
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 8, August 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Performance Analysis of Cryptographic Hash

Functions

 Smriti Gupta
1
, Sandeep Kumar Yadav

2

1
M.Tech Student ,Government Mahila Engineering College, Ajmer, India

2Assistant Professor, Government Mahila Engineering College, Ajmer, India

Abstract: This paper presents the design and analysis of cryptographic hash functions.A hash function is a map from variable-length

input bit strings to fixed-length output bit strings. Despite their simple definition, hash functions play an essential role in a wide area of

applications such as digital signature algorithms, message authentication codes, password verification, and key derivation. The main

contribution of this paper is to obtain some important parameters for a cryptographic hash function for comparative study. In this paper,

we approach the problem of the design and analysis of cryptographic hash functions. We cover the design aspects of some hash

functions in this paper and then we are analyzing the result of cryptographic hash functions.

Keywords: Message Digest(MD‟S), Secure Hash Algorithm(SHA), Strict Avalanche Criteria(SAC), Kolmogorov Smirnov Test , Chi

Square Test.

1. Introduction

A cryptographic hash function H is a map from variable-

length input bit strings to fixed-length output bit strings, H:

{0, 1}∗ → {0, 1}n .On the other hand, a cryptographic hash

function can be defined more formally as an instance from a

family of functions. Let H :{0, 1}k × {0, 1}∗ → {0, 1}n be

a family of functions. For a particular key K ∈ {0, 1}k, HK :

{0, 1}∗ → {0, 1}n is defined for every m ∈ {0, 1}∗ by

HK(m) = H(K,m). In practice when we refer to a hash

function we mean this instance. If the key K is secret then

the hash function is used for authentication and it is called a

message authentication code abbreviated as MAC. To

simplify the notations we will drop K most of the time. Hash

functions compress the input that is the domain of the input

is larger than the range, hence collisions are unavoidable.

However, a secure hash function should be collision-

resistant, meaning that it should be hard to find collisions.

But a collision can be found accidentally or computed in

advance; to overcome this problem in formal proofs one has

to find a collision for each member of the family, which

makes it harder to pre-compute the collision for each key.

Hence, in order to define formal security notions,

cryptographic hash functions are defined as families.

Namely, in [1] Damgard introduces infinite family of hash

functions that captures his definition of computational

infeasibility. But this method is not applicable to practical

concrete constructions, because it gives asymptotic results.

Hence finite families of hash functions are used in formal

security proofs. Most cryptographic hash functions are

designed to take a string of any length as input and produce

a fixed-length hash value. A cryptographic hash function

must be able to withstand all known types of cryptanalytic

attack. As a minimum, it must have the following properties

[2]:

(A) Preimage resistance

Given a hash ℎ it should be difficult to find any message

𝑚 such that ℎ = ℎ𝑎𝑠ℎ 𝑚 . This concept is related to that of

one-way function. Functions that lack this property are

vulnerable to preimage attacks.

(B) Second-preimage resistance

Given an input 𝑚1 it should be difficult to find another input

𝑚2 where 𝑚1 ≠ 𝑚2 such that ℎ𝑎𝑠ℎ(𝑚1) = ℎ𝑎𝑠ℎ(𝑚2) .

This property is sometimes referred to as weak collision

resistance, and functions that lack this property are

vulnerable to second-preimage attacks.

(C) Collision resistance

It should be difficult to find two different messages𝑚1and

𝑚2such that ℎ𝑎𝑠ℎ(𝑚1) = ℎ𝑎𝑠ℎ(𝑚2). Such a pair is called a

cryptographic hash collision. This property is sometimes

referred to as strong collision resistance. It requires a hash

value at least twice as long as that required for preimage-

resistance, otherwise collisions may be found by a birthday

attack.

These properties imply that a malicious adversary cannot

replace or modify the input data without changing its digest.

Thus, if two strings have the same digest, one can be very

confident that they are identical.

A function meeting these criteria may still have undesirable

properties. Currently popular cryptographic hash functions

are vulnerable to length-extension attacks: given ℎ 𝑚 and

𝑙𝑒𝑛 𝑚 but not 𝑚, by choosing a suitable 𝑚’an attacker can

calculate ℎ(𝑚||𝑚’) where || denotes concatenation. This

property can be used to break naive authentication schemes

based on hash functions. The HMAC construction works

around these problems.

Ideally, one may wish for even stronger conditions. It should

be impossible for an adversary to find two messages with

substantially similar digests; or to infer any useful

information about the data, given only its digest. Therefore,

a cryptographic hash function should behave as much as

possible like a random function while still being

deterministic and efficiently computable.

Paper ID: SUB157467 864

http://en.wikipedia.org/wiki/String_%28computer_science%29
http://en.wikipedia.org/wiki/Cryptanalysis#Types_of_cryptanalytic_attack
http://en.wikipedia.org/wiki/Cryptanalysis#Types_of_cryptanalytic_attack
http://en.wikipedia.org/wiki/Cryptanalysis#Types_of_cryptanalytic_attack
http://en.wikipedia.org/wiki/One-way_function
http://en.wikipedia.org/wiki/Preimage_attack
http://en.wikipedia.org/wiki/Preimage_attack
http://en.wikipedia.org/wiki/Collision_resistance
http://en.wikipedia.org/wiki/Hash_collision
http://en.wikipedia.org/wiki/Birthday_attack
http://en.wikipedia.org/wiki/Birthday_attack
http://en.wikipedia.org/wiki/Birthday_attack
http://en.wikipedia.org/wiki/Adversary_%28cryptography%29
http://en.wikipedia.org/wiki/Concatenation
http://en.wikipedia.org/wiki/HMAC
http://en.wikipedia.org/wiki/Random_function

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 8, August 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

2. Characteristics and Assessment of

Performance

MD-2:- MD-2 takes a message equal to an arbitrary number

of 8-bit bytes and produces a 128 bit message digest. It

cannot handle a message that is not an integral number of

bytes, though it would be simple to modify MD-2, or to have

a convention for bit padding message before feeding it to

MD-2 [5]. The basic idea behind MD-2 is as follows:

 The input to MD-2 is a message whose length is an

arbitrary number of bytes.

 The message is padded according to specified

conventions, to be a multiple of 16 bytes.

 A 16 byte quantity, which MD-2 calls a checksum, is

appended to the end. This checksum is a strange function

of the padded message defined specifically for MD-2.

 Final pass- The message is processed, 16 bytes at a time,

each time producing an intermediate result for the

message digest. Each intermediate value of the message

digest depends on the previous intermediate value and the

value of the 16 bytes of the message being processed.

MD-4:- MD-4 was designed to be 32 bit word oriented.

MD-4 can handle message with an arbitrary number of bits.

Like MD-2 it can be computed in a single pass, though MD-

4 needs more intermediate states [5].

 In MD-4 message digest to be computed is a 128 bit

quantity (four 32 bit words). The message is processed in

512 bits (sixteen 32 bit words) blocks. The message digest

is initialized to a fixed value, and then each stage of the

message digest computation takes the current value of the

message digest and modifies it using the next block of the

message. The final result is the message digest for the

entire message.

 Each stage makes 3 passes over the message block. Each

block has a slightly different method of mangling the

message digest. At the end of the stage, each word of the

mangled message digest is added to its pre-stage value

(which becomes the pre-stage value for the next stage).

Therefore, the current value of the message digest must be

saved at the beginning of the stage so that it can be added

in at the end of the stage. Each stage starts with a 16 word

message block and a 4 word message digest value [6].

MD-5:-MD-5 was designed to be somewhat more

„conservative‟ than MD-4 in terms of being less concerned

with speed and more concerned with security. It is very

similar to MD-4. The major differences are:

 MD-4 takes 3 passes over each 16 byte chunk of the

message. MD-5 makes 4 passes over each 16 byte chunk.

 The functions are slightly different, as are the number of

bits in the shifts.

 MD-4 has one constant which is used for each message

word in pass 2, and a different constant used for the entire

16 message words in pass 3. No constant is used in pass 1.

MD-5 uses a different constant for each message word on

each pass. Since there are 4 passes, each of which deals with

16 message words, there are 64 32-bit word constants used

in MD-5.

The message digest in MD-5 is a 128 bit quantity (four 32-

bit words). Each stage consists of computing a function

based on the 512 bit message chunk and the message digest

to produce a new intermediate value for the message digest.

The value of the message digest is the result of the output of

the final block of message.

Each stage in MD-5 takes four passes over the message

block. At the end of the stage, each word of the modified

message digest is added to the corresponding pre-stage

message digest value [5].

SHA: This Standard specifies five secure hash algorithms,

SHA-1, SHA-224, SHA-256, SHA-384, and SHA-512. All

five of the algorithms are iterative, one-way hash functions

that can process a message to produce a condensed

representation also called as a message digest.

Each algorithm can be described in two stages:

preprocessing and hash computation. Preprocessing involves

padding a message, parsing the padded message into m-bit

blocks, and setting initialization values to be used in the

hash computation. The hash computation generates a

message schedule from the padded message and uses that

schedule, along with functions, constants, and word

operations to iteratively generate a series of hash values. The

final hash value generated by the hash computation is used

to determine the message digest. The five algorithms differ

most significantly in the security strengths that are provided

for the data being hashed. Here, only 3 of them SHA-1,

SHA-256 and SHA-512 described in detail because SHA-

224 and SHA-384 are almost same as SHA-256 and SHA-

512 respectively [8].

3. Case Study and Results

(A) Tools Used in Simulation

For the simulation of the described work, laptop with core-i5

64-bit microprocessor at 2.4 GHz, having 4GB RAM is used

as machine, while the MATLAB 7.8 launched in February

2009, as a 64-bit software is employed. For the compilation

of the report, Microsoft Office 2007 is used with their tools

like Equation Editor, Visio and Picture Manager.

(B) Results

The conventional and proposed work are correctly simulated

and output of the conventional Message Digests has been

cross checked with published example in FIPS-180-3 [5].

Among several available parameters regarding the

performance, a few are taken into account and analyzed after

the simulation. These parameters are Message Digest

calculation time, number of CPU cycles consumed. As the

security parameters, some of the randomness tests have been

performed to check the results with strict avalanche criteria.

(1) Hash Calculation Time

The message digest calculation time is one of the very

important parameter while observing performance of any

algorithm. The observed time is in seconds.

Paper ID: SUB157467 865

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 8, August 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Table 1: Time consumed by various hash algorithms
Hash

Algorithms

MD-2 MD-4 MD-5 SHA160 SHA-256 SHA-512

Time

consumed

(Sec)

0.016

0.016

0.016

0.0251

0.031

0.4

Figure 1: shows the time to calculate message digest of one

block.

Figure 1: Time consumed by various hash algorithms

(2) CPU Cycles Consumed

In order to examine the hardware efficiency of the system

for the particular algorithm, we must watch through its

cycles during message digest calculation. So, here also

another performance parameter is taken into account and

plotted in Fig.2.

Table 2: Cycles consumed by various hash algorithms
Hash

Algorithms

MD-2 MD-4 MD-5 SHA-160 SHA-256 SHA-512

CPU cycles

consumed

(ᵡ105)

0.178

0.256

0.317

0.665

0.7301

3.032

Figure 2: Cycles consumed by various hash algorithms

(3) Strict Avalanche Criteria

The analyses of security of various systems, taken under

observations, were important, as we must know that all the

system whether falls under an optimum level of security or

not. To account the security, two parameters are taken: SAC

and BIC. The strict avalanche criterion (SAC) is a

generalization of the avalanche effect. It is satisfied if,

whenever a single input bit is complemented, each of the

output bits changes with a 50% probability [2]. The SAC

builds on the concepts of completeness and avalanche. The

outcome of the test is in terms of probability and plotted

here in Fig.3.

𝐾𝑆𝐴𝐶 𝑖, 𝑗 =
1

2𝑛
 𝑎𝑗

𝑒𝑖 =
1

2

Where, 𝐾𝑆𝐴𝐶 𝑖, 𝑗 can take values in the range [0,1], and it

should be interpreted as the probability of change of the 𝑗𝑡ℎ

output bit when the 𝑖𝑡ℎ bit in the input string is changed and,

𝑊(𝑎𝑗
𝑒𝑖) is input word to the system.

Table 3: Avalanche coefficient for various hash algorithms
Hash

Algorithms

MD-2 MD-4 MD-5 SHA-160 SHA-256 SHA-512

Avalanche

Coefficient

0.593

0.484

0.422

0.4875

0.5391

0.5098

Figure 3: Avalanche coefficient for various hash algorithms

(4) Kolmogorov SMIRNOV Test

The K-S test is based on largest absolute deviation between

uniformly distributed continuous CDF and empirical CDF.

In the process the input data is ranked in ascending order

and maximum values are observed in particular interval [3].

𝐷+ = max
1≤𝑖≤𝑁

𝑖

𝑁
− 𝑅(𝑖)

𝐷− = max
1≤𝑖≤𝑁

 𝑅(𝑖) −
𝑖 − 1

𝑁

𝐷 = 𝑚𝑎𝑥 (𝐷+, 𝐷−)
Where 𝑅(𝑖) is ranked input data, 𝑁 is total number of data

and 𝑖 is the index.

Table.4: K-S test values for various hash algorithms
Hash Algorithms MD-2 MD-4 MD-5 SHA-

160

SHA-

256

SHA-

512

Threshold value 0.392 0.392 0.392 0.356

0.2881

0.2037

 Obtained value 0.187 0.125 0.25 0.3102 0.1211 0.1055

Figure 4: K-S test

Paper ID: SUB157467 866

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 8, August 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Obtained maximum value is compared with critical value

and hypothesis is rejected if obtained value is greater than

critical value. The observed output is plotted in figure.4.

(5) CHI SQUARE TEST

It uses the sample statistic as

𝑋0
2 = (

(𝑂 𝑖 − 𝐸(𝑖))2

𝐸(𝑖)
)

𝑛

𝑖=1

Where 𝑂(𝑖) is the observed number in 𝑖𝑡ℎ class, 𝐸(𝑖) is

expected number in 𝑖𝑡ℎclass and n is the number of classes.

The expected number is given by 𝐸(𝑖) = 𝑁/𝑛; where 𝑁 is

total number of observations. The outcome of test is

compared with critical value to satisfy the hypothesis [3].

The observed output is plotted in figure.5.

Table 5: Chi-Square test values for various hash algorithms
Hash Algorithms MD-2 MD-4 MD-5 SHA-

160

SHA-

256

SHA-

512

Threshold value 16.9 16.9 16.9 16.9 16.9 16.9

Obtained value 5.25 7.75 16.5 8.0 7.375 12.875

Figure 5: Chi-square test

4. Conclusion

Cryptographic hash functions are very important in current

communication scenario. Many algorithms have been used

to generate message digest or message authentication codes.

As the computational speed and attacks are increasing day

by day MD‟s are no longer called as secure and efficient

message digest algorithm. SHA‟s are more secure

algorithms than MD‟s. Although only SHA-160 found under

attack theoretically not practically, It does not possess that

level of security but still is very popular. SHA-256 and

SHA-512 are safe and secure till date.

So SHA-512 is more secure algorithm than the MD-2, MD-

4, MD-5,SHA-160 and SHA-256 ,But there is trade off

between security and performance of SHA-512 algorithm.

Time consumption to evaluate hash is high in SHA-512.But

security is the main concern in most cases but this drawback

can be overcome by a proper combination of MD‟s and

SHA -512 which will give the optimized Hash algorithm

regarding speed and security

References

[1] I Damgard. Collision free hash functions and public key

signatureschemes. In D. Chaum and W. L. Price, editors,

Advances in Cryptology-EUROCRYPT ‟87, Workshop

on the Theory and Application of Cryptographic

Techniques, Amsterdam, The Netherlands, April 13-15,

1987,Proceedings, volume 304 of Lecture Notes in

Computer Science, pages 203–216. Springer, 1988.

[2] Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen,

and Xiuyuan Yu, “Cryptanalysis of the Hash Functions

MD4 and RIPEMD,” EUROCRYPT, pp. 1-18, 2005.

[3] Isel V., and Melek D. U, Avalanche and Bit

Independence Properties for Ensemble of Randomly

Chosen nXn S-Boxes, Tubitak Vol. 9, No. 2, 2001.

[4] Banks J., Carson J. S. II, Nelson B. L., and Nicol D. M.,

Discrete-event System Simulation., Delhi: Pearson

Education PTE Ltd., 2005.

[5] Kaufman C., Perlman R., Speciner M., Network

Security: Private Communication in Public World, New

Delhi: McGraw Hill, 2002

[6] Boer B., Bosselaers A., “An Attack on the Last Two

Rounds of MD4,” ACM digital library, 1991.

[7] Stalling W., Cryptography and Network Security. New

Delhi: McGraw Hill, 2002.

[8] Xiaoyun Wang and Hongbo Yu, “How to Break MD5

and Other Hash Functions,” EUROCRYPT, pp. 19-35,

2005.

Paper ID: SUB157467 867

