
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 9, September 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Column Oriented Database: Implementation and
Performance Analysis

Vibha Shukla

1
, Dr. Rajdev Tiwari

2

1, 2Noida Institute of Engineering and Technology, UPTU, India

Abstract: The volume of data in an organization is growing rapidly. So does the number of users who need to access and analyze this

data. IT systems are used more and more intensive, in order to answer more numerous and complex demands needed to make critical

business decisions. Data analysis and business reporting need more and more resources. Therefore, better, faster and more effective

alternatives have to be found. Column oriented database systems have an important demand in the past few years. These databases are

more suitable for data warehousing system to get analysis done faster as data is stored in columnar form. This paper provides a brief

review of several papers, articles to know about the background of column oriented database. In this paper, we study the method for

implementing column-store on top of Row-store in PostgreSql along with successful design and implementation. Performance results of

Column-Store are presented, and compared with that of Row-store results with the help of TPC-H benchmark.

Keywords: Column-oriented database, data warehouse, row-oriented database

1. Introduction

Row and column-oriented storage structures serve different
purposes. It is more beneficial to use row-oriented storage
structure if there are mostly transaction queries performed on
a database. Transaction (OLTP-style) queries imply a set of
reads and writes to a few rows at a time. . However, column-
oriented storage structure is more beneficial if there are
mostly analytical queries performed on a database. Faced
with massive data sets, a growing user population, and
performance driven service level agreements, organizations
everywhere are under extreme pressure to deliver analyses
faster and to more people than ever before. That means
Businesses need faster data warehouse performance to
support rapid business decisions, added applications, and
better system utilization. And as data volumes continue to
increase driven by everything from longer detailed histories
to the need to accommodate big data companies require a
solution that allows their data warehouse to run more
applications and to be more responsive to changing business
environments.

The row by row approach is write optimized. The three most
popular commercial database systems (e.g., Oracle, IBM
DB2, Microsoft SQL Server) choose the row by row storage
layout. The column by column approach is read optimized.
Suppose any table that have 5 columns and that table contain
10 million records. (e.g. customer (custid, custname, phone,
email, sex)). But we frequently access only two records (e.g.
custid, custname), so there is no need to read all the data
from a particular table. Instead of reading all data we read
only two columns.

2. Literature Review

Column-oriented databases allow data to be stored column-
by-column rather than row-by-row. Research performed by
Abadi, Madden, and Hachem (2008) proved that column-
stores were faster than row-stores when reading large datasets
optimized for analysis. This conclusion was based on four

main advantages that revealed themselves in experiments:
late materialization, block iteration, Compression, and
invisible joins. All four of these advantages are essentially
products of a column-store's ability to scan columns
separately and track whole records by their identical position
in each column.

Research done by Holloway and DeWitt (2008) focused on
situations where the column-store's advantages in query
speed and the use of compression did not materialize and
where row-stores could match or even exceed their
performance. One of the main reasons that a traditional row-
store cannot match a column-store's performance when
reading large datasets is the row-store's focus on easy
updatability. Row-stores that sacrifice this advantage and
reorganize themselves for "read-optimized" performance can
achieve data compression ratios comparable to column-
stores, and can exceed their query performance under certain
conditions.

Loshin (2009) concurred, and also added that the pre-
calculated aggregates and specialized views needed in row-
store data warehouses were also unnecessary when utilizing a
column-store because of the latter's high calculation speed.
He went on to note that the removal of these elements, as
well as a column-store's general lack of indexes, can
streamline a database schema and greatly reduce both storage
space and the complexity of extract, transfer and load
processes (ETL).

Finally, he stated that the smaller amount of storage needed
by a column-store can also be used more efficiently because
the flexibility allowed by block iteration and invisible joins
can make it easier to allocate disk resources, especially in
shared-disk systems.

2.1 Advantages of Column-Stores

Column-oriented organizations are more efficient when an
aggregate needs to be computed over many rows but only for
a notably smaller subset of all columns of data, because

Paper ID: 21091507 1621

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 9, September 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

reading that smaller subset of data can be faster than reading
all data.
1) High performance on aggregation queries (like COUNT,

SUM, AVG, MIN, MAX).
2) Highly efficient data compression and/or partitioning.
3) True scalability and fast data loading for Big Data.
4) Advantage of column oriented databases over row oriented

databases is in the efficiency of hard- disk access.

Due to their aggregation capabilities which compute large
numbers of similar data items, column oriented databases
offer key advantages for certain types of systems, including:
Data Warehouses and Business Intelligence, Customer
Relationship Management (CRM),Library Card Catalogs, Ad
hoc query systems.

2.2 Disadvantages of column-stores

2.2.1 Increased Disk Seek Time

Disk seeks between each block read might be needed as
multiple columns are read in parallel. However, if large disk
pre-fetches are used, this cost can be kept small.

2.2.2 Increased Cost of Inserts

Column-stores perform poorly for insert queries since
multiple distinct locations on disk have to be updated for
each inserted tuple (one for each attribute). This cost can be
alleviated if inserts are done in bulk.

3. Implementation

Now the goal is to design column oriented databases and to
propose new ideas for performance optimization. Our
approach of implementing column oriented database is to
vertically partition a traditional row oriented database. Tables
in the row store are broken up into multiple two column
tables consisting of (table key, attribute) pairs. There is one
two column tables for each attribute in the original table.
When a query is issued, only those thin attribute-tables
relevant for a particular query need to be accessed-the other
tables can be ignored. These tables are joined on table key to
create projection of original table containing only those
columns necessary to answer a query, and then execution
proceeds as normal. The smaller the percentage the columns
from table that need to be accessed to answer a query the
better the relative performance with a row store will be.

This approach requires no modification to the database and
can be implemented in all current database system. If it
performs well, then it would be the preferable solution for
implementing column stores. Of course this approach does
require changes at the application level since the logical
schema must be modified to implement this approach so this
approach is to use a row-store to simulate a column-store.
For performance analysis of row oriented database vs column
oriented database there is a need of large row-oriented
database. Using this large row-oriented database column-
oriented database can be derived by vertical partitioning.
Analysis of performance will be based on execution time of
sql queries on the row oriented database and column oriented
respectively.

To accomplish this, we Our benchmarking system TPC-H is
the gold standard, and we use a simplified version of this
benchmark with 2 Gbytes of memory and 750 Gbytes of disk,
which our current engine is capable of running. Specifically,
we implement the lineitem, and lineitemv tables as follows:

The standard data for the above table schema for TPC-H
scale is 60,000,000 recods (1.8GB), and was generated by
the data generator available from the TPC website. By
vertical partitioning And creating the Trigger Function
Linerec() We have taken lineitemv table in column oriented
fashion with different numbers of columns and a separate file
has been made.

SQL query that is being used for analysis purpose in column
oriented database is for eight columns accessed is SELECT
l_quantity, l_extendedprice, l_discount, l_tax, l_returnflag,
l_receiptdate, l_shipinstruct, l_shipmode, FROM lineitemv;
In the same way, we accessed different numbers of columns
and check the performance of row and column oriented
database at certain conditions on postgresql. The following
table indicates the performance that we observed. All
measurements are in seconds and are taken on a dedicated
machine.

Table 1: Experimental results for simple select query
Sno Approah Table No. of

Column
Execution

Time (in sec)
1 Row

Column
LineItem
LineItemv

16
6

45.89
13.45

2 Row
Column

LineItem
LineItemv

16
8

45.89
16.36

3 Row
Column

LineItem
LineItemv

16
10

45.89
20.34

4 Row
Column

LineItem
LineItemv

16
14

45.89
39.3

Figure: Comparison of Column-Store vs. Row-Store

A comparative analysis can be done that which database
software will perform better after vertical partitioning for
column oriented database. In this, we can see for the same
query as increasing the number of columns time vary
accordingly. For That analysis will certainly help in choosing
row-oriented database software for column oriented database
development. The same sql query that was used in query
performance analysis will be used for comparative
performance analysis.

Paper ID: 21091507 1622

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 9, September 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

4. Future Work

Vertical partitioning is a good approach for column oriented
database design but this approach doesn’t make logical data
independence in the design. There is a need of designing an
automatic query rewriter that automatically converts queries
over the initial schema to query over the vertically
partitioned schema. This approach also introduces extra
redundancy in the database. So instead of using primary key
or serial no indexing can be used.

5. Conclusion

Column-oriented databases provide faster answers, because
they read only the columns requested by users’ queries, since
row-oriented databases must read all rows and columns in a
table. For applications that write and update many data
(OLTP systems), a row-oriented approach is a proper
solution. In contrast, an OLAP system, mainly based on
adhoc queries performed against large volumes of data, has
to be read optimized.

Vertical partitioning approach to build a column-store
requires slight modifications in the DBMS. This modification
in the DBMS will certainly result is significant performance
gains for large databases. It will certainly be useful for data
warehouses where the analysis is naturally a read oriented
endeavor. Unlike row oriented databases write optimized
nature column oriented databases will be read optimized.
This approach is not useful at all cases but it will certainly
improve performance on some cases.

References

[1] A Review of Column-oriented Data stores by Zach Pratt

at attackofzach.com
[2] Column-Oriented Databases, an Alternative for Analytical

Environment by Gheorghe MATEI at dbjournal.ro
[3] Daniel J. Abadi “Query Execution in Column-Oriented

Database Systems” Massachusetts Institute of
Technology, February 2008

[4] D. J. Abadi, S. R. Madden, and M. C. Ferreira. In
SIGMOD, pages 671-682, 2006, Integrating Compression
and Execution in Column-Oriented Database Systems

[5] D. J. Abadi, S. Madden, N. Hachem, “Column-stores vs.
row-stores: how different are they really?” in SIGMOD
Conference 2008, pp. 967-980.

[6] Column-oriented DBMS, Wikipedia, the free
encyclopedia.Available:
http://en.wikipedia.org/wiki/Column-oriented_DBMS.

[7] Infobright, Analytic Applications With PHP and a
Columnar Database(2010), 403-4Colborne St Toronto,
Ontario M5E 1P8 Canada.

[8] Column-Oriented Databases, an Alternative for Analytical
Environment by Gheorghe MATEI at dbjournal.ro

Paper ID: 21091507 1623

