
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 8, August 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

High performance Radix-4 FFT using Parallel

Architecture

Pooja Swamy
1
, R. Pavan Kumar

2

1M.Tech. Student, Lingaraj Appa Engineering College, Bidar, Karnataka

2Defence Electronics Research Laboratory, Hyderabad

Abstract: In this paper, we propose a design architecture of an efficient Radix-4 FFT algorithm using parallel architecture. This

parallel architecture plays an important role in the FFT computation speed of data samples. The proposed algorithm has a better power

and area consumption compared to the conventional Radix-4 FFT Algorithm. By the repeated use of twiddle factors, algorithm reduces

the complexity and memory consumption in terms of hardware point of view.

Keywords: DIF, DIT, FFT, DFT.

1. Introduction

The Fourier Transform is a widely used method in signal

processing to estimate spectral content of any signal. The

Fourier Transform when applied to an aperiodic discrete

signal rather than a continuous signal is called Discrete Time

Fourier Transform (DTFT). But DTFT of an aperiodic

discrete signal is continuous in frequency domain. Hence to

use DTFT in computers, we sample the DTFT. This sampled

DTFT is called Discrete Fourier Transform (DFT). Fast

Fourier Transform (FFT) is an efficient algorithm for

computing DFT. The DFT is defined by equation (1)

1

0

2

)()(
N

n

N

knj

enxKX (1)

Where, k = 0 to N-1 and N is the length of the DFT.

Calculating the above equation requires N
2

Complex

Multiplications and N*(N-1) additions. But by using FFT

algorithms, the amount of computation involved is reduced

significantly.

A Fast Fourier Transform (FFT) is a fast algorithm for

computing the Discrete Fourier Transform (DFT). The

development of FFT algorithm has a tremendous impact on

computational aspects of signal processing and applied

science. All the FFT algorithms use a basic computing core

structure called as butterfly. Radix-2, Radix-4, Radix-8 are

common butterfly structures. Radix-2 FFT algorithm is used

for data vectors of lengths in powers of two. They proceed by

dividing the DFT into two DFTs of lengths, which are half of

original length and iterating. The number of stages required

to obtain the DFT depends on the number of data points in

the sequence. There are several types of radix- 2 FFT

algorithms, the most common being the Decimation-In-Time

(DIT) and the Decimation-In-Frequency (DIF).

To compute the DFT of an N data sample, where N is a

power of four, one can always use the Radix-2 algorithm, but

in such cases it is more computationally efficient to use a

Radix-4 FFT algorithm. Radix-4 FFT algorithm is also

implemented in the same manner as Radix-2 but instead of

dividing the DFT into two DFTs, DFT is divided into four

DFTs of lengths, which are quarter times the original length

and iterating. This reduces the number of stages required to

find the DFT of a given sequence. With this advantage of

reduced number of computing stages, the number of complex

multiplications and additions that are required to be

performed the N point DFT also reduces. Radix-4 algorithm

also requires less area and time compared to Radix-2

algorithm.

The rest of this paper is organized as follows: Section (2)

describes existing traditional system. Next in Section (3) the

Proposed Radix-4 DIF FFT algorithm is discussed. In

Section (4) Parallel architecture is discussed and in next

Section (5) Complex Multiplier is discussed. In Section (6)

Simulation result is given and then we conclude the paper in

Section (7).

2. Existing System

The existing traditional system computes DFT using Radix-2

FFT algorithms. In the Radix-2 FFT, base is equal to 2 and

representation is 2
v
 where v represents the number of stages.

It consist of two types of decimation domains, they are

decimation in time and decimation in frequency. In Radix-2

FFT algorithms, the core butterfly structure takes two inputs

and produces two outputs and outputs are arranged in bit

reversal order. The number of stages are 2
v-1

and each stages

can be divided as (N/2)
V
.

Each stage includes a twiddle factor

which is given below.

Twiddle Factor = exp (-j2πkn/N)

In Radix-2 FFT, the total computational load is N/2*log2N

complex multiplications and N*log2N complex additions.

3. Proposed Radix-4 DIF FFT Algorithm

The Radix-4 DIF FFT algorithm breaks N-point data samples

into N/4 point data samples, then into N/16 point a so on.

This iterative breaking down of data samples finally lands

into a four data point computation which is termed as basic

butterfly structure. Fig (1) shows the basic butterfly

Paper ID: SUB157500 1185

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 8, August 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

architecture. In DIF operation principle, Radix-4 FFT inputs

are in normal order and outputs are in digit reversed order. At

the input side, samples are taken from time domain index

which are processed with butterfly and twiddle factor and

then produces output in frequency domain samples.

Figure 1: Basic Radix-4 FFT Butterfly

The following equation shows the basic computation of

Radix-4 FFT algorithm.

X(k) =

1

0

)(
N

n

nk

NWnx

14/

0

)(
N

n

nk

NWnx

14/2

4/

)(
N

Nn

nk

NWnx

14/3

4/2

)(
N

Nn

nk

NWnx

14/3

4/3

)(
N

Nn

nk

NWnx

 =

kN

N

N

n

W
N

nxnx)4/(
14/

0 4
)([

 +
kN

NW
N

nx)4/2(

4

2

 +
nk

N

kN

N WW
N

nx]
4

3)4/3(

 (2)

Then the above equation can be divided into N/4-point DFTs

as shown below

X(4k) =

14/

0

)4/3()4/()([
N

n

NnxNnxn

 +
nk

NWNnx 4/)]4/3(

X(4k+1) =

14/

0

)4/3()4/()([
N

n

NnxNnjxn

 +
n

N

nk

N WWNnjx 4/)]4/3(

X(4k+2) =

14/

0

)4/3()4/()([
N

n

NnxNnxnx

 +
n

N

nk

N WWNnx 2

4/)]4/3(

X(4k+3) =

14/

0

)4/3()4/()([
N

n

NnxNnjxnx

n

N

nk

N WWNnjx 3

4/)]4/3((3)

Each N/4-point is a sum of four input sample such as x(n),

x(n+N/4), x(n+2N/4) and x(n+3N/4) are multiplied with

by (+1, -1, j and -j). The sum is multiplied by a

corresponding twiddle factor (W
0
, W

1
, W

2
, and W

3
).

The above expressions are the basic building blocks of

Radix-4 FFT algorithm. From above fig (1), it can be shown

that each radix-4 FFT butterfly requires 3 complex

multiplications and 8 complex additions. This process is

repeated again and again until the resulting sequence are

reduced to one point sequence. Generally the number of

stages required for the computation of N point DFT is log4N.

Thus the total number of complex multiplications are

3*(N/4)*log4N and additions are 8*(N/4)*log4N. We can see

that these computations are very less in comparison to Radix-

2 FFT algorithm.

4. Parallel Architecture

The below fig (2) shows the overall parallel architecture

Figure 2: Parallel Architecture

It mainly consists of a Register1 (R1), Butterfly1 (B1),

Register2 (R2) and Butterfly2 (B2). This approach would

mean that all butterfly computations can be performed in

parallel. All butterfly computation in a stage is performed in

parallel and then at the end of the stage, the results are

gathered. Now all nodes perform computation on the result of

the first stage in parallel and output of the second stage are

gathered again and so on.

Once all the computations of all the butterflies of stages are

over, the memory locations can be freed. Then the same

butterfly structures can be reused for the next computations

of the next stage. This is an important structural advantage as

the memory used for the first stage is getting reused for the

next stage. Hence this uses very less resources in terms of

hardware point of view.

As we can see in the simulation result that the original output

of FFT and our proposed parallel architecture gives the same

output for a sinusoidal signal input signal. But at the same

time our proposed work takes fewer amounts of resources

giving the same results for high speed real time signal

processing applications.

5. Complex Multiplier

Complex Multipliers used in the hardware language such as

Verilog is a high performance, optimized digital structures.

All operands and the results are represented in signed two’s

complement format. The operand width and design widths

are customizable. The complex multipliers have two basic

architectures to implement complex multiplication.

Given the two complex operands ir jaaa

and ir jbbb , the output is ir jppabp .

Direct implementation requires four real multiplications:

iirrr babap

riiri babap

By exploiting that

iirirriirrr baabbababap)()(

rriirriiir baabbababapi)()(

Paper ID: SUB157500 1186

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 8, August 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

A three real multiplier solution is devised, which trades off

one multiplier for three pre-combining adders and increased

multiplier word length.

6. Simulation Result

For the simulation work, we have taken 256 point data

samples from two sinusoidal signals. We have done

simulation of parallel Radix-4 FFT architecture in Matlab as

well as Verilog. Fig (3) describes the simulation results of

both Matlab and Verilog. Clearly we can observe that the

Matlab simulation result and Verilog simulation result is

exactly same.

Radix-4 FFT in FPGA

Radix-4 FFT in Matlab

7. Conclusion

This proposed method describes a Radix-4 FFT algorithm

using Parallel architecture. As seen from the simulation

results both Matlab and Verilog achieves same result very

accurately.Radix-4 FFT algorithm utilize less complex

multipliers and additions than the Radix-2 FFT. And by using

parallel architecture, the resources utilized are less than the

conventional FFT architectures. This algorithm is very useful

where there is a stringent requirement for the more number of

Radix-4 FFT algorithm cores to be implemented in real time

such as Radar Signal Analysis in defence applications.

References

[1] John G. Proakis, Dimitris G. Manolakis, “Digital Signal

Processing: Principles, Algorithms, and Applications”,

Prentice Hall, 1998.

[2] J. W. Cooley and J. W. Tukey, “An algorithm for the

machine calculation of complex Fourier series.” Math.

Coma. vol. 19. pp. 297-301, April 1965.

[3] G. D. Bergland, “The fast Fourier transform recursive

equations for arbitrary length records,” Math. Comp.,

vol, 21, pp. 236238, April 1967.

[4] W. Li and L. Wanhammar, “A Pipeline FFT Processor,”

accepted for publication at IEEE Workshop on Signal

Processing Systems (SiPS), 1999.

[5] Y. Jiang, T. Zhou, Y. Tang and Y. Wang, “Twiddle

factor-based FFT algorithm with reduced memory

access,” in Proc. IEEE IPDPS’2002, April 2002, pp. 70-

77.

[6] A. V. Oppenheim and R. W. Shafer, Discrete-Time

Signal Processing, 2ndUpper Saddle River, NJ: Prentice

Hall, 1998.

Author Profile

K.Pooja Swamy, is currently pursuing her M.Tech. In

VLSI Design and Embedded Systems in ECE

Department of LAEC,Bidar,Karnataka. She has

completed B.E. in ECE in GNDEC, Bidar, Karnataka.

She is presently working on an efficient architecture

using Radix 4 FFT in FPGA. Presently she is a Project Trainee at

DLRL,Hyderabad.

R. Pavan Kumar Graduated in Electronics and

Communication Engineering (ECE) from VNR

Vignana Jyothi Institute of Engineering and

Technology, JNTU, Hyderabad, in 2006. He received

his Post Graduation degree, M.Tech in Micro Electronics and VLSI

design from Indian Institute of Technology Madras (IIT Madras),

India in 2014. He joined Defence Electronics Research Laboratory

(DLRL) in 2007.

Paper ID: SUB157500 1187

