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Abstract: The total demand for a particular flight even at a given time of day fluctuates by day of week and season of the year. In 
addition to these more predictable or “cyclical” fluctuations in demand, there are also less predictable or “stochastic” variations in 
demand around the mean or expected value for a flight. This paper will show that, the company should find the optimal customer mix if 
it wants to achieve the highest revenue possible. They have to decide how many seats to sell to discount passengers, and how many to 
save for future passengers, who are willing to pay the full fare. The main problem of quantity based revenue management is to find an 
optimal allocation of our resource among the different fare classes. 
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1. Introduction 
 
Quantity based yield management is very useful for airline 
companies. Due to the fact that a plane has a fixed capacity 
of seats, the company should find the optimal customer mix 
if it wants to achieve the highest revenue possible. They 
have to decide how many seats to sell to discount 
passengers, and how many to save for future passengers, 
who are willing to pay the full fare. The main problem of 
quantity based revenue management is to find an optimal 
allocation of our resource among the different fare classes. 
In contrast with the price based revenue management, 
quantity base methods focus on our resource. How can we 
make the most of what we have, without changing the prices 
too much? We can achieve this with the help of booking 
limits, which we already mentioned, and protection levels. 
Besides booking limits protection levels are also important 
controls. Protection levels set the number of capacity units to 
reserve for a particular class. These can also be partitioned 
or nested, like booking limits. 
 
2. Literature Review 
 
Recently, the revenue management strategies in other 
industries have been studied. Kimms and Muller-Bungart 
(2007) propose a planning problem at a broadcasting 
company. Mangani (2007) derives an optimal ratio between 
advertising and sales income when a publisher maximises its 
profits on advertising space and product price. A mobile TV 
service bundle problem-based pricing strategy is provided 
by Rautio, Anttila and Tuominen (2007). A number of 
human-related factors in the design of an efficient revenue 
management system in a local subsidiary of Multinational 
Corporation are highlighted by Zarraga-Oberty and Bonache 
(2007). And a comprehensive review of the recent 
development of the revenue management in different 
industries and some important areas that warrant further 
research are provided by Chiang, Chen and Xu (2007). More 
different revenue management strategies including pricing, 
auctions, capacity control, overbooking and forecasting are 
discussed in their research. 
 
However, most of the above-mentioned models do not 
consider the risk of fluctuating revenues, except in Lai and 

Ng (2005). As we know, demand for hotel rooms is 
uncertain and, therefore, a decision maker may face several 
demand scenarios in the decision making process. He (or 
she) needs to consider the risk involved under different 
scenarios. In this paper, an optimal strategy for renting hotel 
rooms is provided for situations when a decision maker 
faces random customer arrivals. Because of uncertain 
demand, the decision maker may face different demand 
scenarios; a stochastic programming model with semi-
absolute deviations to measure a hotel‟s revenue risk is 
formulated, and a stochastic programming model that 
considers cancellations and no-shows is also provided. 
 
3. Airline Revenue Management Model 
 

3.1 Terms and Definitions  
 

a) DEMAND: The total number of potential passengers 
wishing to make a reservation on a particular scheduled 
flight leg. In line with our definition of “demand” for an 
origin-destination market in Air Transportation 
Economics, the “demand” for a flight leg reflects a 
maximum potential, independent of the capacity being 
offered on the flight.  

b) LOAD: The total number of passengers who are actually 
carried on the flight leg. Because the demand for a flight 
can sometimes be greater than its capacity, it must be the 
case that load is always less than or equal to demand:  
 When demand is less than capacity, then load is equal 

to demand, as all potential passengers are 
accommodated and carried.  

 When demand exceeds capacity, then the load is equal 
to capacity, as some of the potential passengers cannot 
travel and must be rejected by the airline.  

c) SPILL: The total number of potential passengers who 
cannot obtain a reservation and travel on a given flight due 
to insufficient capacity. “Spill” is also known as “rejected 
demand”, since these passengers are rejected by the airline 
because the number of seats on the aircraft assigned to the 
flight is less than total potential demand.  
 Spill is by definition equal to total demand minus the 

total load of a flight.  
 When demand is less than capacity, load is equal to 

demand, and spill is zero.  
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 When demand exceeds capacity, load is equal to 
capacity and spill is equal to demand minus capacity 
(load).  

d)  “Spill” occurs as the result of greater potential demand 
for a flight than the physical capacity of the aircraft 
assigned to operate on the flight leg in question. “Spill” 
has little direct relationship to overbooking, and must not 
be confused with “denied boardings”. We will explore 
overbooking and denied boarding issues in much greater 
detail in Module 6. In the meantime, the most important 
differences between the two concepts can be summarized 
as follows:  
 “Spill” is the rejected demand resulting from operating 

two small an aircraft on a flight leg. It can occur 
whether or not the airline is using the practice of flight 
overbooking. For example, even if we assume no 
overbooking, an aircraft that departs with a load equal 
to capacity will likely have experienced spill.  

 “Denied boardings” occur when the airline overbooks 
its flights, and more passengers show up than there are 
physical seats available on the aircraft. Denied 
boardings can occur even if no spill occurred during the 
booking process (i.e., all  

 

3.2 Capacity Allocation  
 
The main idea behind capacity allocation is that customers, 
who are sensitive to price, are willing to lower their needs, 
and sacrifice comfort and time in order to get a cheaper 
discount ticket. On the other hand, higher fare customers are 
not sensitive to price, because they want to travel fast and 
comfortably, so they are willing to pay the full price in order 
to receive a service suitable for their needs. With these 
assumptions we can segment the market into customer 
groups, which we call fare classes, according to a 
customer‟s level of price sensitivity. We assume that the 
different fare classes are distinct, and they require the same 
resource. We also presume that we have homogeneous units 
of capacity, and that customers demand only a single unit of 
it. For now we do not allow no-shows or cancellations, we 
are going to deal with them later. 
 
3.3 Capacity Allocation with Independent Demand 

 

First we start with the less complex models, where demands 
are independent. This means that when we close a fare class, 
it does not affect the demand for other classes.  
 
3.3.1 Two-Class Problem 

This is the simplest case, where we assume that we have a 
fixed capacity 𝐶<∞ and two classes of customers: one is the 
discount class passengers, paying 𝑝𝑑 for a unit (or seat in 
case of airlines); the other is the full fare passengers paying 
𝑝𝑓. Obviously it is easy to see that 𝑝𝑑>0 and 𝑝𝑓>𝑝𝑑. 
Another important assumption we have to make is that all 
discount requests come before the full fare requests. 
 
 With these assumptions in mind the basic question of the 
two class capacity allocation problem is the following: How 
many seats of discount customers should we book, when 
there is a chance of future full fare demand? In other words: 
What is the optimal booking limit 𝑏 , for the discount class, 
for which we can gain the highest possible revenue? If we 

find the optimal booking limit, then it is easy to find the 
optimal protection level too. According to the above 
definition the protection level (𝑦) can be calculated from the 
capacity and the booking limit: 𝑦=𝐶−𝑏.  
 
When calculating the optimal booking limit we want to 
avoid two scenarios: setting the limit too high or setting it 
too low. If we set 𝑏 too low then we talk about spoilage, 
because we turned away discount passengers for future high 
fare customers, but the number of high fare customers is 
smaller than the protection level. In this case we are spoiling 
our capacity. (E.g. in the airline business our plane is flying 
with empty seats). On the other hand if we set 𝑏 too low we 
could have made more revenue by saving the seats for future 
high class customers, but we sold it to discount passengers. 
E.g. we have a plane with 100 seats out of which we sold 80 
to discount passengers, and 20 to full fare passengers, but 
the actual demand for the higher fare class seats was 30. So 
we turned away 10 better paying customers, for discount 
customers. This obviously decreased our revenue. This 
scenario is called dilution. Our goal is to balance the risks of 
these too outcomes to maximize expected revenue.  
 
With the help of a decision tree we can illustrate the 
different outcomes of increasing the booking level by one 
unit. 

 
𝑑𝑓= full fare demand, 
𝑑𝑑= discount demand 
𝑑𝑑 and 𝑑𝑓 are independent random variables 

 
The right side of the tree gives us the change in expected 
revenue. If we take the probability weighted sum of these 
outcomes we can calculate the expected change in revenue 
caused by the fact that we increased 𝑏 by 1. 

 
From the above equation we can determine whether or not 
we should increase the booking limit for low fare class. If 
the value of 𝐸(ℎ(𝑏)) <0, then increasing the booking limit by 
one decreases our revenue, but if 𝐸 (ℎ(𝑏))>0, then we should 
definitely increase the booking limit, because we have a 
chance for higher profit. So if 𝑝𝑑<[1−𝐹𝑓(𝐶−𝑏)]𝑝𝑓 we 
should not allocate any more seats to discount passengers. If 
𝑝𝑑>[1−𝐹𝑓(𝐶−𝑏)]𝑝𝑓 we should allocate at least one seat for a 
discount customer. We can easily see that we get the optimal 
booking limit (𝑏∗) if 
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This equation can also be written as 

 
Note that the optimal protection level 𝑦∗=𝐶−𝑏∗. So the 
above equation is equivalent to 

 
This was first described by Kenneth Littlewood in 1972, and 
is known as Littlewoods‟s Rule. Littlewood‟s Rule says that: 
“to maximize expected revenue, the probability that full fare 
demand will exceed the protection level should equal to the 
ratio Pd/Pf.” (Robert L. Phillips, Pricing and Revenue 
Optimization (2005) 
 
An interesting fact is that the optimal protection level only 
depends on the two fares and the distribution of expected 
full fare demand. The discount demand or the capacity is not 
in the equation, so the optimal protection level does not 
depend on them in the two class model. 
 
4. Spill Model for Estimating Spill and 

Unconstrained Demand  
 
a) Variations of the “spill model” for airline demand 

analysis, specifically for estimating spill and 
unconstrained demand, have been developed both at MIT 
and by Boeing. The basic spill model makes the following 
assumptions:  
 Total demand for a flight departure or series of flight 

departures can be represented by a Gaussian 
distribution.  

 The demand distribution has a mean and standard 
deviation that is known or which can be estimated from 
a sample observed historical load data for the same or 
similar flights.  

 The estimated demand distribution can represent the 
magnitude and variability of demand for future flight 
departures, if properly adjusted for trends and/or 
seasonal changes in demand.  

 
b) The Boeing Spill Model approach relies on the properties 

of the Gaussian distribution to estimate spill and 
unconstrained demand, in one of several ways:  
 Normalized “spill tables” are the simplest way to 

estimate spill and unconstrained demand, and will be 
described here.  

 Use of “normal probability paper” to plot observed 
loads and estimate the mean and standard deviation of 
total demand is more complicated and is described in 
the Boeing paper.  

 Use of iterative statistical estimation methods is even 
more complicated, and well beyond the scope of this 
course.  

 
c) To make use of the “Spill Table” approach to estimation, 

the following additional terms and definitions are 
required:  
 DEMAND FACTOR is the mean total (unconstrained) 

demand per flight divided by the aircraft capacity. 
Unlike average load factor, the demand factor can 

exceed 1.0, as it is possible for mean total demand to 
exceed the assigned aircraft capacity. It is the total mean 
demand and/or the demand factor that we are trying to 
estimate, given an observed average load factor.  

 SPILL FACTOR is the average (or “expected”) spilled 
passengers per flight divided by the aircraft capacity. 
Again, estimation of mean spill and/or the spill factor is 
the goal of our estimation effort.  

 SPILL RATE is the average (or “expected”) spilled 
passengers per flight divided by the mean total demand 
for the flight. Thus, it is a measure of the probability or 
likelihood that a random passenger wishing to make a 
reservation for a flight will not be able to due to 
inadequate aircraft capacity. It is also the proportion of 
total demand that is rejected.  

 
d) Given these definitions and those introduced earlier the 

following relationships must apply for a sample of flight 
departures with any degree of variability in demand (i.e., 
with a standard deviation greater than zero):  
 Mean demand is greater than or equal to the mean 

observed load. Mean demand is equal to mean load only 
if none of the flight departures in the sample 
experienced spill.  

 Demand factor is greater than or equal to average load 
factor. Demand factor is equal to average load factor 
only if none of the flight departures in the sample 
experienced spill.  

 Mean demand is always equal to mean observed load 
plus mean spill per flight.  

 Demand factor is always equal to average load factor 
plus spill factor.  

 Spill rate and spill factor must both be greater than zero 
if any of the flight departures in the sample experienced 
spill.  

 
5. Illustrative Examples 
 
The price for a flight ticket from Medan to Batam is $50. 
Each plane can hold no more than 100 passengers. Usually, 
some passengers who have purchased a ticket are "no-
shows". To protect against such no-shows, the airline would 
like to sell more than 100 tickets for each flight. Federal 
regulations require that any ticketed customer who is unable 
to board the plane due to overbooking is entitled to a 
compensation of 125% of the ticket value paid by the 
customer. Any no-show customer is refunded 50% of the 
ticket value paid by the customer. The number of no-shows 
is randomly distributed with a Lognormal distribution with 
mean of 10% of the Number of Tickets Sold and standard 
deviation of 6% of the Number of Tickets Sold. In this 
problem, the only uncertainty, Number of No-Shows in cell 
H22, depends on the parameter Number of Tickets Sold (cell 
G27). (The ROUND function in cell G22 rounds the 
fractional value in cell H22 to a whole number.) The 
Number of Tickets Sold is set to 110. Total Revenue (cell 
G31) is a random quantity, since it depends on the number 
of no-shows. Cell G33 contains the PsiMean function which 
computes the Expected Total Revenue.  
 
The distribution of Total Revenue will change with the 
Number of Tickets Sold. We can change the Number of 
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Tickets Sold (cell G27), and try to find an optimal number 
that will maximize Total Expected Revenue (cell G33). 
 

 
 

6. Conclusion 
 
Clearly, assignment of a bigger aircraft results in higher 
loads (but lower load factors), increased revenues, and 
reduced spill and spill rate, as expected. In this case, given 
our assumption for total unconstrained demand, the demand 
distribution reflects quite high (but not atypical) demand 
variability. With such high variation of demand relative to 
the mean even a 15-seat increase in capacity does not 
eliminate spill:  
 The fleet assignment question for the airline is whether the 

increase in revenue from the increased capacity to 
accommodate on average 6 additional passengers per 
flight exceeds the additional operating cost of the 140-seat 
aircraft compared to the 125-seat aircraft used currently. If 
so, then the airline will increase its operating profit by 
assigning the larger aircraft to this particular flight leg.  
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