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Abstract: Multicollinearity can cause serious problem in estimation and prediction, increasing the variance of least squares estimators 

of the regression coefficients and tending to produce least square estimates that are too large in absolute value. This paper shows how 

the dynamic programming algorithm can be used to estimate the regression coefficient. It also shows how the algorithm can be used to 

calculate various statistical quantities like the coefficient of determination
2R , the F-statistics and the t-statistics. 
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1. Introduction 
 
Multiple linear regression is a widely used statistical 
technique which allows estimating parameters that describe 
the distribution of a dependent variable with the help of a 
number of explanatory variables. The least squares (LS) 
solution gives stable estimates and useful results in case of 
independent coefficients. We often come across cases where 
the explanatory variables are nearly collinear. This condition 
is called multicollinearity now-a-day and is one of the most 
often encountered in econometrics dealing with several 
explanatory variables. The major problem with 
multicollinearity is that it leads to estimates with inflated 
variances in the estimation of regression coefficients and 
thus unacceptably large prediction intervals. High estimated 
variances (and therefore high estimated standard errors) also 
mean small observed test statistics. That is, the researchers 
will accept too many null hypotheses. Estimates of standard 
errors and parameters tend to be sensitive to change in the 
data and the specification of the model. In addition, the LS 
estimates are usually inflated with wrong signs – though 
they remain the best linear unbiased estimates (BLUE). It is 
noted that, if the aim of the researchers is to generate 
forecasts and if it is assumed that the multicollinearity 
problem will not be different for the forecast period, then 
multicollinearity is considered not to be a problem at all. 
This is because multicollinearity will not affect the forecasts 
of a model but only the estimation of the coefficients 
(Koutsoyiannis, 1977). In order to detect the presence of 
collinear variables many diagnostics have been proposed in 
the literatures, for instance, the condition number, variance 
inflation factor, variance decomposition proportion and 
others. Various methods exist in the literatures to tackle the 
problem of multicollinearity such as principal component 
regression (PCR), ridge regression (RR), partial least 
squares regression (PLSR), generalized inverse regression 
(GIR) and others. Saikia and Singh (2014) demonstrated a 
comparative study of the two methods, namely PCR and RR 
to tackle the problem of the multicollinearity and concluded 
about the superiority of PCR than RR. The property of being 
non-orthogonal PCs makes PCR superior than RR.  
 

Kalaba, Natsuyama and Ueno (1999) introduced a new 
dynamic programming (DP) approach to the least square 
problems. This algorithm relied heavily on knowing the rank 
of the given matrix and the columns which are linearly 
independent. Later the algorithm has been developed in such 
a way that it overcomes the mentioned restrictions. The DP 
algorithm is seemed to be helpful to estimate the coefficients 
even in the presence of multicollinearity. This establishment 
constitutes of following two functions: the square of the 
length of the current discrepancy and the square length of 
the current solution vectors. The mentioned cost functions 
should be minimized synchronously by optimally choosing 
the minimum length vector solution. Application of Bellman 
to each of the cost function and usage of the functions’ semi 
definite quadratic form subsequently leads to recurrence 
relation for DP algorithm.  
 

2. Methodology  
 
The two cost functions are introduced in following way:  

)(bf k
 = the smallest square of the length of the vector  

bxA k

k   

)(bgk = the smallest square of the length of the vector kx  

where kx  is the subject to the restriction 

 bxA k

k  = min                               (1) 

for k = 1, 2, …, n. The kth column of the matrix A is denoted 
by ka and the matrix kA consist of the first k columns of A, 

and kx  is a k-dimensional vector. The vector nx  is the 
optimal vector. 
 
Using the principle of optimality leads to the recurrence 
relation k = 1, 2, …, n for two cases. Firstly it depends on if 
the columns A are linearly dependent. Secondly, if the 
columns A are independent. Consider that ka is linearly 

dependent on a 1 , a 2 , …, a 1k . Then 

)()( 1 bfbf kk                              (2)  
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As, a linear combination of a 1 , a 2 , …, a 1k , a k cannot be 

brought closer to b than the linear combination of a 1 , a 2 , 

…, a 1k  is, 

 )(][min)( 1
2

kkkkxk axbgxbg
k

                 (3) 

In the similar way, if the vector ka is independent then the 
following equations are used as mentioned below,  

 )(min)( kk
x

k axbbf
k

                         (4) 

 )()()( *
1

2*
kkkkk axbgxbf                  (5) 

where x k is the kth component of the vector kx . Here the 

minimization is to be performed over kth component kx and 

the minimum value is denoted by an asterisk, *
kx . There are 

initial conditions for those functions and they are used to 
derive the recurrence relations. Observe the argument (b - 
a k x k ); it represents the new target vector at stage k - 1. For 
the case, when k = 1, the smallest square of the length of the 
vector is as 

 )()(min)( 11111 1
bxabxabf T

x   a ≠ 0         (6) 
Thus,  

 )2(min)( 11
2
1111 1

bbbxaxaabf TTT

x          (7) 

Then, differentiation with respect to x 1 yields the optimality 
condition as  

 01111  baxaa TT                                  (8) 
Hence,  

 x *
1  = 

11

1

aa

ba
T

T

= a 
1 b                                 (9) 

where a 
1 = 

11

1

aa

ba
T

T

, assuming that a 1 ≠ 0 

Since the columns of A are assumed to be linearly 
independent, a 1 ≠ 0 and minimum of  

)(1 bf is written as  

 f 1 (b) = b T (a 
1 ) T a T

1 a 1 a 
1 b - 2b T a 1 a 

1 b + b T b    (10) 
The residual vector is  

 baaIbbf T ][)( 111
                         (11) 

 bQbT

1                                        (12) 

where ][ 111
 aaIQ                                 (13) 

Suppose, Ax = b                                        (14) 
In vector form,  

 baaaX TT

1
1

11 )(                                (15) 
Consequently by definition, it is written as 
 22

2
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Now, let us denote 

 T

kk

T

kk

T

kkk aaaaaaR 11 )()(              (17) 
Therefore,  

  baabbg TTT

k 11 )()(                       (18a) 
Hence, we can write as  

 bRbbg T

1̀1 )(                               (18b) 
Using the recurrence relation (3), we observed as 
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(19) 
Given that the first order condition for the minimizing the 
value of kx is 
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It is observed that, 
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or, 
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T

k

k

T

kOPT

k
aRa

bRa
x

1

1

1 




                        (22) 

Substituting (21) or (22) in (19), we can write as  
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where, 
kk
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The denominator is noticed as  
 01 1   kk

T

k aRa , always holds                      (25) 

Let, kkk aR 1                                   (26) 
(24) is equivalent to 
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Substituting (27) into (21) or (22), 
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Secondly, if a k is linearly independent of the vector a1 , a 2 , 

…, a 1k then the algorithm uses the general form of (12) to 

yield the scalar kx that minimizes the current solution vector 
kx as, 
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where,  

11  kkk aQ                          (31) 

 )...( 12211 kkk xaxaxabb             (32) 
 

3. Measuring the Precession of Equation and 

Examining the Significance of Independent 

Variables 
 
Lawson and Hanson (1974) discussed that the coefficient of 
determination 2R  is a scale free summary of the degree to 

which the variables a 1 , a 2 , …, a 1k , a k predict the 
dependent variable b.  
 
Let us define TSS as total sum of the squared deviation of 
the vector b about its mean. Considering Ax = b, TSS can be 
split into two parts. The first part is the sum of squares, i.e., 
variance explained by regression equation. Another part is 
the sum of square which cannot be explained by regression 
equation. 
 
Thus, TSS = RSS + SSE 
As, 2R  is the measure of how much of the total variation is 
accounted for using the sum of square regression, we have, 

TSS

RSS

TSS

RSS
R  12  

The residual vector 1n  is the measure of the unexplained 

error, where bbT gives total sum of squares. 
Hence, 11  n

T

nSSE   and 
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bfbb
R T

n

T

n
T

k

T

112 1)]([ 





  

 
Now, considering that the residuals are normal allowing us 
to compute the F- statistics from RSS and SSE and compare 
it to a theoretical distribution providing a criterion to accept 
or reject the model. Comparing the values computed in 
Table 1 to the theoretical value from the F-tables for any 
chosen level of significance gives us a decision rule to reject 
or accept the hypothesis that the model fits the data.  

 

Table 1: ANOVA for the F-test 
Source df SS MSS F-ratio 

Regression n - 1 
b T b - T

n 1  1n  

1
11





n

n
T
nbTb 

 
1

11




n

n
T
nbTb 

 
11 



n
T
n

nm


 

Error m - n 


T
n 1  1n  

nm

n
T
n



 11
 

 

Total m - 1    
 
 After examination of the degree of fit between the model as 
a whole and the data we inspect whether each individual 
predictor variable x k contributes significantly to the 
regression equation. When the coefficient of the variable 
examined is statistically close to zero, then it can be 
concluded that the variable does not contribute significantly 
to the regression equation. The counterpart of the formal 
statistical test for this work is called the t-test.  

 Now, the standard deviation of the coefficient for each 
predictor variable is required to estimate for the construction 
of the test. Johnson and Kalaba (2003) derived the test by 
noting that the t-distribution is closely related to the F-
distribution because the QR algorithm does not provide 
the standard deviation. The exact distribution of the square 

of a t-distribution with m-degrees of freedom (t 2
m ) is an F-

distribution with degrees of freedom 1, m, namely, F ),1( m  

(Casella and Berger, 1990).  

 The DP algorithm provides sufficient information for 
computing F ),1( m . Our interest is in computing t-value of 

the coefficient of the predictor a i . Now RSS is compared 
for the full model with all the n predictors in it with the RSS 
of the model without predictor a i . The difference of two 
RSS gives the reduction in sum of squares that is achieved 
by including the predictor a i . The ratio of the mean squared 
error from the model with and without the predictor gives as 
the required F-value (Casella and Berger, 1990). Now  
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where 
nm

RSS n


 = variance for the full model.  

 The required t-value for the coefficient of the predictor a i is 
computed by taking the square-root of (33). Thus,  

 t i  = 

nm

RSS

RSSRSS

n

nn



1
= 

nm
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T
n

n
T
nn

T
n
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 11
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where t i  = calculated t-value for the coefficient of a i , 

 1n  = residual vector from the model without predictor i, 

 n  = residual vector from the model with all the predictors.  

Table 2: ANOVA Table for the t-test 
Source df SS MSS t-ratio 

Full model n RSS n    

Model without predictor x k  n - 1 RSS 1n    

Predictor 1 RSS 1n - RSS n  RSS 1n - RSS n  

nm

RSS

RSSRSS

n

nn



1
 

Error (Full Model) m - n RSS n  

nm

RSS n


 

 

  
 Proceeding in the same way, the t-value for the coefficient 
of each variable is sequentially derived by dropping each 
one and retaining the others. The calculated t-value is 
compared against the theoretical t-value with any desired 
level of significance and a decision to accept or reject is 
assessed through contribution of each variable to the 
regression model. Table 2 shows how the t-value for any 
predictor k is computed by analyzing the change in variance 
of the model with and without the predictor k. 
 
4. Conclusion 
 
In this paper it has been discussed that, how the DP 
algorithm can produce the coefficients of least squares. 
Advantage of using this algorithm is that even in the 
presence of multicollinearity one can estimate the 
coefficients and those can be applied for future and related 
research works. This area is less developed till now, more 
and frequent research works are required to be done in this 
area for its development. Various standard statistical 
measures like the coefficient of determination R2, t-and F-
statistics and others can be computed using the DP 
algorithm.  
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