
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 8, August 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Swarm Intelligence Algorithm with Guided

Exploitations: A Case Study with Artificial Bee

Colony Algorithm

Syeda Shabnam Hasan
1
, Md. Shahriar Rahman

2

Ahsanullah University of Science and Technology, Department of Computer Science and Engineering,

141 & 142, Love Road, Tejgaon Industrial Area, Dhaka-1208, Bangladesh

Abstract: During any meta-heuristic search, two opposite processes are found in action, namely the explorations and exploitations.

Although they might seem to operate in opposite directions, they are actually counterparts, and synergy between them may improve the

final outcome of the algorithm. This is especially true for complex, high dimensional problems, because the search algorithm has to

avoid many local optima to find a good near optimum solution. There exist many swarm intelligence algorithms that report the necessity

of a proper balance between explorations and exploitations. This paper presents a concrete example of a swarm intelligence algorithm,

i.e., the Artificial Bee Colony (ABC) algorithm that finds improvement by balancing between explorations and exploitations. In this

paper, we have introduced ABC with Guided Exploitations (ABC-GE), a novel algorithm that improves over the basic ABC algorithm.

ABC-GE augments each candidate solution with a control parameter that controls the proportion of explorative and exploitative

perturbations and thus affects how new trial solutions are produced from the existing ones. This control parameter is automatically

adjusted at the individual solution level, separately for each candidate solutionxi, to adjust the proportions of explorations and

exploitations around xi.ABC-GE is tested on a number of benchmark problems on continuous optimization and compared with the basic

ABC algorithm. Results show that the performance of ABC-GE is overall better than the basic ABC algorithm.

Keywords:Artificial bee colony algorithm, exploration and exploitation, continuous optimization, meta-heuristic optimization

1. Introduction

Recently the research community has seen the emergence of

many evolutionary and swarm intelligence algorithms, each

one trying to improve over the others on existing benchmark

and real world problems. The Artificial Bee Colony (ABC)

algorithm is a recently introduced [1] swarm intelligence

algorithm that tries to mimic the intelligent food foraging

behavior of honey bees. ABC shows very competitive and

often better results in comparison to existing evolutionary

and swarm intelligence algorithms [1], [2], such as the

genetic algorithm (GA), differential evolution (DE) and

particle swarm optimization (PSO). Since its advent, ABC

has been successfully applied to wide and diverse range of

problems, such as continuous optimization [2], discrete

optimization [3], constrained optimization [4],

multi-objective optimization [5], design optimization [6],

training neural network [7], IIR filter [8], PID controller [9],

parameterizing of milling processes [10] and so on [11].

The ABC algorithm is simple in concept, easy to implement

and requires fewer control parameters [12]. However, similar

to other population based meta-heuristic algorithms, ABC

also has its own challenges and limitations. A major problem

that may occur with ABC is fitness stagnation [14], where

the entire population of solutions stops improving, even

without converging to some local optima, because the fitness

based selection scheme fails to find new, better trial solutions

that can enter the population by replacing the existing

solutions. This may be due to the reason that the pool of

candidate solutions has prematurely converged around one or

few locally optimal points, especially for complex high

dimensional multimodal problems [2], [13]. The main reason

behind premature convergence is too much exploitation at

the expense of reduced explorations. ABC drives its search

towards global optimum with two operators — perturbation

and selection. The perturbation operation is responsible for

explorations by random variations of existing solutions,

while the fitness based selection operation performs

exploitations of the search regions explored so far. However,

both these operations are more aligned towards exploitations

than explorations. The perturbation operation of ABC

perturbs a single parameter of an existing solution and thus

produces the new trial solution in the neighborhood of the

original solution, which is exploitative. The selection

operation of ABC can accept only the better solutions, which

is exploitative too. This paper introduces ABC with Guided

exploitations (ABC-GE), a novel improvement over the basic

ABC algorithm that tries to automatically balance the

exploitations with explorations, separately for every

candidate solution. ABC-GE augments each candidate

solution xi with a control parameters p[xi] which affects the

perturbation operations on xi by controlling the degree of

explorations and exploitations around xi. The value of p[xi] is

automatically adjusted, cycle (i.e., iteration) by cycle, using

an adaptive technique to increase the likelihood of producing

more effective perturbations on xi. ABC-GE is tested on a

benchmark suite of 30 continuous functions of different

complexity. Results are compared with the basic ABC [2]

algorithm which show that ABC-GE can sometimes perform

better than the basic ABC algorithm.

2. The ABC Algorithm

Honey bees in nature have to forage over a vast area in

search of good sources of nectar. After an initial exploration

stage, more bees are employed to collect honey from more

profitable food sources whereas fewer bees are assigned to

Paper ID: SUB157491 1049

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 8, August 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

the less worthy sources. After returning the hive, each bee

goes to the ‗dance floor‘ and performs a special dance known

as the ‗waggle dance‘ to share the information of the food

source it has found. The ‗onlooker‘ bees, waiting around the

dance floor, observe the waggle dances of the ‗employed‘

bees and pick any of them to follow and collect nectar from

the vicinity of its food source. Some scout bees are also

assigned for random explorations of the search space to find

new food sources. The basic ABC algorithm [1,2] mimics

the food foraging behavior of honey bees with the same three

groups of bees — employed, onlooker and scout bees. A bee

working to forage a particular food source (i.e., candidate

solution) and searching only around its vicinity is called an

employed bee. Onlooker bees randomly pick and follow any

of the employed bees. The probability of picking an

employed bee is proportional to the quality of its food

source. Scout bees can perform random explorations of the

search space to find new food sources. If the employed and

onlooker bees, even after limit attempts, fail to find a better

food position around a particular food xi, then xi is

abandoned and replaced by initiating a scout bee and its food

source is placed uniformly at random across the search

space. In the original implementation of the ABC algorithm,

half of the colony is employed bees, the other half is

onlooker bees, and scout bees are created on demand only

when a food source fails to improve with several attempts.

Fig. 1 presents the pseudocode for the basic ABC algorithm.

Each cycle (i.e., iteration) of ABC consists of foraging by the

employed bees (steps 4–5, Fig. 1), then foraging by the

onlookers (steps 7–9), followed by placement of the scout

bees (step 10). Each of these stages is described below.

Foraging by employed bees: Suppose, an employed bee is

currently positioned at a food source position xi. During this

stage, each employed bee searches in the vicinity of its

current position xi to produce new trial food source vi using

(1), where j∈ {1, 2, …, D} and k∈ {1, 2, …, SN} are

randomly picked indices, D is dimensionality of the problem,

SN is the number of food positions and φij is a uniform

random value ~ [-1, 1].

 vij = xij + φij (xkj – xij) (1)

Thus, the new solution vi is produced from xi by perturbing

its randomly picked j-th parameter and using the information

of xi and another randomly picked solution xk. If vi has better

‗fitness‘ than the old food position xi, then xi is replaced by

vi. For the problem of function optimization, where f is the

function to be minimized, ABC computes the ‗fitness‘ of a

candidate solution xi using (2).

   
 

 

1
; if 0

1

1 otherwise

i

ii

i

fitness

f
f

f












x
xx

x

(2)

Foraging by onlooker bees: During this stage, each

onlooker bee randomly picks an employed bee to follow and

forages only around the vicinity of its food source. The

probability wi that the employed bee with food source xi

would be picked by an onlooker bee is computed using (3),

which makes the probability wi to be proportional to

fitness (xi).

 

 
1

i
i SN

n

n

fitness x
w

fitness x






 (3)

Like the employed bees, each onlooker bee also employs (1)

to produce trial food source vi in the vicinity of its current

food source position xi. If vi has better fitness than xi, then xi

is replaced by vi. Otherwise, vi is discarded.

Placement of Scout bees: A scout bee is created only when

a particular food source xi failed to be improved over the last

‗limit‘ iterations. The bee employed to xi now becomes a

scout bee and its food source is replaced randomly across the

search space using (4), where j = 1, 2, …, D and [minj, maxj]

is the search space along the j-th dimension.

 xij = minj + rand (0,1) * (maxj – minj) (4)

3. Existing Variants of ABC Algorithm

There exist a number of recent studies (e.g., [15]–[24]) that

try to alter the explorative and/or exploitative properties of

the basic ABC algorithm. For example, ABC with

self-adaptive mutation (ABC-SAM) [15] introduces an

adaptive mutation scaling factor SFi for every candidate

solution xi and tries to ensure both explorations and

exploitations by periodically adjusting the value of SFi using

two different distributions — one explorative and the other

exploitative. The cooperative ABC (CABC) [16] tries to

enforce more explorations by decomposing the search space

into multiple subspaces and by employing multiple bee

colonies to explore through different subspaces. ABC with

diversity strategy (DABC) [17] tries to maintain sufficient

level of population diversity for conducting more

explorations by alternating between two different

perturbation schemes. Chaotic ABC (ChABC) [18] tries to

improve the explorative characteristics of ABC by

employing chaotic dynamics instead of random number

generators. The Gbest-guided ABC (GABC) [20] tries to

improve the exploitations and convergence speed of ABC by

altering its perturbation operation using the information of

the global best solution found so far. Hooke Jeeves ABC

(HJABC) [21]–[22] is a hybrid ABC-variant that intensifies

the exploitative operations by hybridizing ABC with a local

search technique (i.e., the Hooke Jeeves pattern search). The

Elitist ABC (EABC) [24] is another exploitative ABC

variant that hybridizes ABC with two different local search

operators to intensify the degree of exploitations around the

best candidate solution found so far. Thus, most existing

ABC-variants try to improve either the exploitative (e.g.,

[20]–[24]) or the explorative ([15]–[19]) characteristics of

the basic ABC algorithm. The exploitative improvements are

Paper ID: SUB157491 1050

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 8, August 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 1: Algorithm for the basic Artificial Bee Colony (ABC) algorithm

usually based on intensifying the search around the best

solution(s) found so far (e.g., [20], [21], [24]) and

hybridizing efficient local search operators with ABC (e.g.,

[21], [23], [24]), while the explorative improvements can be

based on more population diversity (e.g., [16], [17]) and

more explorative selection and/or perturbation operations

([15], [18], [19]). But none of these algorithms considers the

individual explorative/exploitative requirements of each

candidate solution separately; rather they employ some

population-wide global strategy, identically for all candidate

solutions, which is significantly improved in the proposed

algorithm — ABC-GE, as described in the following section.

4. The Proposed Algorithm — ABC-GE

ABC-GE tries to improve over the basic ABC algorithm by

adapting and customizing the degree of explorations and

exploitations at the individual solution level, i.e., separately

for every candidate solution. ABC-GE includes a control

parameter p[xi] within each bee (i.e., candidate solution) xi.

The control parameter p[xi] automatically controls the

proportion of explorative and exploitative perturbations on

the candidate solution xi. The value of p[xi] is gradually

adapted to achieve higher rate of ‗successful‘ perturbations.

A perturbation is considered ‗successful‘ only if the new trial

solution vi has higher fitness value than the original solution

xi. A detailed description of how the control parameter p[xi]

is employed and adapted is as follows. ABC-GE employs

two different perturbation schemes — one for explorations,

the other for exploitations. Both the perturbation schemes are

based on the same expression (1), but they differ in how the

random value φij is picked. For explorative perturbations,

φijis picked uniformly at random from the interval [-2.5, 2.5],

while the exploitative perturbations pick φijuniformly at

random from an exploitative, smaller interval of [-0.5, 0.5].

Explorative perturbation:

vij = xij + φij (xkj – xij), where φij ~ UR (-2.5, 2.5) (5)

Exploitative perturbation:

vij = xij + φij (xkj – xij), where φij ~ UR (-0.5, 0.5) (6)

Here, UR (a, b) produces a uniform random value from the

interval (a, b). The explorative perturbation is likely to

produce a larger value of φij from the wider interval, which is

more likely to produce the new candidate solution vi farther

from the parent candidate solution xi, and hence ensures

more search space explorations. In contrast, the narrow

interval of [-0.5, 0.5] is likely to produce smaller φij values

which produces the offspring vi in the vicinity of its parent xi,

and hence is likely to be an exploitation.

But how does ABC-GE decide on whether to perform

explorative or exploitative perturbation on xi? This is done

probabilistically — the current values of p[xi] and 1– p[xi]

denote the probability of exploitative and explorative

perturbations on xi, respectively. The value of p[xi] is

automatically adapted using the incremental learning

experience of xi, which includes the number of successes and

failures by explorative and exploitative perturbations on xi.

Initially, p[xi] is set to 0.5 for every solution xi, which makes

exploitative and explorative perturbations equally desired.

After the initial learning period of t1 cycles, ABC-GE starts

adjusting the p[xi] value for each xi. To do this, ABC-GE

keeps record of the number of successes and failures by

exploitative and explorative perturbations on xi over the last

t1 cycles. Suppose,

s1 : Number of successes by explorative perturbations on xi

f1 : Number of failures by explorative perturbations on xi

s2 : Number of successes by exploitative perturbations on xi

f2 : Number of failures by exploitative perturbations on xi

Now, the effectiveness of the explorative perturbation

(effER) and exploitative perturbation (effET) on xi are

computed as:

effER = (s1) / (s1 + f1) and effET = (s2) / (s2 + f2)

Now, the adjusted probability of exploitative perturbation on

xi (i.e., the adjusted value of p[xi]) is computed using (7).

Algorithm: Artificial Bee Colony (ABC) Algorithm

1: Initialize a population of SN food source positions (candidate solutions) xi, for i = 1, 2, …,SN. Each xi is a vector of D

parameters: xi = [xi1, xi2, …,xiD]T

2: Evaluate the fitness of each food source position using (2).

3: repeat

4: For each employed bee, perturb its food source position xi to produce a new food position vi using (1).

5: Evaluate each new solution vi by (2). If vi has higher fitness than xi, then accept vi to replace xi. Else, discard vi.

6. Calculate the probability wi associated with each food source position xi using (3).

7: For each onlooker bee, assign it to a food source xi, proportionally based on the probability wi.

8: For each onlooker bee, perturb its food source position xi to produce a new food position vi using (1).

9: Evaluate each new solutionvi using (2). If vi is better than xi, then accept vi to replace xi. Else, discard vi.

10: If a food source has not improved during the last limit cycles, then abandon it and replace it with a new randomly

placed scout bee with its food source xi produced by (4).

11: Memorize the best food source position found so far

12: Set cycle counter C=C + 1

13: until C = Maximum cycle number (MCN)

14: return the best food source position (i.e., candidate solution) found so far

Paper ID: SUB157491 1051

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 8, August 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

i

ET

ER ET

f
p

f f

ef

ef ef
    
x

(7)

ABC-GE also ensures that p[xi] never drops below plow or

rises above phighto avoid the complete domination by either

mode of exploitative or explorative perturbations.

5. Experimental Studies

To evaluate the performance of ABC-GE and to compare it

with the basic ABC [2] algorithm, this paper uses a set of

benchmark problems which has 30 standard functions,

including 18 scalable high dimensional functions with

dimensionality D=30, 60, as well as 12 low dimensional

multimodal functions with D ≤ 10. The suite contains both

unimodal (i.e., f1–f9) and multimodal (i.e., f10–f30), separable

(e.g., f1, f3, f8) and non-separable (e.g., f2, f4, f5), high

dimensional (i.e., f1–f18) and low dimensional (i.e., f19–f30)

functions. These functions have been widely used with many

other evolutionary and swarm intelligence algorithms (e.g.,

[2], [15]–[18], [26]–[28]). Each function is briefly presented

in Table 1. More details can be found in [2], [21], [28].

Based on their properties, the benchmark functions (Table 1)

can be divided into three groups – functions with no local

minima (i.e., unimodal functions f1–f9), large number of local

minima (i.e., high dimensional multimodal functions f10–f18)

and only a few local minima (i.e., low dimensional

multimodal functions f19–f30). To minimize a multimodal

function, the optimization algorithm should have both

explorative and exploitative capabilities, because it has to

avoid being trapped around the locally minimal points and

continue both explorations and exploitations until it locates

the neighbourhood of a global minimum. Some of the

multimodal functions can have tens or even hundreds of

local minima, even with just two dimensions (e.g., Rastrigin

function f10). The number of local minima can increase

exponentially with the number of dimensions, which makes

the optimization extremely difficult.

Both ABC and ABC-GE have three parameters in common,

which are the population size SN, maximum cycle number

MCN and limit. For functions f1–f18 with D = 30, ABC-GE

used SN = 100, MCN = 1000 and limit = 100. For the larger

variants with D = 60, the value of SN is kept the same (i.e.,

100), but limit and MCN are set to 200 and 2000,

respectively. For the low dimensional f19–f30, ABC-GE sets

SN = 100, MCN = 100 and limit = 10D. The other

parameters of ABC-GE are set as: t1 = 30, plow = 0.05 and

phigh = 0.95. These values are chosen with some initial

experiments and are not meant to be the optimum.

Table 2 presents the results of ABC-GE on the 30 standard

benchmark functions and compares the results with the basic

ABC [2] algorithm. All the algorithms have made 50

independent runs on each function and the mean andstandard

deviation of the best found solutions are presented in Table

2. We summarize our observations on the experimental

results in the following few points.

 On the simpler functions, i.e., the unimodal functions f1 –

 f9, and the low dimensional f19 – f30, the performance of

ABC is slightly better than the proposed algorithm ABC-

GE. On either of these two function families, ABC

performs better than ABC-GE on two functions, while

ABC-GE performs better on one function only. On the

remaining functions, their performance is similar, i.e.,

there is no statistical significance of their performance

difference, as tested by the t-test with α = 0.95.

 On the most complex function family, i.e., the high

dimensional multimodal functions f10 – f18, the

performance of ABC-GE is better than the original ABC

algorithm. On these functions, ABC-GE significantly

outperforms ABC on four functions, while ABC performs

better on two functions only.

 In summary, we can conclude that ABC-GE is better

suited for more complex multimodal and high dimensional

functions. This is because ABC-GE puts more emphasis

on explorations (rather than exploitations), which is

usually necessary for more complex multimodal functions,

while the simpler functions may require more exploitations

(rather than explorations).

6. Conclusion and Suggestion for Further

Study

This paper introduces ABC-GE — an improvement over the

basic ABC algorithm [2] that tries to adaptively control the

degree of explorations and exploitations, separately for each

candidate solution. ABC-GE includes a control parameter —

p[xi] within each candidate solution xi and employs an

adaptive technique to adjust its values gradually, separately

for each candidate solution. The control parameter p[xi]

controls the proportion of exploitative and explorative

perturbations on xi and is gradually adapted by ABC-GE

based on the previous successes and failures of the

exploitative and explorative perturbations on xi. The results

indicate that putting a balanced emphasis on the explorations

make ABC-GE more suitable for complex multimodal and

high dimensional functions.

There may be several possible future research directions

based on this study. Firstly, ABC-GE uses a simple strategy

to adjust the control parameters p[xi] for each candidate

solution xi. A more sophisticated strategy, such as

considering the properties of fitness landscape around xi, or

using a strategy parameterized by the maturity of the

optimization process may be more effective to balance

between exploitations and explorations around xi. Secondly,

the quality of the final solution could be improved further by

using an exploitative and efficient local searcher. This may

pinpoint the global minimum more precisely. Thirdly,

ABC-GE can be hybridized with other existing evolutionary,

swarm intelligence and machine learning techniques to

further improve its results. Finally, ABC-GE has been

employed on the continuous optimization problems. It would

be interesting to examine how well ABC-GE can perform on

many other existing problems, especially the discrete and

real world ones.

Paper ID: SUB157491 1052

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 8, August 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Table 1:Benchmark functions for experimental study. D:

dimensionality of the function, S: search space, fmin: the value

of the function at the global minimum, C: function

characteristics with values — U: Unimodal, M: Multimodal,

S: Separable and N: Non-Separable.

No Function D S C fmin

f1 Sphere 30 and 60 [-100, 100]D US 0

f2 Schwefel 2.22 30 and 60 [-10, 10]D UN 0

f3 Schwefel 2.21 30 and 60 [-10, 10]D US 0

f4 Schwefel 1.2 30 and 60 [-100, 100]D UN 0

f5 Powell 24 [-4, 5]D UN 0

f6 Dixon-Price 30 and 60 [-10, 10]D UN 0

f7 Rosenbrock 30 and 60 [-30, 30]D UN 0

f8 Step 30 and 60 [-100, 100]D US 0

f9 Quartic 30 and 60 [-1.28, 1.28]D US 0

f10 Rastrigin 30 and 60 [-5.12, 5.12]D MS 0

f11
Non-continuous

Rastrigin
30 and 60 [-5.12, 5.12]D MS 0

f12 Schwefel 30 and 60 [-500, 500]D MS 0

f13 Ackley 30 and 60 [-32, 32]D MN 0

f14 Griewank 30 and 60 [-600, 600]D MN 0

f15 Alpine 30 and 60 [-10, 10]D MS 0

f16 Weierstrass 30 and 60 [-0.5, 0.5]D MS 0

f17 Penalized 30 and 60 [-50, 50]D MN 0

f18 Penalized2 30 and 60 [-50, 50]D MN 0

f19 Foxholes 2
[-65.536,

65.536]D
MS 1

f20 Kowalik 4 [-5, 5]D MN 3.07e-04

f21
Six Hump

Camel Back
2 [-5, 5]D MN -1.0316

f22 Branin 2
[-5, 10]

x [0, 15]
MS 0.398

f23 Hartman3 3 [0, 1]D MN -3.86

f24 Hartman6 6 [0, 1]D MN -3.32

f25 Shekel5 4 [0, 10]D MN -10.15

f26 Shekel7 4 [0, 10]D MN -10.40

f27 Shekel10 4 [0, 10]D MN -10.55

f28 Fletcher Powell 10 [-π, π]D MN 0

f29 Michalewicz 10 [0, π]D MS -9.66015

f30 Langerman 10 [0, 10]D MN -1.4

Table 2: Comparison of ABC-GE with the original ABC [2] algorithm on the 30 standard benchmark functions.

No fmin D G
ABC ABC-GE Better

Performance by Mean Std. Dev. Mean Std. Dev.

f1 0
30 1000 2.45e–11 7.72e–12 7.20e–09 8.59e–10

ABC
60 2000 3.75e–10 2.01e–11 6.82e–07 1.65e–07

f2 0
30 1000 5.05e–07 1.74e–07 2.76e–05 5.35e–06

ABC
60 2000 5.58e–06 1.17e–06 3.96e–04 6.98e–05

f3 0
30 1000 4.18e+01 5.90 4.36e+01 7.81

Similar
60 2000 7.31e+01 6.88 6.83e+01 8.53

f4 0
30 1000 8.32e–10 9.75e–11 7.66e–10 9.03e–11

Similar
60 2000 4.50e–09 5.64e–10 5.32e–09 1.04e–09

f5 0 24 1000 6.61e+00 1.07e+00 3.76e–01 5.94e–02 ABC-GE

f6 0
30 1000 6.67e–01 1.21e–01 5.97e–01 2.82e–01

Similar
60 2000 6.66e–01 1.05e–01 5.65e–01

2.05e–01

f7 0
30 1000 4.25e–01 1.18e–01 3.87e–01 1.74 e–01

Similar
60 2000 2.02e–01 6.92e–02 1.85e–01 1.09 e–01

f8 0
30 1000 0 0 0 0

Similar
60 2000 0 0 0 0

f9 0
30 1000 8.60e–13 8.32e–13 7.16e–13 2.54e–13

Similar
60 2000 9.31e–12 7.17e–12 8.06e–12 3.56e–12

f10 0
30 1000 1.72e–14 1.56e–14 8.11e–17 1.84e–17

ABC-GE
60 2000 2.84e–13 8.01e–14 3.24e–13 1.57e–13

f11 0
30 1000 2.33e–08 7.49e–09 3.16e–08 1.76e–08

Similar
60 2000 6.64e–07 1.51e–07 7.71e–07 4.80e–08

f12
–12569.5 30 1000 –11346.79 2.77e+02 –11326.20 3.86e+02

Similar
–25138.9 60 2000 –22530.82 4.08e+02 –22543.29 5.12e+02

f13 0
30 1000 2.93e–06 3.38e–07 8.22e–09 3.36e–09

ABC-GE
60 2000 4.65e–06 1.07e–06 5.17e–09 2.16e–09

f14 0
30 1000 4.55e–08 6.54e–09 3.13e–04 7.82e–05

ABC
60 2000 8.01e–07 2.64e–07 7.26e–04 1.01e–05

f15 0
30 1000 3.34e–04 3.76e–05 4.02e–03 1.05e–03

ABC
60 2000 7.49e–03 9.58e–04 6.72e–02 2.28e–02

f16 0
30 1000 3.36e–01 9.58e–02 2.88e–01 7.07e–02

Similar
60 2000 8.99e–01 3.09e–01 9.40–01 3.45e–01

f17 0
30 1000 5.47e–12 2.09e–13 6.35e–15 8.20e–16

ABC-GE
60 2000 7.47e–12 1.74e–12 3.19e–14 6.05e–15

f18 0
30 1000 2.63e–03 1.89e–04 1.86e–04 7.22e–05

ABC-GE
60 2000 2.66e–03 7.90e–04 1.11e–04 6.59e–05

f19 1 2 100 1.04 0.04 1.035 0.02 Similar

f20 3.07e–04 4 100 5.98e–04 7.22e–05 5.96e–04 8.10e–05 Similar

f21 –1.0316 2 100 –1.0316 0 –1.0316 0 Similar

f22 0.398 2 100 0.398 7.12e–08 0.398 6.67e–07 Similar

f23 –3.86 3 100 –3.86 7.09e–07 –3.86 2.25e–08 Similar

f24 –3.32 6 100 –3.32 4.74e–13 –3.32 6.96e–13 Similar

f25 –10.15 4 100 –9.61 0.14 –10.05 0.08 ABC-GE

Paper ID: SUB157491 1053

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 8, August 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

f26 –10.40 4 100 –10.40 8.61e–03 –10.40 3.63e–03 Similar

f27 –10.54 4 100 –10.52 0.08 –10.40 3.12e–06 ABC

f28 0 10 100 13.77 3.80 14.15 0.69 Similar

f29 -9.66015 10 100 -9.66015 0 -9.66015 0 Similar

f30 -1.4 10 100 –0.78 0.09 –0.24 0.08 ABC

References

[1] D. Karaboga, ―An idea based on honey bee swarm for

numerical optimization‖, Erciyes University, Kayseri,

Turkey, Technical Report-TR06, 2005.

[2] D. Karaboga, B. Akay, ―A comparative study of

artificial bee colony algorithm‖, Applied Mathematics

and Computation 214 (1) (2009) 108–132.

[3] Q. Bai, X. Yun, ―A new hybrid artificial bee colony

algorithm for the traveling salesman problem‖, in: Proc.

3rd Int. Conf. Communication Software and Networks

(ICCSN), 2011, pp. 155–159.

[4] N. Stanarevic, M. Tuba, N. Bacanin, ―Modified

artificial bee colony algorithm for constrained problems

optimization‖, Int. Journal of Mathematical Models and

Methods in Applied Sciences 5 (3) (2011) 644–651.

[5] S. Omkar, J. Senthilnath, R. Khandelwal, G. Naik, S.

Gopalakrishnan, ―Artificial bee colony (ABC) for

multi-objective design optimization of composite

structures‖, Applied Soft Computing 11 (1) (2011)

489–499.

[6] F. Kang, J. Li, Q. Xu, ―Structural inverse analysis by

hybrid simplex artificial bee colony algorithms‖,

Computers and Structures 87 (13–14) (2009) 861–870.

[7] R. Irani, R. Nasimi, ―Application of artificial bee

colony-based neural network in bottom hole pressure

prediction in underbalanced drilling‖, Journal of

Petroleum Science and Engineering 78 (1) (2011) 6–12.

[8] N. Karaboga, ―A new design method based on artificial

bee colony algorithm for digital IIR filters‖, Journal of

the Franklin Institute 346 (4) (2009) 328–348.

[9] D. Karaboga, B. Akay, ―PID controller design by using

artificial bee colony, harmony search and bees

algorithms‖, in: Proceedings of the Institution of

Mechanical Engineers, Part I: Journal of Systems and

Control Engineering 224 (7) (2010) 869–883.

[10] R. Rao, P. Pawar, ―Parameter optimization of a multi

pass milling process using non-traditional optimization

algorithms‖, Applied Soft Computing 10 (2) (2010)

445-456.

[11] D. Karaboga, B. Gorkemli, C. Ozturk, N. Karaboga, ―A

comprehensive survey: artificial bee colony (ABC)

algorithm and applications‖, Artificial Intelligence

Review (2012) 1–37.

[12] L. Bao, J. Zeng, ―Comparison and analysis of the

selection mechanism in the artificial bee colony

algorithm‖, in: Proc. 9th Int. Conf. Hybrid Intelligent

Systems, 2009, pp. 411–416.

[13] W. Gao, S. Liu, ―A modified artificial bee colony

algorithm‖, Computers and Operations Research 39 (3)

(2012) 687–697.

[14] J. Lampinen, I. Zelinka, ―On stagnation of the

differential evolution algorithm‖, in: Proc. 6th Int.

Mendel Conf. on Soft Computing, 2000, pp. 76–83.

[15] M. S. Alam, M. M. Islam, ―Artificial bee colony

algorithm with self-adaptive mutation: A novel

approach for numeric optimization‖, in: Proc. 2011

IEEE Int. Conf. on Trends and Developments in

Converging Technology (TENCON), 2011, pp. 49–53.

[16] M. Abd, ―A cooperative approach to the artificial bee

colony algorithm‖, in: IEEE Congress on Evolutionary

Computation (CEC), 2010 1–5.

[17] W. Lee, W. Cai, ―A novel artificial bee colony

algorithm with diversity strategy‖, in: Proc. 7th Int.

Conf. Natural Computation, 2011, pp. 1441–1444.

[18] B. Wu, S. Fan, ―Improved Artificial Bee Colony

Algorithm with Chaos‖, in: Y. Yu, Z. Yu, J. Zhao

(Eds.): Computer Science for Environmental

Engineering and EcoInformatics, Part I,

Communications in Computer and Information Science,

vol. 158, 2011, pp. 51-56.

[19] L. Fenglei, D. Haijun, F. Xing, ―The parameter

improvement of bee colony algorithm in TSP problem‖,

Science Paper Online, November 2007.

[20] G. Zhu, S. Kwong, ―Gbest-guided artificial bee colony

algorithm for numerical function optimization‖,

Applied Mathematics & Computation 217 (7) (2010)

3166–3173.

[21] F. Kang, J. Li, Z. Ma, H. Li, ―Artificial bee colony

algorithm with local search for numerical

optimization‖, Journal of Software 6 (3) (2011) 490–

497.

[22] F. Qingxian, D. Haijun, ―Bee colony algorithm for the

function optimization‖, Science Paper Online, 2008.

[23] H. Quan, X. Shi, ―On the analysis of performance of

the improved ABC algorithm‖, in: 4th IEEE Int. Conf.

Natural Computation (ICNC), 2008, pp. 654–658.

[24] E. Montes, R. Koeppel, ―Elitist artificial bee colony for

constrained real-parameter optimization‖, IEEE

Congress on Evolutionary Computation 11 (2010), pp.

1–8.

[25] S. Nieberg, H. Beyer, ―Self-adaptation in evolutionary

algorithms‖, Parameter Setting in Evolutionary

Algorithm (2007) 47–76.

[26] J. Liang, A. Qin, P. Suganthan, S. Baskar,

―Comprehensive learning particle swarm optimizer for

global optimization of multimodal functions‖, IEEE

Trans. on Evolutionary Comput. 10 (3) (2006) 281

295.

[27] C. Lee, X. Yao, ―Evolutionary programming using

mutations based on the Lévy probability distribution‖,

IEEE Transactions on Evolutionary Computation 8 (1)

(2004) 1–13.

[28] X. Yao, Y. Liu, G. Lin, ―Evolutionary programming

made faster‖, IEEE Transactions on Evolutionary

Computation 3 (2) (1999) 82–102.

Paper ID: SUB157491 1054

