0.091 
 𝜆 0.858 0.22 0.059 1.17 0.22 0.109 

400 
 α 0.113 0.548 0.019 0.113 0.548 0.019 
 𝛽 0.697 0.303 0.092 0.7 0.303 0.092 
 𝜆 0.876 0.203 0.05 1.2 0.203 0.93 

500 
 α 0.117 0.534 0.018 0.116 0.534 0.018 
 𝛽 0.696 0.304 0.093 0.697 0.303 0.092 
 𝜆 0.884 0.197 0.047 1.21 0.196 0.087 

 

Table 4: Confidence bounds of the estimates at confidence levels.95 of  𝛼, 𝛽, 𝜆  under type II censoring 

n Parameters (α0 = .25, 𝛽0 = 1, 𝜆0 = 1.1) (α0 = 0.5, 𝛽0 = 1, 𝜆0 = 1.1) 
Estimators  Variance (L, U) Estimators  Variance (L, U) 

100 
 α 0.102 0.00007 (0.085, 0.118) 0.199 0.0003 (0.167, 0.232) 
 𝛽 0.7 0.0003 (0.668, 0.733) 0.496 0.0005 (0.452, 0.541) 
 𝜆 0.764 0.0004 (0.723, 0.805) 0.54 0.0008 (0.484, 0.596) 

200 
 α 0.106 0.00004 (0.094, 0.119) 0.21 0.0002 (0.184, 0.233) 
 𝛽 0.698 0.0002 (0.674, 0.723) 0.494 0.0003 (0.461, 0.527) 
 𝜆 0.83 0.0003 (0.799, 0.865) 0.637 0.0006 (0.587, 0.687) 

300 
 α 0.111 0.00003 (0.1, 0.122) 0.218 0.0001 (0.197, 0.239) 
 𝛽 0.698 0.0001 (0.678, 0.719) 0.493 0.0002 (0.464, 0.521) 
 𝜆 0.858 0.0002 (0.829, 0.887) 0.677 0.0005 (0.632, 0.722) 

400 
 α 0.113 0.00002 (0.104, 0.122) 0.222 0.00009 (0.203, 0.24) 
 𝛽 0.697 0.00009 (0.679, 0.715) 0.492 0.00016 (0.467, 0.516) 
 𝜆 0.876 0.00018 (0.85, 0.903) 0.706 0.0004 (0.664, 0.747) 

500 
 α 0.117 0.00001 (0.108, 0.125) 0.23 0.00008 (0.211, 0.245) 
 𝛽 0.696 0.00007 (0.679, 0.713) 0.5 0.00014 (0.468, 0.514) 
 𝜆 0.884 0.00016 (0.859, 0.908) 0.718 0.0003 (0.679, 0.757) 
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Table 5: Confidence bounds of the estimates at confidence levels.95 of  𝛼, 𝛽, 𝜆  under type II censoring 

n Parameters (α0 = .25, 𝛽0 = 1, 𝜆0 = 1.1) (α0 = .25, 𝛽0 = 2, 𝜆0 = 1.1) 
Estimators  Variance (L, U) Estimators  Variance (L, U) 

100 
 α 0.102 0.00007 (0.085, 0.118) 0.102 0.00007 (0.085, 0.118) 
 𝛽 0.7 0.0003 (0.668, 0.733) 1.4 0.001 (1.336, 1.465) 
 𝜆 0.764 0.0004 (0.723, 0.805) 0.76 0.0004 (0.723, 0.805) 

200 
 α 0.106 0.00004 (0.094, 0.119) 0.106 0.00005 (0.094, 0.119) 
 𝛽 0.698 0.0002 (0.674, 0.723) 1.39 0.0006 (1.349, 1.445) 
 𝜆 0.83 0.0003 (0.799, 0.865) 0.83 0.0003 (0.799, 0.865) 

300 
 α 0.111 0.00003 (0.1, 0.122) 0.111 0.00004 (0.1, 0.122) 
 𝛽 0.698 0.0001 (0.678, 0.719) 1.39 0.0004 (1.36, 1.43) 
 𝜆 0.858 0.0002 (0.829, 0.887) 0.858 0.0002 (0.829, 0.887) 

400 
 α 0.113 0.00002 (0.104, 0.122) 0.113 0.00003 (0.104, 0.122) 
 𝛽 0.697 0.00009 (0.679, 0.715) 1.4 0.0003 (1.357, 1.43) 
 𝜆 0.876 0.00018 (0.85, 0.903) 0.876 0.0002 (0.85, 0.903) 

500 
 α 0.117 0.00001 (0.108, 0.125) 0.116 0.00002 (0.108, 0.125) 
 𝛽 0.696 0.00007 (0.679, 0.713) 1.4 0.0002 (1.36, 1.427) 
 𝜆 0.884 0.00016 (0.859, 0.908) 0.884 0.0001 (0.86, 0.909) 

 

Table 6: Confidence bounds of the estimates at confidence levels.95 of  𝛼 , 𝛽 , 𝜆   under type II censoring 

n Parameters (α0 = .25, 𝛽 0 = 1, 𝜆 0 = 1.1) (α0 = .25, 𝛽 0 = 1, 𝜆 0 = 1.5) 
Estimators  Variance (Lower, Upper) Estimators  Variance (Lower, Upper) 

100 
 α 0.102 0.00007 (0.085, 0.118) 0.102 0.00007 (0.085, 0.118) 
 𝛽 0.7 0.0003 (0.668, 0.733) 0.7 0.0003 (0.668, 0.733) 
 𝜆 0.764 0.0004 (0.723, 0.805) 1.04 0.0008 (0.986, 1.098) 

200 
 α 0.106 0.00004 (0.094, 0.119) 0.106 0.00004 (0.094, 0.119) 
 𝛽 0.698 0.0002 (0.674, 0.723) 0.698 0.0002 (0.674, 0.723) 
 𝜆 0.83 0.0003 (0.799, 0.865) 1.14 0.0005 (1.09, 1.18) 

300 
 α 0.111 0.00003 (0.1, 0.122) 0.111 0.00003 (0.1, 0.122) 
 𝛽 0.698 0.0001 (0.678, 0.719) 0.698 0.0001 (0.678, 0.719) 
 𝜆 0.858 0.0002 (0.829, 0.887) 1.17 0.0004 (1.13, 1.21) 

400 
 α 0.113 0.00002 (0.104, 0.122) 0.113 0.00002 (0.104, 0.122) 
 𝛽 0.697 0.00009 (0.679, 0.715) 0.7 0.00008 (0.679, 0.715) 
 𝜆 0.876 0.00018 (0.85, 0.903) 1.2 0.0003 (1.159, 1.23) 

500 
 α 0.117 0.00001 (0.108, 0.125) 0.116 0.00001 (0.108, 0.125) 
 𝛽 0.696 0.00007 (0.679, 0.713) 0.697 0.00007 (0.68, 0.713) 
 𝜆 0.884 0.00016 (0.859, 0.908) 1.21 0.0002 (1.172, 1.24) 

 

Table 7: Node statistics with initial values (alpha=.25, beta=1.5, lamada=1) 
Node Mean sd MC_error 2.50% Median 97.50% Start Sample 

Lamada 1.013 0.00946 0.00149 1 1.01 1.033 1001 4000 
alpha 0.274 0.04671 0.01321 0.1633 0.2704 0.3402 1001 4000 
beta 1.474 0.07315 0.02073 1.278 1.504 1.549 1001 4000 
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