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1. Introduction 
 
Every integer greater than 1 is classified as either prime or 
composite. This classification forms the basis of the number 
theory we know today. This paper attempts to present an 
overview of prime numbers, their properties and their 
importance in various fields of study. It also attempts to 
throw light on some attempts at finding out the primality of a 
number i.e. to check if a given number is prime. Various 
algorithms have been presented in history, however none of 
them is satisfactorily fast or efficient. In fact, the very 
difficulty involved in finding the primality of a number along 
with their peculiar properties is the reason why prime 
numbers have such wide applications in today‟s world. 
 
2. Definition of Prime Number 
 
Definition 1 (English): A prime number (or a prime) is a 
natural number which has exactly two distinct natural number 
divisors. 
Definition 2 (Mathematical): A natural number which is 
greater than 1 is a prime number (or a prime) if the following 
condition is satisfied:  
    ∀ b ∈ N b|a ⇒ b = 1 ∨ b = a.         (1) 
 
Conversely, a composite number may be defined as a 
natural number which can be represented as the product of 2 
natural numbers, none of which is itself. 
 
By the above definitions, 1 is considered to be neither prime 
nor composite. Also, the discussion of prime and composite 
numbers is restricted to positive integers only. 
 
3. Importance of Prime Numbers 
 
3.1  Number Theory 
 
Any integer greater than 1 is either a prime or a product of 
primes. This can be proved easily for all integers via 
induction. This means that we can define any integer greater 
than 1 as product of one or more elements from the set of all 

prime numbers. Conversely, a combination of prime numbers 
can be multiplied to produce any number at all. 
 
3.2 Cryptography 
 
3.2.1) The RSA system in cryptography uses prime numbers 
widely to calculate the public and the private keys. The 
strength of this system relies up on the difficulty of factoring 
large numbers - specifically the difficulty associated with the 
finding of the specific pair of prime numbers selected to 
create a large integer called the modulus. 
 
3.2.2) Diffie-Hellman Key Exchange in cryptography uses 
prime numbers in a similar way. It uses a large prime number 
p as a common modulus based on which two entities, say A 
and B can communicate securely using their private, 
undisclosed keys. It is mainly based on the property that if 
both A and B choose a private key, say „a‟ and „b‟ 
respectively, and agree upon a number, say, „g‟ publicly, 
where „g‟ is less than „p‟, then both A and B can send a 
message to the other one as follows:         
                       A‟s message = M1 = ga modulo p 
                       B‟s message = M2 = gb modulo p 
Then, 
X = M2

a modulo p = M1
b modulo p = g(a*b)  modulo p 

Is the message shared. Its security lies in the difficulty 
involved in finding the shared message without knowing 
either of the private keys. 
 
3.3 Gödel's numbering 
 
Gödel numbering is a function that assigns to each 
expression, a unique natural number called its Gödel number. 
Kurt Gödel, the creator used prime numbers to encode every 
number in the sequence. Since a prime number has no 
smaller prime factors, every expression can have only one 
Gödel number, removing ambiguity. Also, every Gödel 
number can be mapped to only one expression. Moreover, we 
can use this function to determine whether a given number is 
Gödel number or not.[2] 

 

 

Paper ID: SUB157937 132



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438 

Volume 4 Issue 9, September 2015 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY 

3.4  Computer Science - Calculating Hash Codes 
 
A hash code is a number code for every object that is created 
by a program. Hash codes are required for quick 
retrieval/storing of complex objects from/in a hash table. 
Hash codes need to be reasonably unique for each object so 
that correctness is maintained. Prime numbers are used in 
computing hash codes for this reason. For example, Java 
calculates hash codes for strings as follows: 

s[0] * 31(n - 1) + s[1] * 31(n-  2) + … + s[n-1] * 310 

 

where „s‟ is a string of „n‟ characters numbered from 0 - n-1 
and s[x] signifies the ASCII value of the xth character in s. 
 
The number 31 is a prime number that is close to a power of 
2 (It is actually a Mersenne prime number as we shall see 
later). Prime numbers are chosen because they best distribute 
data across the hash buckets. Since they have no factors 
except for themselves and 1, the function “a modulo x” is 
guaranteed to produce a wider range of answers if x is prime 
than if it‟s not and thus the number of hash buckets increase. 
 
4. Properties of Prime Numbers 
 
4.1 Mersenne Primes 
 
Mersenne Primes are primes that are 1 less than a power of 2. 
They can be expressed as Mn = 2n-1. It can be shown that if 
2n-1 is prime, then n is prime as well. The converse, however, 
is not true. For example, 11 is a prime, but M11 = 211-1 = 
2047 is not. The largest known prime till today is a Mersenne 
Prime and has a value of 257,885,161-1. [3] Because in binary 
system, an n-digit number can hold up to 2n-1 digits, 
Mersenne primes can be represented efficiently in binary 
system without needing any extra space. The Mersenne 
Twister is a good pseudorandom number generating 
algorithm developed by Makoto Matsumoto and Takuji 
Nishimura. 
 
4.2 Perfect Numbers 
 
A positive integer n is called a perfect number if it is equal to 
the sum of all of its positive divisors, excluding itself. It can 
be shown that an even integer greater than 1 is perfect if and 
only if it has the form 2(n – 1) * (2n - 1) and the latter term,     
2n - 1, is prime, (In fact, it is a Mersenne Prime) i.e. any 
perfect number is a Mersenne prime multiplied by some 
power of 2.[1] For example, 6 = 2 + 3 + 1 = 21 * (22-1) is a 
perfect number. 28 is the next known perfect number after 6. 
Perfect numbers exhibit the interesting property that the log 
of such numbers is equal to the sum of the log of their factors 
(excluding themselves). For example, 
  log(6) = log(2 * 3 * 1) = log(2) + log(3) + log(1) 
 
4.3 Goldbach’s Conjecture 
 
In his famous letter to Leonhard Euler dated 7 June 1742, 
Christian Goldbach first conjectures that “every number that 
is a sum of two primes can be written as a sum of as many 
primes as one wants.”[4] This is equivalent to saying that 
"every even number is a sum of two primes". Because 

Goldbach considered 1 as prime, we can rephrase the 
conjecture as "every even number greater than 2 is a sum of 
two primes”. The Goldbach conjecture has been verified and 
found to be true for all numbers up to 4*1014. [4] However, 
whether it is true for all numbers is still not known. 
 
4.4 Relatively Prime Numbers 
 
Two integers are said to be relatively prime if they have no 
common factors other than 1. In formal notation, this is 
expressed as: 
       gcd(M, N) = 1 
For example, 7 and 8 are relatively prime, but 10 and 8 are 
not. 1 is considered to be relatively prime to every number 
because for any integer „x‟, gcd(x, 1) = 1. 
 
Theorem 1: The least integer with which a prime number is 
not relatively prime is itself. 
 
Proof: We can prove this theorem easily by considering the 
definitions of prime numbers and relatively prime pairs. By 
the definition of a prime number, it divides only 1 and itself. 
Hence, the only factors that a prime number has are 1 and 
itself. Thus, it will be relatively prime with every integer 
between 1 and itself (exclusive). Because every number 
divides itself, it cannot be relatively prime to itself. Hence, 
we prove the above theorem 
. 
4.5 Euler’s Totient Function  
 
Euler‟s totient function (sometimes called Euler‟s phi 

function), written φ(n), returns the number of integers less 
than n and relatively prime to n. For example, φ(8) = 4 
{1,2,4,6}. By Theorem 1, the value of the Euler‟s Totient 
function for any prime number p is p-1. Also, because every 
number divides itself, p-1 is the maximum value Euler‟s 
Totient function can have for any integer p. This is also the 
reason why prime numbers are used to calculate hash-codes – 
because they are co-prime with the maximum number of 
integers. 
 
5. Primality of a Number 
 
A correct and fast algorithm to check whether a number is 
prime has been seeked for a long time by mathematicians and 
computer scientists. Below are a few known algorithms for 
checking the primality of a number.  
 
5.1 Sieve of Eratosthenes 
 
This is perhaps the most widely accepted algorithm which 
has been used since ancient times. This algorithm lists out all 
the numbers from 1 to n (or 2 to n, since 1 is known to be 
neither prime nor composite) and then marks off all the 
multiples of the first prime, which is 2. After marking off all 
the multiples of 2, it then begins to mark off all the multiples 
of the next prime, which is 3. It does this routine till the time 
there are no primes less than n. In the end, all the unmarked 
numbers are all the primes less than n.  
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Theorem 2: If we have marked off all the multiples of all the 
prime numbers up to and including p, then the least multiple 
of the next prime number p + x (where x is even) that is 
unmarked is (p + x)2. 
Proof By Induction: Let L = {2, 3, 5, …, p, (p + x)} be the 
set of consecutive prime numbers less than p+x+1. Our aim is 
to mark off from an infinite set of natural numbers greater 
than 2, all the multiples of each prime, starting from the first 
element in the list i.e. 2. Thus after the consideration of 2, we 
have the following loop invariant which holds true. 
    ∀ b ∈ N {markedOff(2 * b)} 
Where markedOff(m) is a predicate denoting that „m‟ is 
marked off as composite 
We then consider 3 and mark off all the multiples of 3 in 
addition to the ones that are already marked off during the 
consideration of 2. Thus, we maintain the above loop 
invariant as 
    ∀ a ∈ {2, 3} ∀ b ∈ N {markedOff(a * b)} 
By induction, we state the above loop invariant after 
considering all the primes up to and including p and marking 
off their multiples. 
  ∀ a ∈ {2, 3, 5, …, p} ∀ b ∈ N {markedOff(a * b)}    
 
Where {2, 3, 5, …, p} = L – (p + x) 
If the above loop invariant holds true and since a*b = b*a, all 
the elements belonging to {(p + x)*2, (p + x)*3, (p + x)*4 = 
(p + x)*2*2, (p + x)*5,….(p + x)*(p + x - 1)} are already 
marked off. Hence the least multiple of (p + x) that is 
unmarked is (p + x)*(p + x) i.e. (p + x)2. 
 
This theorem will allow us to limit our iterations up to √n, 
thus increasing the efficiency of the algorithm. 
 
Algorithm Sieve of Eratosthenes (Input: n) 
 
Let A be a list of integers from 2 to n (inclusive); 
For i = 2, 3, 4,... up to n: 

If A[i] is not marked off: 
For j  =  i2; i2 + i, i2 + 2i, i2 + 3i,… not exceeding n: 

Mark off A[j]; 
 

Output: all unmarked A[i]; 
 
5.2  Sieve of Atkin 
 
Sieve of Atkin is an improvement over Sieve of Eratosthenes. 
It maintains a sieve list of all the numbers up to the number 
in consideration. Each entry in the list corresponds to a mark 
denoting if that number is prime or not. It should be noted 
that ~A[i] operation flips the value of A[i] i.e. marks A[i] if it 
was previously unmarked, and vice versa. 
 
Algorithm Sieve of Atkin (Input: n) 
 
1) Initialize the sieve list A with every entry less than n and 
marked as non-prime;  
2) For every entry in the sieve list A[i] with the modulo 
60 equal to r:  
If r ∈ {1, 13, 17, 29, 37, 41, 49, 53}:  

For each possible solution to 4x2 + y2 = n:  
A[i] = ~A[i]; 

Else If r ∈ {7, 19, 31, 43}: 

For each possible solution to 3x2 + y2 = n: 
 A[i] = ~A[i]; 

Else If r ∈ {11, 23, 47, 59}: 
For each possible solution to 3x2 - y2 = n when x > y:  

A[i] = ~A[i]; 
Else : 

Ignore;  
3) Add 2, 3 and 5 to the result list;  
4) Include the next number marked prime in the sieve list 
greater than the last number in result list;  
5) Mark all the multiples of the square of that number as non-
prime; 
6) Repeat steps 4-5 till we get all the prime numbers up to n; 
7) Output result list; 
 
5.3 Using Fermat’s Little Theorem 
 
If p is a prime which does not divide the integer a, then: 

 ap - 1 = 1 (mod p)                                            (2) 
 

This is called Fermat‟s Little Theorem. It can be also stated 
as: 

 ap = a (mod p)                                               (3) 
 
It should be noted that every iteration of the following 
algorithm only increases the confidence in the primality of a 
given number. In order to be 100% sure, we need to test the 
above theorem for every value of „a‟ less than „p‟. However, 
in many cases, absolute confidence is not required, rather, 
only a sufficient amount of confidence is needed. 

 
Algorithm Primality Check by Fermat's Little Theorem 
(Input: n) 
 
    If enough confidence in primality of n: 
        Output "Prime"; 
    Let x be any random number less than n; 
    If (xn modulo n) not equal to x: 
        Output "Not Prime";  
    Else: 
       Increase confidence in n and repeat for a different value 

   of x; 
 
Fermat‟s Little Theorem holds true for every prime number. 
However, there are some composite numbers that are 
detected as prime using Fermat's Little Theorem because they 
satisfy Fermat‟s Little Theorem. These numbers are called 
Carmichael numbers. It would be useful to know the list of 
such numbers beforehand so that we can address them 
appropriately if we are using the above algorithm. 
 
5.4  Rabin-Miller Test 
 
Rabin-Miller test is an improvement over Fermat's Test in the 
sense that it handles Carmichael numbers as well. It uses the 
property that any multiple of 2 can be represented as 2x * y 
where x and y are some positive integers. For example, 2 = 21 

* 1, 80 = 24 * 5. If n is prime, then n has to be odd and  n-1 
has to be even. So n-1 has to satisfy the above property. 
Additionally, if n is to be prime, y in the above equation has 
to be prime. 
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Rabin-Miller Test for Primality (Input: n) 
 
If enough confidence on primality of „n‟: 
    Output "Prime"; 
Express (n – 1) as 2x * y; 
Pick any random number „a‟ between 2 and n-1, exclusive; 
If (ay modulo n) = 1 or -1: 

Increase confidence in „n‟ and repeat for a different value 
of „a‟; 

Else: 
    Output "Not Prime"; 
 
6. Conclusion 

 
This paper, thus consisted of a brief summary of what prime 
numbers are and what are they used for. It also presented 
some well-known algorithms for testing the primality of a 
number. It should be noted that recent algorithms and papers 
have been written which claim to test the primality in much 
faster ways. “Primes is in P” is a paper written by Manindra 
Agrawal, Neeraj Kayal and Nitin Saxena of IIT Kanpur, 
India in which they have discussed a method for checking the 
primality of a number in linear time. “An Introduction to 
Prime Number Sieves” by Jonathan Sorenson, University of 
Wisconsin-Masison is another paper discussing the various 
sieves and algorithms running in linear and sublinear time. 
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