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Abstract: During any meta-heuristic search, two opposite processes are found in action, namely the explorations and exploitations. 

Although they might seem to operate in opposite directions, they are actually counterparts, and synergy between them may improve the 

final outcome of the algorithm. This is especially true for complex, high dimensional problems, because the search algorithm has to 

avoid many local optima to find a good near optimum solution. There exist many swarm intelligence algorithms that report the necessity 

of a proper balance between explorations and exploitations. This paper presents a concrete example of a swarm intelligence algorithm, 

i.e., the Artificial Bee Colony (ABC) algorithm that finds improvement by balancing between explorations and exploitations. In this 

paper, we have introduced ABC with Guided Exploitations (ABC-GE), a novel algorithm that improves over the basic ABC algorithm. 

ABC-GE augments each candidate solution with a control parameter that controls the proportion of explorative and exploitative 

perturbations and thus affects how new trial solutions are produced from the existing ones. This control parameter is automatically 

adjusted at the individual solution level, separately for each candidate solutionxi, to adjust the proportions of explorations and 

exploitations around xi.ABC-GE is tested on a number of benchmark problems on continuous optimization and compared with the basic 

ABC algorithm. Results show that the performance of ABC-GE is overall better than the basic ABC algorithm. 
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1. Introduction 
 

Recently the research community has seen the emergence of 

many evolutionary and swarm intelligence algorithms, each 

one trying to improve over the others on existing benchmark 

and real world problems. The Artificial Bee Colony (ABC) 

algorithm is a recently introduced [1] swarm intelligence 

algorithm that tries to mimic the intelligent food foraging 

behavior of honey bees. ABC shows very competitive and 

often better results in comparison to existing evolutionary 

and swarm intelligence algorithms [1], [2], such as the 

genetic algorithm (GA), differential evolution (DE) and 

particle swarm optimization (PSO). Since its advent, ABC 

has been successfully applied to wide and diverse range of 

problems, such as continuous optimization [2], discrete 

optimization [3], constrained optimization [4], 

multi-objective optimization [5], design optimization [6], 

training neural network [7], IIR filter [8], PID controller [9], 

parameterizing of milling processes [10] and so on [11].  

 

The ABC algorithm is simple in concept, easy to implement 

and requires fewer control parameters [12]. However, similar 

to other population based meta-heuristic algorithms, ABC 

also has its own challenges and limitations. A major problem 

that may occur with ABC is fitness stagnation [14], where 

the entire population of solutions stops improving, even 

without converging to some local optima, because the fitness 

based selection scheme fails to find new, better trial solutions 

that can enter the population by replacing the existing 

solutions. This may be due to the reason that the pool of 

candidate solutions has prematurely converged around one or 

few locally optimal points, especially for complex high 

dimensional multimodal problems [2], [13]. The main reason 

behind premature convergence is too much exploitation at 

the expense of reduced explorations. ABC drives its search 

towards global optimum with two operators — perturbation 

and selection. The perturbation operation is responsible for 

explorations by random variations of existing solutions, 

while the fitness based selection operation performs 

exploitations of the search regions explored so far. However, 

both these operations are more aligned towards exploitations 

than explorations. The perturbation operation of ABC 

perturbs a single parameter of an existing solution and thus 

produces the new trial solution in the neighborhood of the 

original solution, which is exploitative. The selection 

operation of ABC can accept only the better solutions, which 

is exploitative too. This paper introduces ABC with Guided 

exploitations (ABC-GE), a novel improvement over the basic 

ABC algorithm that tries to automatically balance the 

exploitations with explorations, separately for every 

candidate solution. ABC-GE augments each candidate 

solution xi with a control parameters p[xi] which affects the 

perturbation operations on xi by controlling the degree of 

explorations and exploitations around xi. The value of p[xi] is 

automatically adjusted, cycle (i.e., iteration) by cycle, using 

an adaptive technique to increase the likelihood of producing 

more effective perturbations on xi. ABC-GE is tested on a 

benchmark suite of 30 continuous functions of different 

complexity. Results are compared with the basic ABC [2] 

algorithm which show that ABC-GE can sometimes perform 

better than the basic ABC algorithm. 

 

2. The ABC Algorithm  
 

Honey bees in nature have to forage over a vast area in 

search of good sources of nectar. After an initial exploration 

stage, more bees are employed to collect honey from more 

profitable food sources whereas fewer bees are assigned to 
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the less worthy sources. After returning the hive, each bee 

goes to the ‗dance floor‘ and performs a special dance known 

as the ‗waggle dance‘ to share the information of the food 

source it has found. The ‗onlooker‘ bees, waiting around the 

dance floor, observe the waggle dances of the ‗employed‘ 

bees and pick any of them to follow and collect nectar from 

the vicinity of its food source. Some scout bees are also 

assigned for random explorations of the search space to find 

new food sources. The basic ABC algorithm [1,2] mimics 

the food foraging behavior of honey bees with the same three 

groups of bees — employed, onlooker and scout bees. A bee 

working to forage a particular food source (i.e., candidate 

solution) and searching only around its vicinity is called an 

employed bee. Onlooker bees randomly pick and follow any 

of the employed bees. The probability of picking an 

employed bee is proportional to the quality of its food 

source. Scout bees can perform random explorations of the 

search space to find new food sources. If the employed and 

onlooker bees, even after limit attempts, fail to find a better 

food position around a particular food xi, then xi is 

abandoned and replaced by initiating a scout bee and its food 

source is placed uniformly at random across the search 

space. In the original implementation of the ABC algorithm, 

half of the colony is employed bees, the other half is 

onlooker bees, and scout bees are created on demand only 

when a food source fails to improve with several attempts. 

Fig. 1 presents the pseudocode for the basic ABC algorithm. 

Each cycle (i.e., iteration) of ABC consists of foraging by the 

employed bees (steps 4–5, Fig. 1), then foraging by the 

onlookers (steps 7–9), followed by placement of the scout 

bees (step 10). Each of these stages is described below. 

 

Foraging by employed bees: Suppose, an employed bee is 

currently positioned at a food source position xi. During this 

stage, each employed bee searches in the vicinity of its 

current position xi to produce new trial food source vi using 

(1), where j∈ {1, 2, …, D} and k∈ {1, 2, …, SN} are 

randomly picked indices, D is dimensionality of the problem, 

SN is the number of food positions and φij is a uniform 

random value ~  [-1, 1]. 

 vij = xij + φij (xkj – xij)      (1) 

 

Thus, the new solution vi is produced from xi by perturbing 

its randomly picked j-th parameter and using the information 

of xi and another randomly picked solution xk. If vi has better 

‗fitness‘ than the old food position xi, then xi is replaced by 

vi. For the problem of function optimization, where f is the 

function to be minimized, ABC computes the ‗fitness‘ of a 

candidate solution xi using (2). 
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Foraging by onlooker bees: During this stage, each 

onlooker bee randomly picks an employed bee to follow and 

forages only around the vicinity of its food source. The 

probability wi that the employed bee with food source xi 

would be picked by an onlooker bee is computed using (3), 

which makes the probability wi to be proportional to 

fitness (xi).  
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Like the employed bees, each onlooker bee also employs (1) 

to produce trial food source vi in the vicinity of its current 

food source position xi. If vi has better fitness than xi, then xi 

is replaced by vi. Otherwise, vi is discarded. 

 

Placement of Scout bees: A scout bee is created only when 

a particular food source xi failed to be improved over the last 

‗limit‘ iterations. The bee employed to xi now becomes a 

scout bee and its food source is replaced randomly across the 

search space using (4), where j = 1, 2, …, D and [minj, maxj] 

is the search space along the j-th dimension. 

 

 xij = minj + rand (0,1) * (maxj – minj) (4) 
 

3. Existing Variants of ABC Algorithm  
 

There exist a number of recent studies (e.g., [15]–[24]) that 

try to alter the explorative and/or exploitative properties of 

the basic ABC algorithm. For example, ABC with 

self-adaptive mutation (ABC-SAM) [15] introduces an 

adaptive mutation scaling factor SFi for every candidate 

solution xi and tries to ensure both explorations and 

exploitations by periodically adjusting the value of SFi using 

two different distributions — one explorative and the other 

exploitative. The cooperative ABC (CABC) [16] tries to 

enforce more explorations by decomposing the search space 

into multiple subspaces and by employing multiple bee 

colonies to explore through different subspaces. ABC with 

diversity strategy (DABC) [17] tries to maintain sufficient 

level of population diversity for conducting more 

explorations by alternating between two different 

perturbation schemes. Chaotic ABC (ChABC) [18] tries to 

improve the explorative characteristics of ABC by 

employing chaotic dynamics instead of random number 

generators. The Gbest-guided ABC (GABC) [20] tries to 

improve the exploitations and convergence speed of ABC by 

altering its perturbation operation using the information of 

the global best solution found so far. Hooke Jeeves ABC 

(HJABC) [21]–[22] is a hybrid ABC-variant that intensifies 

the exploitative operations by hybridizing ABC with a local 

search technique (i.e., the Hooke Jeeves pattern search). The 

Elitist ABC (EABC) [24] is another exploitative ABC 

variant that hybridizes ABC with two different local search 

operators to intensify the degree of exploitations around the 

best candidate solution found so far. Thus, most existing 

ABC-variants try to improve either the exploitative (e.g., 

[20]–[24]) or the explorative ([15]–[19]) characteristics of 

the basic ABC algorithm. The exploitative improvements are  
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Figure 1: Algorithm for the basic Artificial Bee Colony (ABC) algorithm

usually based on intensifying the search around the best 

solution(s) found so far (e.g., [20], [21], [24]) and 

hybridizing efficient local search operators with ABC (e.g., 

[21], [23], [24]), while the explorative improvements can be 

based on more population diversity (e.g., [16], [17]) and 

more explorative selection and/or perturbation operations 

([15], [18], [19]). But none of these algorithms considers the 

individual explorative/exploitative requirements of each 

candidate solution separately; rather they employ some 

population-wide global strategy, identically for all candidate 

solutions, which is significantly improved in the proposed 

algorithm — ABC-GE, as described in the following section. 

 

4. The Proposed Algorithm — ABC-GE  
 

ABC-GE tries to improve over the basic ABC algorithm by 

adapting and customizing the degree of explorations and 

exploitations at the individual solution level, i.e., separately 

for every candidate solution. ABC-GE includes a control 

parameter p[xi] within each bee (i.e., candidate solution) xi. 

The control parameter p[xi] automatically controls the 

proportion of explorative and exploitative perturbations on 

the candidate solution xi. The value of p[xi] is gradually 

adapted to achieve higher rate of ‗successful‘ perturbations. 

A perturbation is considered ‗successful‘ only if the new trial 

solution vi has higher fitness value than the original solution 

xi. A detailed description of how the control parameter p[xi] 

is employed and adapted is as follows. ABC-GE employs 

two different perturbation schemes — one for explorations, 

the other for exploitations. Both the perturbation schemes are 

based on the same expression (1), but they differ in how the 

random value φij is picked. For explorative perturbations, 

φijis picked uniformly at random from the interval [-2.5, 2.5], 

while the exploitative perturbations pick φijuniformly at 

random from an exploitative, smaller interval of [-0.5, 0.5].  

 

Explorative perturbation:  

vij = xij + φij (xkj – xij), where φij ~ UR (-2.5, 2.5) (5) 

 

 

Exploitative perturbation:  

vij = xij + φij (xkj – xij), where φij ~ UR (-0.5, 0.5) (6) 

 

Here, UR (a, b) produces a uniform random value from the 

interval (a, b). The explorative perturbation is likely to 

produce a larger value of φij from the wider interval, which is 

more likely to produce the new candidate solution vi farther 

from the parent candidate solution xi, and hence ensures 

more search space explorations. In contrast, the narrow 

interval of [-0.5, 0.5] is likely to produce smaller φij values 

which produces the offspring vi in the vicinity of its parent xi, 

and hence is likely to be an exploitation.  

 

But how does ABC-GE decide on whether to perform 

explorative or exploitative perturbation on xi? This is done 

probabilistically — the current values of p[xi] and 1– p[xi] 

denote the probability of exploitative and explorative 

perturbations on xi, respectively. The value of p[xi] is 

automatically adapted using the incremental learning 

experience of xi, which includes the number of successes and 

failures by explorative and exploitative perturbations on xi. 

Initially, p[xi] is set to 0.5 for every solution xi, which makes 

exploitative and explorative perturbations equally desired. 

After the initial learning period of t1 cycles, ABC-GE starts 

adjusting the p[xi] value for each xi. To do this, ABC-GE 

keeps record of the number of successes and failures by 

exploitative and explorative perturbations on xi over the last 

t1 cycles. Suppose,  

s1 : Number of successes by explorative perturbations on xi 

f1 : Number of   failures  by explorative perturbations on xi 

s2 : Number of successes by exploitative perturbations on xi 

f2 : Number of   failures  by exploitative perturbations on xi 

Now, the effectiveness of the explorative perturbation 

(effER) and exploitative perturbation (effET) on xi are 

computed as:  

effER = (s1) / (s1 + f1)  and  effET  = (s2) / (s2 + f2) 

 

Now, the adjusted probability of exploitative perturbation on 

xi (i.e., the adjusted value of p[xi]) is computed using (7).  

Algorithm:  Artificial Bee Colony (ABC) Algorithm 

1: Initialize a population of SN food source positions (candidate solutions) xi, for i = 1, 2, …,SN. Each xi is a vector of D 

parameters: xi = [xi1, xi2, …,xiD]T 

2: Evaluate the fitness of each food source position using (2).  

3: repeat 

4:   For each employed bee, perturb its food source position xi to produce a new food position vi using (1).  

5:    Evaluate each new solution vi by (2). If vi has higher fitness than xi, then accept vi  to replace xi. Else, discard vi. 

6.    Calculate the probability wi associated with each food source position xi using (3). 

7:    For each onlooker bee, assign it to a food source xi, proportionally based on the probability wi. 

8:    For each onlooker bee, perturb its food source position xi to produce a new food position vi using (1).  

9:    Evaluate each new solutionvi using (2). If vi  is better than xi, then accept vi to replace xi. Else, discard vi. 

10:   If a food source has not improved during the last limit cycles, then abandon it and replace it with a new randomly 

placed scout bee with its food source xi produced by (4). 

11:   Memorize the best food source position found so far  

12:   Set cycle counter C=C + 1  

13: until C = Maximum cycle number (MCN) 

14: return the best food source position (i.e., candidate solution) found so far 
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(7) 

ABC-GE also ensures that p[xi] never drops below plow or 

rises above phighto avoid the complete domination by either 

mode of exploitative or explorative perturbations.  
 

5. Experimental Studies  
 

To evaluate the performance of ABC-GE and to compare it 

with the basic ABC [2] algorithm, this paper uses a set of 

benchmark problems which has 30 standard functions, 

including 18 scalable high dimensional functions with 

dimensionality D=30, 60, as well as 12 low dimensional 

multimodal functions with D ≤ 10. The suite contains both 

unimodal (i.e., f1–f9) and multimodal (i.e., f10–f30), separable 

(e.g., f1, f3, f8) and non-separable (e.g., f2, f4, f5), high 

dimensional (i.e., f1–f18) and low dimensional (i.e., f19–f30) 

functions. These functions have been widely used with many 

other evolutionary and swarm intelligence algorithms (e.g., 

[2], [15]–[18], [26]–[28]). Each function is briefly presented 

in Table 1. More details can be found in [2], [21], [28].  

 

Based on their properties, the benchmark functions (Table 1) 

can be divided into three groups – functions with no local 

minima (i.e., unimodal functions f1–f9), large number of local 

minima (i.e., high dimensional multimodal functions f10–f18) 

and only a few local minima (i.e., low dimensional 

multimodal functions f19–f30). To minimize a multimodal 

function, the optimization algorithm should have both 

explorative and exploitative capabilities, because it has to 

avoid being trapped around the locally minimal points and 

continue both explorations and exploitations until it locates 

the neighbourhood of a global minimum. Some of the 

multimodal functions can have tens or even hundreds of 

local minima, even with just two dimensions (e.g., Rastrigin 

function f10). The number of local minima can increase 

exponentially with the number of dimensions, which makes 

the optimization extremely difficult. 

 

Both ABC and ABC-GE have three parameters in common, 

which are the population size SN, maximum cycle number 

MCN and limit. For functions f1–f18 with D = 30, ABC-GE 

used SN = 100, MCN = 1000 and limit = 100. For the larger 

variants with D = 60, the value of SN is kept the same (i.e., 

100), but limit and MCN are set to 200 and 2000, 

respectively. For the low dimensional f19–f30, ABC-GE sets 

SN = 100, MCN = 100 and limit = 10D. The other 

parameters of ABC-GE are set as: t1 = 30, plow = 0.05 and 

phigh = 0.95. These values are chosen with some initial 

experiments and are not meant to be the optimum.  

 

Table 2 presents the results of ABC-GE on the 30 standard 

benchmark functions and compares the results with the basic 

ABC [2] algorithm. All the algorithms have made 50 

independent runs on each function and the mean andstandard 

deviation of the best found solutions are presented in Table 

2. We summarize our observations on the experimental 

results in the following few points. 
 

 

 

 

 

 

 

 On the simpler functions, i.e., the unimodal functions   f1 –

 f9, and the low dimensional f19 – f30, the performance of 

ABC is slightly better than the proposed algorithm ABC-

GE. On either of these two function families, ABC 

performs better than ABC-GE on two functions, while 

ABC-GE performs better on one function only. On the 

remaining functions, their performance is similar, i.e., 

there is no statistical significance of their performance 

difference, as tested by the t-test with α = 0.95.  

 On the most complex function family, i.e., the high 

dimensional multimodal functions f10 – f18, the 

performance of ABC-GE is better than the original ABC 

algorithm. On these functions, ABC-GE significantly 

outperforms ABC on four functions, while ABC performs 

better on two functions only.  

 In summary, we can conclude that ABC-GE is better 

suited for more complex multimodal and high dimensional 

functions. This is because ABC-GE puts more emphasis 

on explorations (rather than exploitations), which is 

usually necessary for more complex multimodal functions, 

while the simpler functions may require more exploitations 

(rather than explorations). 

 

6. Conclusion and Suggestion for Further 

Study  
 

This paper introduces ABC-GE — an improvement over the 

basic ABC algorithm [2] that tries to adaptively control the 

degree of explorations and exploitations, separately for each 

candidate solution. ABC-GE includes a control parameter — 

p[xi] within each candidate solution xi and employs an 

adaptive technique to adjust its values gradually, separately 

for each candidate solution. The control parameter p[xi] 

controls the proportion of exploitative and explorative 

perturbations on xi and is gradually adapted by ABC-GE 

based on the previous successes and failures of the 

exploitative and explorative perturbations on xi. The results 

indicate that putting a balanced emphasis on the explorations 

make ABC-GE more suitable for complex multimodal and 

high dimensional functions.  

 

There may be several possible future research directions 

based on this study. Firstly, ABC-GE uses a simple strategy 

to adjust the control parameters p[xi] for each candidate 

solution xi. A more sophisticated strategy, such as 

considering the properties of fitness landscape around xi, or 

using a strategy parameterized by the maturity of the 

optimization process may be more effective to balance 

between exploitations and explorations around xi. Secondly, 

the quality of the final solution could be improved further by 

using an exploitative and efficient local searcher. This may 

pinpoint the global minimum more precisely. Thirdly, 

ABC-GE can be hybridized with other existing evolutionary, 

swarm intelligence and machine learning techniques to 

further improve its results. Finally, ABC-GE has been 

employed on the continuous optimization problems. It would 

be interesting to examine how well ABC-GE can perform on 

many other existing problems, especially the discrete and 

real world ones. 
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Table 1:Benchmark functions for experimental study. D: 

dimensionality of the function, S: search space, fmin: the value 

of the function at the global minimum, C:  function 

characteristics with values — U: Unimodal, M: Multimodal,  

S: Separable and N: Non-Separable. 

No Function D S C fmin 

f1 Sphere 30 and 60 [-100, 100]D US 0 

f2 Schwefel 2.22 30 and 60 [-10, 10]D UN 0 

f3 Schwefel 2.21 30 and 60 [-10, 10]D US 0 

f4 Schwefel 1.2 30 and 60 [-100, 100]D UN 0 

f5 Powell 24 [-4, 5]D UN 0 

f6 Dixon-Price 30 and 60 [-10, 10]D UN 0 

f7 Rosenbrock 30 and 60 [-30, 30]D UN 0 

f8 Step 30 and 60 [-100, 100]D US 0 

f9 Quartic 30 and 60 [-1.28, 1.28]D US 0 

f10 Rastrigin 30 and 60 [-5.12, 5.12]D MS 0 

f11 
Non-continuous 

Rastrigin 
30 and 60 [-5.12, 5.12]D MS 0 

f12 Schwefel 30 and 60 [-500, 500]D MS 0 

f13 Ackley 30 and 60 [-32, 32]D MN 0 

f14 Griewank 30 and 60 [-600, 600]D MN 0 

f15 Alpine 30 and 60 [-10, 10]D MS 0 

f16 Weierstrass 30 and 60 [-0.5, 0.5]D MS 0 

f17 Penalized 30 and 60 [-50, 50]D MN 0 

f18 Penalized2 30 and 60 [-50, 50]D MN 0 

f19 Foxholes 2 
[-65.536, 

65.536]D 
MS 1 

f20 Kowalik 4 [-5, 5]D MN 3.07e-04 

f21 
Six Hump 

Camel Back 
2 [-5, 5]D MN -1.0316 

f22 Branin 2 
[-5, 10] 

x [0, 15] 
MS 0.398 

f23 Hartman3 3 [0, 1]D MN -3.86 

f24 Hartman6 6 [0, 1]D MN -3.32 

f25 Shekel5 4 [0, 10]D MN -10.15 

f26 Shekel7 4 [0, 10]D MN -10.40 

f27 Shekel10 4 [0, 10]D MN -10.55 

f28 Fletcher Powell 10 [-π, π]D MN 0 

f29 Michalewicz 10 [0, π]D MS -9.66015 

f30 Langerman 10 [0, 10]D MN -1.4 

 

Table 2: Comparison of ABC-GE with the original ABC [2] algorithm on the 30 standard benchmark functions.  

No fmin D G 
ABC ABC-GE Better 

Performance by Mean Std. Dev. Mean Std. Dev. 

f1 0 
30 1000 2.45e–11 7.72e–12 7.20e–09 8.59e–10 

ABC 
60 2000 3.75e–10 2.01e–11 6.82e–07 1.65e–07 

f2 0 
30 1000 5.05e–07 1.74e–07 2.76e–05 5.35e–06 

ABC 
60 2000 5.58e–06 1.17e–06 3.96e–04 6.98e–05 

f3 0 
30 1000 4.18e+01 5.90 4.36e+01 7.81 

Similar 
60 2000 7.31e+01 6.88 6.83e+01 8.53 

f4 0 
30 1000 8.32e–10 9.75e–11 7.66e–10 9.03e–11 

Similar 
60 2000 4.50e–09 5.64e–10 5.32e–09 1.04e–09 

f5 0 24 1000 6.61e+00 1.07e+00 3.76e–01 5.94e–02 ABC-GE 

f6 0 
30 1000 6.67e–01 1.21e–01 5.97e–01 2.82e–01 

Similar 
60 2000 6.66e–01 1.05e–01 5.65e–01 

 

2.05e–01 

f7 0 
30 1000 4.25e–01 1.18e–01 3.87e–01 1.74 e–01 

Similar 
60 2000 2.02e–01 6.92e–02 1.85e–01 1.09 e–01 

f8 0 
30 1000 0 0 0 0 

Similar 
60 2000 0 0 0 0 

f9 0 
30 1000 8.60e–13 8.32e–13 7.16e–13 2.54e–13 

Similar 
60 2000 9.31e–12 7.17e–12 8.06e–12 3.56e–12 

f10 0 
30 1000 1.72e–14 1.56e–14 8.11e–17 1.84e–17 

ABC-GE 
60 2000 2.84e–13 8.01e–14 3.24e–13 1.57e–13 

f11 0 
30 1000 2.33e–08 7.49e–09 3.16e–08 1.76e–08 

Similar 
60 2000 6.64e–07 1.51e–07 7.71e–07 4.80e–08 

f12 
–12569.5 30 1000 –11346.79 2.77e+02 –11326.20 3.86e+02 

Similar 
–25138.9 60 2000 –22530.82 4.08e+02 –22543.29 5.12e+02 

f13 0 
30 1000 2.93e–06 3.38e–07 8.22e–09 3.36e–09 

ABC-GE 
60 2000 4.65e–06 1.07e–06 5.17e–09 2.16e–09 

f14 0 
30 1000 4.55e–08 6.54e–09 3.13e–04 7.82e–05 

ABC 
60 2000 8.01e–07 2.64e–07 7.26e–04 1.01e–05 

f15 0 
30 1000 3.34e–04 3.76e–05 4.02e–03 1.05e–03 

ABC 
60 2000 7.49e–03 9.58e–04 6.72e–02 2.28e–02 

f16 0 
30 1000 3.36e–01 9.58e–02 2.88e–01 7.07e–02 

Similar 
60 2000 8.99e–01 3.09e–01 9.40–01 3.45e–01 

f17 0 
30 1000 5.47e–12 2.09e–13 6.35e–15 8.20e–16 

ABC-GE 
60 2000 7.47e–12 1.74e–12 3.19e–14 6.05e–15 

f18 0 
30 1000 2.63e–03 1.89e–04 1.86e–04 7.22e–05 

ABC-GE 
60 2000 2.66e–03 7.90e–04 1.11e–04 6.59e–05 

f19 1 2 100 1.04 0.04 1.035 0.02 Similar 

f20 3.07e–04 4 100 5.98e–04 7.22e–05 5.96e–04 8.10e–05 Similar 

f21 –1.0316 2 100 –1.0316 0 –1.0316 0 Similar 

f22 0.398 2 100 0.398 7.12e–08 0.398 6.67e–07 Similar 

f23 –3.86 3 100 –3.86 7.09e–07 –3.86 2.25e–08 Similar 

f24 –3.32 6 100 –3.32 4.74e–13 –3.32 6.96e–13 Similar 

f25 –10.15 4 100 –9.61 0.14 –10.05 0.08 ABC-GE 
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f26 –10.40 4 100 –10.40 8.61e–03 –10.40 3.63e–03 Similar 

f27 –10.54 4 100 –10.52 0.08 –10.40 3.12e–06 ABC 

f28 0 10 100 13.77 3.80 14.15 0.69 Similar 

f29 -9.66015 10 100 -9.66015 0 -9.66015 0 Similar 

f30 -1.4 10 100 –0.78 0.09 –0.24 0.08 ABC 
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