
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 8, August 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

An Enhanced Residue Modular Multiplier for

Cryptography

Vundela Sarada

M.Tech ,Department of ECE, JNTUA College of engineering, Anantapur, A.P.

Abstract: This paper presents an implementation of VLSI architecture for Dual Field Residue Arithmetic modular multiplier with less

delay based on finite field arithmetic to support all public key cryptographic applications. A new method for incorporating Residue

Number System (RNS) and Polynomial Residue Number system (PRNS) in modular multiplication is derived and then implemented

VLSI Architecture for dual field residue arithmetic modular multiplier with less delay . This architecture supports the conversions,

modular multiplication for polynomials and integers and modular exponentiation in same hardware. This architecture has a carry save

adders (CSAs) and parallel prefix adders in MAC units to speed up the large integer arithmetic operations over GF(P) and GF(2n),hence

this reduces the delay up to 10 percent.

Keywords: Finite field arithmetic, Residue number and Polynomial Residue number systems,modular arithmetic, parallel arithmetic and

logic structures, and montgomery multiplication.

1. Introduction

Now a days, many of applications including cryptography,

error correction coding, computer algebra, DSP, etc., depen -

ds on the efficient realization of arithmetic over finite fields

of the form GF(2
n
) , where n € Z and n ≥ 1 , or the form

GF(P) , where P is a prime. Special case of multiplications

are formed by Cryptographic applications, since, for security

reasons, they require large integer operands. Almost all

public key cryptography, such as Elliptic Curves

Cryptography (ECC) and RSA cryptography, employ modul-

ar multiplication with very large numbers, so faster modul-ar

multiplication has become an important cryptography issue.

For achieving satisfactory cryptosystem performance,

Efficient field multiplication with large operands is crucial

since multiplication is the most time and area consuming

operation. Therefore, there is a need for increasing the speed

of cryptosystems employing modular arithmetic with the

least possible area penalty. The perfect approach to achieve

this would be through parallelization of their operations.

The RNS/PRNS is a non-weighted number system which

speeds up arithmetic operations by dividing them into

smaller parallel operations, and they provide interesting low

power architecture. Since the RNS/PRNS system is not a

positional number system where each digit corresponds to a

certain weight, it is hard to implement the operations of

comparison and division. RNS/PRNS is one of the most

popular techniques for reducing the power dissipation and

the computation load in VLSI systems design. On the other

hand, for RNS/PRNS implementations, the extra cost of in-

put converters to translate numbers from a standard binary

format into residues and output converters to translate from

RNS/PRNS to binary representations are needed .A new

methodology for embedding residue arithmetic in a dual field

Montgomery modular multiplication algorithm for integers

in and for polynomials in is presented in this paper. The

derived architecture is highly parallelizable and versatile, as

it supports binary-to-RNS/PRNS and RNS/PRNS-to-binary

conversions, Mixed Radix Conversion (MRC) for integers

and polynomials, dual-field Montgomery multiplication and

dual-field modular exponentiation in the same hardware.

2. Previous Work

GF(2
n
) implementations has been progressed a lot in these

days. PRNS incorporation in field multiplication based on a

straightforward implementation of the Chinese Remainder

Theorem (CRT) for polynomials is implemented in [1],

requires large storage resources and many pre-computations.

The multipliers perform multiplication in PRNS are

proposed in [2], [4] but the result is then converted back to

polynomial representation.

This limitation makes these methods inappropriate for

cryptographic algorithms, since it require consecutive mul -

tiplications. Finally, algorithm which employs trinomials for

the modulus set and performs PRNS Montgomery

multiplication has been proposed [3].But [3] has no reference

to conversion methods and the trinomials requirement may

issue limitations in the PRNS data range.

GF(P) implementations have also withstood great analysis,

with the Montgomery algorithm being used in the majority

of them. Montgomery multiplication designs fall into two

categories. The first includes fixed-precision input operand

implementations, in which the multiplicand and modulus are

processed in full world length, while multiplier is handled

bit-by-bit [5]–[6]. These designs are optimized for certain

word lengths and do not scale efficiently for departures from

these word lengths. Their performance has been improved by

high-radix algorithms and architectures.

The second category includes scalable architectures for

variable word-length operands, based on algorithms, in

which the multiplicand and modulus are processed word by

word, while the multiplier is consumed bit by bit [7] and

[8].Montgomery’s algorithm has also become a predicate for

dual-field implementations. The Montgomery architectures

perform well for RSA key word lengths, by processing word-

size data, since RSA key sizes (512, 1024, 2048, etc.) are

always multiples of word size. However, in ECC, key sizes

Paper ID: SUB157932 2029

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 8, August 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

are not integer multiples of word size, meaning that, if these

architecture were to be used in ECC, An architecture

configured at bit-level overcomes this problem.

3. Residue Arithmetic

A. Residue number system :

There is a set of L pair-wise relative prime integers A =

 M1,, M2, … . . , ML in RNS and the range of the RNS is

calculated as A = mi
L
i=1 .Any integer Z ∈ [0, A − 1] has a

unique representation that is ZA = Z1, Z2, …… . . , ZL =
(‹Z›m1 , ‹Z›m2 , …………… , ‹Z›mL) , where < 𝑧 > 𝑚i

= z mod mi. If two integers a and b are in residue format

then one can perform any operations in parallel

aA ∗ b𝐁

=
< a1 ∗ b1 > m1 , < a2 ∗ b2 > m2, …………… ,

< aL ∗ bL > mL
 (1)

Two techniques may be employed [10] for reconstruction or

the integers from residues. They are,

1. Chinese remainder theorem (CRT), according to

z = < zi . Ai
−1 > mi . Ai − γAL

i=1 (2)

 Where Ai = A
mi
 ,Ai

−1 is the inverse of Aimod mi , γ is an

integer correction factor.

2. Mixed Radix conversion (MRC),the MRC of an integer Z

with an RNS representation is given by

z = U1 + w2U2 + ⋯……… . +wLUL (3)

Where Wi = mj
i−1
j=1 and Uis are computed according to

U1 = z1

U2 =< z2 − z1 > m2

U3 =< z3 − z1 − W2U2 > m3

.

..

UL =< zL − z1 − W2U2 − W3U3 −⋯− WL−1 UL−1 > mL .

 (4) Among above two methods the proposed architecture

uses MRC ,as it avoids the problem of evaluating the

correction factor γ of (2).

B. Polynomial residue number system:

Similar to RNS, a PRNS is defined through a set of , pair-

wise relatively prime polynomials

A = (m1 x , m2 x , …………… . , mL x) . We denote

by A x = mi
L
i=1 x the dynamic range of the PRNS. In

PRNS, every polynomial has a unique PRNS representation:

 zA = z1, z2, … … . . , zL such as zi = z i mod mi x ,
 i ∈ [1, L] , denoted as < 𝑧 > mi .In the rest of the paper, the

notation ―(x) ‖ to denote polynomials shall be omitted, for

simplicity. The notation z will be used interchangeably to de-

note either an integer or a polynomial, according to context

according to the context.

In the PRNS representation all operations can be performed

in parallel. Conversion from PRNS to weighted polynomial

representation is identical to the MRC for integers. The only

difference is that, the subtractions in () are substituted by

polynomial additions.

4. Montgomery Multiplication

A. GF(P) arithmetic

Field elements GF(P) in are integers in[0 to P-1] and

arithmetic is performed modulo P . Since Montgomery’s

method was originally devised to avoid divisions, it is well-

suited to RNS implementations , considering that RNS

division is inefficient to perform.

B. GF(𝟐𝐧) arithmetic:

In GF(2
n
) arithmetic, field elements are polynomials are

represented as vectors with dimension n ,relative to a given

polynomial basis 1, α, α2 , …… . . , αn−1 ,where α is a root of

an irreducible polynomial p of degree n over GF(2).

The addition of two polynomials a and b in GF(2n) is

performed by adding the their coefficients i.e., modulo 2.The

multiplication of two polynomials is

c = a . b mod p

5. Conversions

Let us consider A = (p1,p2, p3 …………… . , pL) as base, this

shall be used to analyze the Conversions to/from residue

representations.

1. Binary-to-Residue Conversion: A radix- representa -tion

of an integer z as an L- tuple

(z(L−1), …… . . , z(0) satisfies

z = z(i) 2riL−1
i=0 (5)

where,0 ≤ z(i) ≤ 2r − 1 . To compute zA a method is

devised ,the Multiply and Accumulate structure in DRAMM

is implemented for this method. By applying the modulo

pj operation in (14) ,we obtain

< 𝑧 >P j
= z i < 2ri >P j

L−1

i=0

 P j
 , ∀ j

 ∈ [1, L] (6)

If constants 2ri P j
 are precomputed, this computation is well

suited to the proposed MAC structure and can be computed

in L steps, when executed by units in parallel.

Similar to the integer case, a polynomial lz x ∈ GF 2n can

be written as

 z = z(i) xriL−1
i=0 (7)

Applying the modulo pj operation in the above equation

< 𝑧 >P j
= z i < 𝑥ri >P j

L−1
i=0 P j

 , ∀ j ∈ 1, L (8)

which is a similar operation to operation for integers, if

 xri P j
 are pre-computed.

From the above analysis conversions in both fields can be

unified into a common conversion method, if dual-field

circuitry is employed.

2 . Residue-to-Binary Conversion: As all operands in (4)

are of word length , they can be efficiently handled by an r-

bitMAC unit. However, (3) employs multiplications with

large values, namely the Wi s. To overcome this problem(3)

Paper ID: SUB157932 2030

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 8, August 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

can be rewritten as matrix notation. The inner products of a

row are calculated in parallel in each MAC unit. Each MAC

then propagates its result to subsequent MACs ,so that at the

end the last MAC(L) outputs the radix- 2rdigit z(i)of the

result. In parallel with this summation, inner products of the

next row i+1 can be formulated, since the adder and

multiplier of the proposed MAC architecture may operate in

parallel.

6. Hardware Implementation

1. Dual Field Addition and subtraction:

A. Dual field adder: Dual field adder is a full adder cell

equipped with a field select signal (fsel).The fsel signal

controls the operation mode, the same circuit would operate

on both polynomials and integers as well.

Figure 1: Dual-field full-adder cell (DFA).

B. Dual field Parallel Prefix Adder :

This is implemented by 3-level parallel prefix adder with

four bit carry generator groups. The GAP modules generate

the signals pi = xi XOR yi ,

 gi = xi AND yi and αi = xi OR yi .The AND gate along with

the fsel eliminates the carry for polynomials and stores the

carry for integer arithmetic.

Figure 2: Dual-field PPA.

The parallel prefix generator generates all carries in parallel

by using input carry only, hence Dual Field PPA gives fast

operations on large number of bits.

C. Dual-Field Modular/Normal Addition/Subtraction

After some modifications of algorithms for modular

addition/subtraction in GF(P) a dual-field modular

adder/subtracter (DMAS) shown in Fig. 3 is implemented

using Parallel prefix adder (PPA) adders.

When fsel = 0 , the circuit is operates in GF(2n) mode and

the output is computed directly from the top adder which

performs a GF 2n addition. Whenfsel = 1 , the circuit may

operate either as a normal –bit adder /subtracter (conv-

mode=0) or as a modular adder/ subtracter (conv-mode=1) .

Figure 3: Dual-field modular/normal adder/subtracter

(DMAS).

2. Dual-Field Multiplication:

A traditional parallel tree multiplier, which is suitable for

high-speed arithmetic with little modification to support both

fields, is implemented in this architecture. For both input

operands, either integers or polynomials, partial product

generation is common for both fields, i.e., an AND operation

among all operand bits. Consequently, the a carry save adder

tree(CSA tree) that sums the partial products must support

both formats. In this multiplier the DFA cells eliminates the

carry for GF 2n mode and only XOR operations performed

among partial products. This multiplier act as a traditional

multiplier for GF(p) mode

 .

Figure 4: Dual-field multiplier (DM)

.

3. Dual-Field Modular Reduction:

After each multiplication, finally modular reduction by each

RNS/PRNS modulus is required , for each multiplica-tion

outcome, within each MAC unit. Several modular reduction

strategies are employed for modular reduction ,this method is

implemented based on careful modulus selection is utilized,

since, not only it offers efficient implementations but also

provides the best unification potential at a low area penalty.

Paper ID: SUB157932 2031

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 8, August 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Let us consider the 2r –bit product C that needs to be reduced

modulo of an integer modulus Pi.By proper selection of the

the Pi which is 2r − μ
i
 ,where the h-bit

 μ
i
 ≪ 2r modular reduction process can be simplified as

 C Pi
=

E F

 ci 2
i

r−1

i=0

+ 2r cr+i 2
i

r−1

i=0

Pi

= E + 2r F

 = di 2
ir−1

i=0 + μ
i
 dr+i 2

ir−1
i=0 Pi

 (9)

From (9), it is apparent that

 C Pi
=

 β
i
 2ir−1

i=0 , β < 2r − μ
i

 β
i
 2ir

i=0 + μ
i
, 2r − μ

i
< β < 2r

 (10)

Figure 5: Dual-field modular reduction unit (DMR).

Similar to the integer case, a polynomialz x ∈ GF 2n
canbe written as

z = z(i) xriL−1
i=0 (11)

Applying the modulo pj operation in the above equation

< 𝑧 >P j
= z(i) < 𝑥ri >P j

L−1
i=0 P j

 , ∀ j ∈ 1, L (12)

which is a similar operation to operation for integers, if

 xri P j
 are pre-computed.

From the above analysis conversions in both fields can be

unified into a common conversion method, if dual-field

circuitry is employed.

For polynomials fields also, the same modular reduction can

be applied if dual-field adders and dual-field multipliers are

employed. The dual-field modular reduction (DMR) unit can

work as shown in Fig. 5. The maximum word length h of μ
i

can be limited to 10 bits for a base with 66 elements.

4. MAC UNIT

An implemented MAC unit in this paper is shown in fig 6. In

this MAC unit operation is analyzed in three steps,

corresponding to three phases of calculation it handles.

1. Binary to residue conversion.

2. Montgomery multiplication.

3. Residue to Binary conversion.

1) Binary-to-Residue Conversion:
Initially, r-bit words of the input operands, as shown by (9),

are applied to each MAC unit and stored in RAM1 which is

located at the top of Fig. 7. These words are the first input to

the multiplier, along with the quantities 2ri pi ,q i
 ,

 xri pi ,q i
.These quantities are stored in a ROM. Their multi-

plication produces the inner products of (9) or (11) .These

products are added recursively in the DMAS uni,result is

stored via the bus in RAM1.For the second operand also the

process is repeated and the result is stored in RAM2, so that

at the completion of the conversion , each MAC unit holds

the residue digits of the two operands in the two RAMs. It

conversion requires L steps to be executed.

2) Montgomery Multiplication:

The first step of the DRAMM is a modular multiplication of

the residue digits of the operands. After completion of the

residue to binary conversion ,these residue digits are imme-

diately available by the two RAMs, a modular multiplicati -

on is executed and the result in R1 is stored in RAM1 for

base B and RAM2 for base A . Step2 of DRAMM is a

multiplication of the previous result with a constant provided

by the ROM. According to the requirement the, all MAC

units are updated through the bus with the corresponding

RNS digits of all other MACs and a DBC process is initiated.

Here, the multiplication is done in parallel i.e., the operations

in MAC are split two parts modular multiplication and

addition with the result of previous MAC.

Figure 6: MAC unit

Paper ID: SUB157932 2032

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 8, August 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 7: DRAMM architecture.

The remaining multiplications, additions, and the final DBC

operation required by the DRAMM algorithm are computed

in the same multiply-accumulate manner and the final

residue Montgomery product can be either driven to the I/O

interface, or it can be reused by the MAC units to convert the

result to binary format.

3) Residue-to-Binary Conversion:
 Residue-to-binary conversion is implemented based on the

Mixed Radix Con-version method. The inner products are

generated by the multiplier only. Each product is calculated

in parallel in each MAC unit and a ―carry-propagation‖ from

MAC(1) to MAC(L) is performed to add all inner products.

When summation finishes the first digit z(0) of the result is

produced in MAC(L).. The inner products of line 2 are

calculated in parallel with this ―carry-propagation‖. A new

addition for line 2 is performed immediately after an addition

of carry-propagated inner products for line 1 is completed by

the MAC unit. The process continues for all lines of (4) and

the result is available after steps. The complete DRAMM

architecture is depicted in Fig. 7

7. Performance and Comparisons

Dual field: The DRAMM architecture operates in GF(P)

arithmetic when Fsel is 1 and for Fsel is 0 it is act as modular

multiplier for GF(2n) arithmetic.

Memory requirement : The implanted architecture requires

maximum (2L-1) r-bit RAM 1/2 per MAC UNIT, hence total

a L(4L-2) r-bit RAM is required. For binary to residue

conversion 4L2 r − bits , for DRAMM 6Lr − bit and for

residue to binary L(L − 1) r-bit memory required.

Comparisons

 The implemented architecture introduces the Dual field

RNS montgomery Multiplier, which is not supported by

existing RNS solutions [2],[12] and [10].

 It further reduces the number of Modular multiplications

for the base conversion and the RNS to Binary conversion

because it uses the simplified MRC instead of CRT [41].In

this architecture simplified version of MRC requires L − 2

multiplications to implement (4),while [39] requires

L(L − 1)/2 for same conversion.

Table 1: No. of Modular Multiplications
 Input

conversions

Output

conversions

Others

Present

work
L2 L(L − 1)

2

5L

[3] L2 L(2L + 1) 5L

[11] L2 L(L + 1) 2L

 Parallel prefix adder has a less Fan out ,hence this is the

fast adder when comparing with other adders. MAC unit

uses a parallel prefix adder, which plays the important role

in MAC unit. This leads to less path delay comparing with

existing system. The results obtained from three works are

shown below table 2.

Tabel 2: Comparsions Between Three Works
 Delay(ns) Supported fields

Implemented

method

18.214 Dual field

(polynomials and integers)

[12] 20.732 Dual field

(polynomials and integers)

[10] 22.137 Single

(only integers)

The area of the architecture is over head for this work when

comparing with other implementations. However , while

considering non RNS implementations, the use full

properties like Dual field design, fault detection and, more

recently, immunity against hardware fault attacks should be

taken into account [9].

.

8. Conclusion

An Efficient high speed RNS modular multiplier implement

–ed in this paper ,that operates in both GF p and GF(2n)

arithmetic fields and necessary conditions for the system

parameters are mentioned. The DRAMM architecture

supports all operations of montgomery multiplication,

residue-to-binary conversion and binary-to-residue conver -

sion , MRC for polynomials and integers and ,modular

exponentiation in same hard ware.

The MAC units in DRAMM architecture reduces the delay,

hence this is suited for high speed applications like all types

of public key cryptography and DSP ete.,

References

[1] A. Halbutoğullari and Ç. K. Koç, ―Parallel

multiplication inusing polynomial residue arithmetic,‖

Design, Codes and Cryptography,vol. 20, no. 2, pp.

155–173, Jun. 2000.

[2] M. G. Parker and M. Benaissa, ― multiplication using

Polynomial residue number systems,‖ IEEE Trans.

Circuits Syst. II, vol. 42, no. 11, pp. 718–721, Nov.

1995.

[3] H. Nozaki, M. Motoyama, A. Shimbo, and S.-I.

Kawamura, ―Implementationof RSA algorithm based on

RNS Montgomery multiplication,‖in Proc. 3rd Int.

Workshop on Cryptographic Hardware and Embedded

Systems (CHES ’01), 2001.

[4] D. Schinianakis,A.Kakarountas, T. Stouraitis, and A.

Skavantzos, ―Ellipticcurve point multiplication in using

Polynomial Residue Arithmetic,‖ in Proc. IEEE Int.

Electronics, Circuits, and Systems(ICECS 2009), 2009,

pp. 980–983.

[5] C. McIvor, M. McLoone, and J. McCanny, ―Modified

Montgomery modular multiplication and RSA

exponentialtion techniques,‖ IEEProc.—Computers and

Digit-al Techniques, vol. 151, no. 6, pp.402–408, Nov.

2004.

Paper ID: SUB157932 2033

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 8, August 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[6] M. Huang, K. Gaj, S. Kwon, and T. El-Ghazawi, ―An

ptimized hardware architecture for the Montgomery

multiplication algorithm,‖ inProc. Practice and Theory

in Public Key Cryptography, PKC’08, 2008,pp. 214–

228.

[7] W. Freking and K. Parhi, ―Performance-scalable array

architectures for modular multiplication,‖ in Proc. IEEE

Int. Conf. Application-SpecificSystems, Architectures,

and Processors, 2000, pp. 149–160.

[8] M.-D. Shieh and W.-C. Lin, ―Word-based Montgomery

Modular multiplication algorithm for low-latency

scalable architectures,‖ IEEE Trans. Comput., vol. 59,

no. 8, pp. 1145–1151, aug. 2010.

[9] D. Schinianakis and T. Stouraitis, ―Harware-fault attack

handling inRNS-based Montgomery multipliers,‖ in

Proc. IEEE Int. Symp. Circuits and Systems, 2013.

[10] Y. Tong-jie, D. Zi-bin, Y. Xiao-Hui, and Z. Qian-jin,

―An improved RNS Montgomery modular multiplier,‖

in Proc. 2010 Int. Conf. Computer Application and

System Modeling (ICCASM), 2010, vol. 10, pp.V10-

144–V10-147.

[11] F. Gandino, F. Lamberti, G. Paravati, J. Bajard, and P.

Montuschi, ―An algorithmic and architectural study on

Montgomery exponentiation in RNS,‖ IEEE Trans.

Comput., vol. 61, no. 8, pp. 1071–1083, 2012.

[12] Dimitrios Schinianakis and Thanos Stouraitis,

‖Multifunction Residue Architectures for Cryptogra -

phy‖, IEEE transactions on circuits and systems—i:

regular papers, vol. 61, no. 4, april 2014

Paper ID: SUB157932 2034

