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Abstract: This paper presents an implementation of VLSI architecture for Dual Field Residue Arithmetic modular multiplier with less 

delay based on finite field arithmetic to support all public key cryptographic applications. A new method for incorporating Residue 

Number System (RNS) and Polynomial Residue Number system (PRNS) in modular multiplication is derived and then implemented 

VLSI Architecture for dual field residue arithmetic modular multiplier with less delay . This architecture supports the conversions, 

modular multiplication for polynomials and integers and modular exponentiation in same hardware. This architecture has a carry save 

adders (CSAs) and parallel prefix adders in MAC units to speed up the large integer arithmetic operations over GF(P) and GF(2n),hence 

this reduces the delay up to 10 percent. 
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1. Introduction 
 

Now a days, many of applications including cryptography, 

error correction coding, computer algebra, DSP, etc., depen -

ds on the efficient realization of arithmetic over finite fields 

of the form GF(2
n
) , where n € Z and n ≥ 1 , or the form 

GF(P) , where P is a prime. Special case of multiplications 

are formed by Cryptographic applications, since, for security 

reasons, they require large integer operands. Almost all 

public key cryptography, such as Elliptic Curves 

Cryptography (ECC) and RSA cryptography, employ modul-

ar multiplication with very large numbers, so faster modul-ar 

multiplication has become an important cryptography issue.  

 

For achieving satisfactory cryptosystem performance, 

Efficient field multiplication with large operands is crucial 

since multiplication is the most time and area consuming 

operation. Therefore, there is a need for increasing the speed 

of cryptosystems employing modular arithmetic with the 

least possible area penalty. The perfect approach to achieve 

this would be through parallelization of their operations. 

 

The RNS/PRNS is a non-weighted number system which 

speeds up arithmetic operations by dividing them into 

smaller parallel operations, and they provide interesting low 

power architecture. Since the RNS/PRNS system is not a 

positional number system where each digit corresponds to a 

certain weight, it is hard to implement the operations of 

comparison and division. RNS/PRNS is one of the most 

popular techniques for reducing the power dissipation and 

the computation load in VLSI systems design. On the other 

hand, for RNS/PRNS implementations, the extra cost of in-

put converters to translate numbers from a standard binary 

format into residues and output converters to translate from 

RNS/PRNS to binary representations are needed .A new 

methodology for embedding residue arithmetic in a dual field 

Montgomery modular multiplication algorithm for integers 

in and for polynomials in is presented in this paper. The 

derived architecture is highly parallelizable and versatile, as 

it supports binary-to-RNS/PRNS and RNS/PRNS-to-binary 

conversions, Mixed Radix Conversion (MRC) for integers 

and polynomials, dual-field Montgomery multiplication and 

dual-field modular exponentiation in the same hardware. 

 

2. Previous Work 
 

GF(2
n
) implementations has been progressed a lot in these 

days. PRNS incorporation in field multiplication based on a 

straightforward implementation of the Chinese Remainder 

Theorem (CRT) for polynomials is implemented in [1], 

requires large storage resources and many pre-computations. 

The multipliers perform multiplication in PRNS are 

proposed in [2], [4] but the result is then converted back to 

polynomial representation. 

 

This limitation makes these methods inappropriate for 

cryptographic algorithms, since it require consecutive mul -

tiplications. Finally, algorithm which employs trinomials for 

the modulus set and performs PRNS Montgomery 

multiplication has been proposed [3].But [3] has no reference 

to conversion methods and the trinomials requirement may 

issue limitations in the PRNS data range.  

 

GF(P) implementations have also withstood great analysis, 

with the Montgomery algorithm being used in the majority 

of them. Montgomery multiplication designs fall into two 

categories. The first includes fixed-precision input operand 

implementations, in which the multiplicand and modulus are 

processed in full world length, while multiplier is handled 

bit-by-bit [5]–[6]. These designs are optimized for certain 

word lengths and do not scale efficiently for departures from 

these word lengths. Their performance has been improved by 

high-radix algorithms and architectures. 

 

The second category includes scalable architectures for 

variable word-length operands, based on algorithms, in 

which the multiplicand and modulus are processed word by 

word, while the multiplier is consumed bit by bit [7] and 

[8].Montgomery’s algorithm has also become a predicate for 

dual-field implementations. The Montgomery architectures 

perform well for RSA key word lengths, by processing word-

size data, since RSA key sizes (512, 1024, 2048, etc.) are 

always multiples of word size. However, in ECC, key sizes 
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are not integer multiples of word size, meaning that, if these 

architecture were to be used in ECC, An architecture 

configured at bit-level overcomes this problem. 

3. Residue Arithmetic 
 

A. Residue number system : 

There is a set of L pair-wise relative prime integers A =

 M1,, M2, … . . , ML  in RNS and the range of the RNS is 

calculated as A =  mi
L
i=1 .Any integer Z ∈ [0, A − 1] has a 

unique representation that is  ZA =  Z1, Z2, …… . . , ZL =
( ‹Z›m1 , ‹Z›m2 , …………… , ‹Z›mL) , where < 𝑧 > 𝑚i  

= z mod mi. If two integers a and b are in residue format 

then one can perform any operations in parallel 

aA ∗ b𝐁 

 

=   
< a1 ∗  b1 > m1  , < a2 ∗  b2 > m2, …………… ,

< aL ∗  bL > mL
     (1) 

  

Two techniques may be employed [10] for reconstruction or 

the integers from residues. They are, 

 

1. Chinese remainder theorem (CRT), according to  

z =  < zi . Ai
−1 > mi  . Ai − γAL

i=1                 (2) 

 Where Ai  =  A
mi
  ,Ai

−1 is the inverse of Aimod mi  , γ is an 

integer correction factor. 

 

2. Mixed Radix conversion (MRC),the MRC of an integer Z 

with an RNS representation is given by  

z = U1 + w2U2 + ⋯……… . +wLUL               (3) 

Where Wi =   mj
i−1
j=1  and Uis are computed according to 

U1 = z1  

U2 =< z2 − z1 > m2  

U3 =< z3 − z1 − W2U2 > m3   

. 

.. 

UL =< zL − z1 − W2U2 − W3U3 −⋯− WL−1 UL−1 > mL  . 

  

 (4) Among above two methods the proposed architecture 

uses MRC ,as it avoids the problem of evaluating the 

correction factor γ of (2). 

 

B. Polynomial residue number system: 

Similar to RNS, a PRNS is defined through a set of , pair-

wise relatively prime polynomials  

A = (m1 x , m2 x , …………… . , mL x ) . We denote 

by A x =  mi
L
i=1  x  the dynamic range of the PRNS. In 

PRNS, every polynomial has a unique PRNS representation: 

 zA =  z1, z2, … … . . , zL  such as zi = z i mod mi x  , 
 i ∈ [1, L] , denoted as < 𝑧 > mi .In the rest of the paper, the 

notation ―(x) ‖ to denote polynomials shall be omitted, for 

simplicity. The notation z will be used interchangeably to de-

note either an integer or a polynomial, according to context 

according to the context. 

In the PRNS representation all operations can be performed 

in parallel. Conversion from PRNS to weighted polynomial 

representation is identical to the MRC for integers. The only 

difference is that, the subtractions in () are substituted by 

polynomial additions. 

 

 

4. Montgomery Multiplication 
 

A. GF(P) arithmetic 

Field elements GF(P) in are integers in[0 to P-1] and 

arithmetic is performed modulo P . Since Montgomery’s 

method was originally devised to avoid divisions, it is well-

suited to RNS implementations , considering that RNS 

division is inefficient to perform. 

 
B. GF(𝟐𝐧) arithmetic: 

In GF(2
n
) arithmetic, field elements are polynomials are 

represented as vectors with dimension n ,relative to a given 

polynomial basis  1, α, α2 , …… . . , αn−1  ,where α is a root of 

an irreducible polynomial p of degree n over GF(2). 

The addition of two polynomials a and b in GF(2n) is 

performed by adding the their coefficients i.e., modulo 2.The 

multiplication of two polynomials is 

c = a . b mod p 
 

5. Conversions 
 

Let us consider A = (p1,p2, p3 …………… . , pL ) as base, this 

shall be used to analyze the Conversions to/from residue 

representations. 

 

1. Binary-to-Residue Conversion: A radix- representa -tion 

of an integer z as an L- tuple  

(z(L−1), …… . . , z(0) satisfies 

 

z =  z(i) 2riL−1
i=0  (5) 

where,0 ≤ z(i) ≤ 2r − 1 . To compute zA  a method is 

devised ,the Multiply and Accumulate structure in DRAMM 

is implemented for this method. By applying the modulo 

pj operation in (14) ,we obtain 

< 𝑧 >P j
=   z i  < 2ri >P j

L−1

i=0

  P j  
 , ∀ j 

  
 ∈ [1, L]                                   (6)  

 

If constants  2ri  P j
 are precomputed, this computation is well 

suited to the proposed MAC structure and can be computed 

in L steps, when executed by units in parallel. 

Similar to the integer case, a polynomial lz x ∈ GF 2n  can 

be written as 

 

 z =  z(i) xriL−1
i=0  (7) 

Applying the modulo pj operation in the above equation 

< 𝑧 >P j
=   z i  < 𝑥ri >P j

L−1
i=0   P j  

 , ∀ j ∈  1, L  (8) 

which is a similar operation to operation for integers, if 

 xri  P j
 are pre-computed. 

From the above analysis conversions in both fields can be 

unified into a common conversion method, if dual-field 

circuitry is employed.  

 

2 . Residue-to-Binary Conversion: As all operands in (4) 

are of word length , they can be efficiently handled by an r-

bitMAC unit. However, (3) employs multiplications with 

large values, namely the Wi  s. To overcome this problem(3) 
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can be rewritten as matrix notation. The inner products of a 

row are calculated in parallel in each MAC unit. Each MAC 

then propagates its result to subsequent MACs ,so that at the 

end the last MAC(L ) outputs the radix- 2rdigit z(i)of the 

result. In parallel with this summation, inner products of the 

next row i+1 can be formulated, since the adder and 

multiplier of the proposed MAC architecture may operate in 

parallel. 

 

6. Hardware Implementation 
 

1. Dual Field Addition and subtraction: 

 

A. Dual field adder: Dual field adder is a full adder cell 

equipped with a field select signal (fsel ).The fsel  signal 

controls the operation mode, the same circuit would operate 

on both polynomials and integers as well. 

 

 
Figure 1: Dual-field full-adder cell (DFA). 

 

B. Dual field Parallel Prefix Adder :  

This is implemented by 3-level parallel prefix adder with 

four bit carry generator groups. The GAP modules generate 

the signals pi = xi  XOR yi , 

 gi = xi  AND yi  and αi = xi  OR yi  .The AND gate along with 

the fsel  eliminates the carry for polynomials and stores the 

carry for integer arithmetic. 

 

 
Figure 2: Dual-field PPA. 

 

The parallel prefix generator generates all carries in parallel 

by using input carry only, hence Dual Field PPA gives fast 

operations on large number of bits.  

 

C. Dual-Field Modular/Normal Addition/Subtraction 

After some modifications of algorithms for modular 

addition/subtraction in GF(P) a dual-field modular 

adder/subtracter (DMAS) shown in Fig. 3 is implemented 

using Parallel prefix adder (PPA ) adders. 

 

When fsel = 0 , the circuit is operates in GF(2n) mode and 

the output is computed directly from the top adder which 

performs a GF 2n addition. Whenfsel = 1 , the circuit may 

operate either as a normal –bit adder /subtracter (conv-

mode=0) or as a modular adder/ subtracter (conv-mode=1) . 

 

 
Figure 3: Dual-field modular/normal adder/subtracter 

(DMAS). 

 

2. Dual-Field Multiplication: 

 

A traditional parallel tree multiplier, which is suitable for 

high-speed arithmetic with little modification to support both 

fields, is implemented in this architecture. For both input 

operands, either integers or polynomials, partial product 

generation is common for both fields, i.e., an AND operation 

among all operand bits. Consequently, the a carry save adder 

tree( CSA tree ) that sums the partial products must support 

both formats. In this multiplier the DFA cells eliminates the 

carry for GF 2n  mode and only XOR operations performed 

among partial products. This multiplier act as a traditional 

multiplier for GF(p) mode 

 . 

 
Figure 4: Dual-field multiplier (DM) 

. 

3. Dual-Field Modular Reduction: 

 

After each multiplication, finally modular reduction by each 

RNS/PRNS modulus is required , for each multiplica-tion 

outcome, within each MAC unit. Several modular reduction 

strategies are employed for modular reduction ,this method is 

implemented based on careful modulus selection is utilized, 

since, not only it offers efficient implementations but also 

provides the best unification potential at a low area penalty. 
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Let us consider the 2r –bit product C that needs to be reduced 

modulo of an integer modulus Pi.By proper selection of the 

the Pi  which is 2r −  μ
i
 ,where the h-bit 

  μ
i
 ≪ 2r  modular reduction process can be simplified as 

 C Pi
=

E F

  ci  2
i

r−1

i=0

       

+ 2r  cr+i  2
i

r−1

i=0

       

 

Pi

=  E + 2r  F         

 =   di  2
ir−1

i=0 + μ
i
 dr+i  2

ir−1
i=0  Pi

                  (9) 

 

From (9 ), it is apparent that 

 

 C Pi
=  

 β
i
 2ir−1

i=0 , β < 2r − μ
i

 β
i
 2ir

i=0 + μ
i
, 2r − μ

i
< β < 2r

                (10) 

  

 
Figure 5: Dual-field modular reduction unit (DMR). 

 

Similar to the integer case, a polynomialz x ∈ GF 2n  
canbe written as 

 

z =  z(i) xriL−1
i=0                                         (11)  

  

Applying the modulo pj operation in the above equation 

 

< 𝑧 >P j
=   z(i)  < 𝑥ri >P j

L−1
i=0   P j  

 , ∀ j ∈  1, L          (12) 

which is a similar operation to operation for integers, if 

 xri  P j
 are pre-computed. 

From the above analysis conversions in both fields can be 

unified into a common conversion method, if dual-field 

circuitry is employed.  

  

For polynomials fields also, the same modular reduction can 

be applied if dual-field adders and dual-field multipliers are 

employed. The dual-field modular reduction (DMR) unit can 

work as shown in Fig. 5. The maximum word length h of μ
i
 

can be limited to 10 bits for a base with 66 elements. 

 

4. MAC UNIT 

 

An implemented MAC unit in this paper is shown in fig 6. In 

this MAC unit operation is analyzed in three steps, 

corresponding to three phases of calculation it handles. 

1. Binary to residue conversion. 

2. Montgomery multiplication. 

3.  Residue to Binary conversion. 

 

1)  Binary-to-Residue Conversion:  
Initially, r-bit words of the input operands, as shown by (9), 

are applied to each MAC unit and stored in RAM1 which is 

located at the top of Fig. 7. These words are the first input to 

the multiplier, along with the quantities  2ri  pi ,q i
 , 

 xri  pi ,q i
.These quantities are stored in a ROM. Their multi-

plication produces the inner products of (9) or (11) .These 

products are added recursively in the DMAS uni,result is 

stored via the bus in RAM1.For the second operand also the 

process is repeated and the result is stored in RAM2, so that 

at the completion of the conversion , each MAC unit holds 

the residue digits of the two operands in the two RAMs. It 

conversion requires L steps to be executed. 

 

2)  Montgomery Multiplication: 

The first step of the DRAMM is a modular multiplication of 

the residue digits of the operands. After completion of the 

residue to binary conversion ,these residue digits are imme-

diately available by the two RAMs, a modular multiplicati -

on is executed and the result in R1 is stored in RAM1 for 

base B and RAM2 for base A . Step2 of DRAMM is a 

multiplication of the previous result with a constant provided 

by the ROM. According to the requirement the, all MAC 

units are updated through the bus with the corresponding 

RNS digits of all other MACs and a DBC process is initiated. 

Here, the multiplication is done in parallel i.e., the operations 

in MAC are split two parts modular multiplication and 

addition with the result of previous MAC. 

 

 
Figure 6: MAC unit 
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Figure 7: DRAMM architecture. 

 

The remaining multiplications, additions, and the final DBC 

operation required by the DRAMM algorithm are computed 

in the same multiply-accumulate manner and the final 

residue Montgomery product can be either driven to the I/O 

interface, or it can be reused by the MAC units to convert the 

result to binary format. 

 

3)  Residue-to-Binary Conversion: 
 Residue-to-binary conversion is implemented based on the 

Mixed Radix Con-version method. The inner products are 

generated by the multiplier only. Each product is calculated 

in parallel in each MAC unit and a ―carry-propagation‖ from 

MAC(1) to MAC(L) is performed to add all inner products. 

When summation finishes the first digit z(0) of the result is 

produced in MAC(L).. The inner products of line 2 are 

calculated in parallel with this ―carry-propagation‖. A new 

addition for line 2 is performed immediately after an addition 

of carry-propagated inner products for line 1 is completed by 

the MAC unit. The process continues for all lines of (4) and 

the result is available after steps. The complete DRAMM 

architecture is depicted in Fig. 7 

 

7. Performance and Comparisons 
 

Dual field: The DRAMM architecture operates in GF(P) 

arithmetic when Fsel   is 1 and for Fsel  is 0 it is act as modular 

multiplier for GF(2n) arithmetic. 

 

Memory requirement : The implanted architecture requires 

maximum (2L-1) r-bit RAM 1/2 per MAC UNIT, hence total 

a L(4L-2) r-bit RAM is required. For binary to residue 

conversion 4L2 r − bits , for DRAMM 6Lr − bit and for 

residue to binary L(L − 1) r-bit memory required. 

 

Comparisons  

 The implemented architecture introduces the Dual field 

RNS montgomery Multiplier, which is not supported by 

existing RNS solutions [2],[12] and [10]. 

 It further reduces the number of Modular multiplications 

for the base conversion and the RNS to Binary conversion 

because it uses the simplified MRC instead of CRT [41].In 

this architecture simplified version of MRC requires L − 2 

multiplications to implement (4),while [39] requires 

L(L − 1)/2 for same conversion. 

 

Table 1: No. of Modular Multiplications 
 Input 

conversions 

Output 

conversions 

Others 

Present 

work 
L2 L(L − 1)

2
 

5L 

[3] L2 L(2L + 1) 5L 

[11] L2 L(L + 1) 2L 

 

 Parallel prefix adder has a less Fan out ,hence this is the 

fast adder when comparing with other adders. MAC unit 

uses a parallel prefix adder, which plays the important role 

in MAC unit. This leads to less path delay comparing with 

existing system. The results obtained from three works are 

shown below table 2. 

 

Tabel 2: Comparsions Between Three Works 
 Delay(ns) Supported fields 

Implemented 

method 

18.214 Dual field 

(polynomials and integers) 

[12] 20.732 Dual field 

(polynomials and integers) 

[10] 22.137 Single 

(only integers) 

  

The area of the architecture is over head for this work when 

comparing with other implementations. However , while 

considering non RNS implementations, the use full 

properties like Dual field design, fault detection and, more 

recently, immunity against hardware fault attacks should be 

taken into account [9]. 

. 

8. Conclusion 
 

An Efficient high speed RNS modular multiplier implement 

–ed in this paper ,that operates in both GF  p  and GF(2n ) 

arithmetic fields and necessary conditions for the system 

parameters are mentioned. The DRAMM architecture 

supports all operations of montgomery multiplication, 

residue-to-binary conversion and binary-to-residue conver -

sion , MRC for polynomials and integers and ,modular 

exponentiation in same hard ware. 

 

The MAC units in DRAMM architecture reduces the delay, 

hence this is suited for high speed applications like all types 

of public key cryptography and DSP ete.,  
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