ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Fractional Calculus of Saigo Fractional Integral Operator on Univalent and P-Valent Function

Harish Nagar¹, Seema Kabra²

Department of Mathematics, Mewar University, Gangrar, Chittorgarh (Raj), India

Abstract: In this paper, we apply the fractional calculus technique for the class $UT(n, p \beta, \eta, \delta)$ and $Q_m(\alpha, \gamma, \mu)$ which consists of pvalent and univalent functions with Negative coefficients by using the definition of fractional differentiation, and Integration, we establish four distortion theorems. The theorems 1 to 4 are established for the Saigo Fractional Integral Operator $I_{0,x}^{\beta,\eta,\delta}$ applying on the classes of p-valent functions.

Keywords: Fractional Calculus, Univalent Function, p-valent function, Special Function, Saigo Fractional Integral Operator.

1. Introduction and Definitions

In this paper, we apply the fractional calculus technique for the class $UT(n, p \beta, \eta, \delta)$ and $Q_m(\alpha, \gamma, \mu)$ which consists of p-valent and univalent functions with Negative coefficients by using the definition of Saigo Fractional Integral Operator, we establish four distortion theorems here.

1.1 **Definitions:**

(i) Saigo's Fractional Integral Operator:

The fractional integral operator $I_{0,x}^{\alpha,\eta,\delta}$ is defined by

$$I_{0,x}^{\alpha,\eta,\delta}f(x) = \frac{x^{-\alpha-\eta}}{\Gamma(\alpha)} \int_{0}^{x} (x-t)^{\alpha-1} {}_{2}F_{1}\left(\alpha+\eta,-\delta;\alpha;1-txftdt,\dots(1.1.1)\right)$$

Here f(x) is an analytic function and ${}_{2}F_{1}(a,b;c;z)$ is the Gauss hypergeometric function.

Gauss hypergeometric function:

The Gauss hypergeometric functiondefined as follows[4,

$${}_{2}F_{1}(a,b;c;z) = {}_{2}F_{1}\begin{bmatrix} a,b;\\c;z \end{bmatrix} = \sum_{k=0}^{\infty} \frac{(a)_{k}(b)_{k}}{(c)_{k}} \frac{z^{k}}{k!},$$

$$|x| < 1 \qquad \dots (1.1.2)$$

Univalent and p-Valent Functions

Let S denote the class of function [2, p. 2807, eq. (1.1)] $f(z) = z + \sum_{k=2}^{\infty} a_k z^k$...(1.1.3)

Which are analytic and univalent in $U = \{z : |z| < 1\}$. Let T denotes the subclass of S consisting of functions of the

[2, p. 2808, eq. (1.4)]
$$f(z) = z - \sum_{k=2}^{\infty} a_k z^k , \quad (a_k \ge 0) \quad \dots (1.1.4)$$

A function f of T is in

 $Q_m(\gamma), (0 \le \gamma < 1, m \in N_0 = NU\{0\}, N = \{1, 2,\})$ If [2, p. 2808, eq. (1.5)]

$$Re\left(D^m f(z)\right)^1 > \gamma, \quad z \in U$$

Paper ID: SUB157362

...(1.1.5)

Where $D^m f(z)$ denotes usual mth order derivative introduced by Rusheweyh.

The class $Q_m(\gamma)$ was introduced and studied by Uralegaddi and Sarangi [5].

We aim to study the class $Q_m(\alpha, \gamma, \mu)$ which consists of functions $f \in T$, and satisfied the conditions

$$\left| \frac{\{(D^m f(z))^1 - 1\}}{\alpha(D^m f(z))^1 + (1 - \gamma)} \right| < \mu, \qquad z \in U \quad \dots (1.1.6)$$
 For $0 \le \gamma < 1, \ 0 \le \alpha < 1, 0 < \mu < 1.$

Let S(n, p) be the class of functions f(z) of the form [1, p. 1090, eq. (1.1)]

$$f(z) = z^{p} + \sum_{k=n+p}^{\infty} a_{k} z^{k}, \qquad n, p \in \mathbb{N} = \{1, 2, 3, ...\}$$
...(1.1.7)

$$f(z) = z^{p} - \sum_{k=n+p}^{\infty} a_{k} z^{k}, \qquad (a_{k} \ge 0; n, p \in N)$$
$$= \{1, 2, 3, \dots\}$$

This is analytic p-valent in the open unit disk U = $\{z\in c\colon |z|<1\}$

Let S*WA (n, p, β) denotes the subclass of S (n, p)consisting of p-valent star like functions of order β , $0 \le \beta \le$ p, if it also satisfies the inequality

$$Re\left\{\frac{zf'(z)}{f(z)}\right\} > \beta, \quad z \in U$$
...(1.1.9)

And also, let CWA (n, p, β) denotes the subclass of S (n, p)consisting of p-valent star like functions of order β , $0 \le \beta \le$ p, if it also satisfies the inequality (for more details see [1, p. 1090, eq. (1.3)])

$$Re\left\{1 + \frac{zf^{''}(z)}{f^{'}(z)}\right\} > \beta, \quad z \in U$$

Then, we see that $f(z) \in CWA(n, p, \beta)$ if and only if $zf'(z) \in S^*WA(n, p, \beta).$

2. Results Required

The following results are required here

The following Saigo Fractional Integral Operatorformulas are also required here

Let
$$\beta > , k > \eta - \delta - 1$$
, then [2, p. 2811]

ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

$$I_{0,z}^{\beta,\eta,\delta}z^k = \frac{\Gamma(\mathbf{k}+1)\Gamma(\mathbf{k}-\eta+\delta+1)}{\Gamma(\mathbf{k}-\eta+1)\Gamma(\mathbf{k}+\beta+\delta+1)}z^{k-\eta} \dots (2.1)$$

The following two lemmas for the class of functions $Q_m(\alpha, \gamma, \mu)$ and $UT(n, p, \beta, \eta, \delta)$ are also required.

Lemma: 1 [2, p. 2808, eq. (2.1)]:

Let the function f be defined by (2.2.2). then $f \in Q_m(\alpha, \gamma, \mu)$ if and only if. $\sum_{k=n+p}^{\infty} k(1+\mu\alpha)\delta(m,k)a_k \le \mu(\alpha+(1-\gamma))$

Where $0 \le \alpha < 1, 0 \le \gamma < 1, 0 < \mu \le 1$ and $m \in$

$$N_{0,}(m = n)$$

$$\delta(m, k) = {m + k - 1 \choose m}$$

 $\delta(m,k) = \frac{\Gamma(m+k)}{\Gamma(m+1)\Gamma(k)}$

The result (2.2.11) is sharp for the function

$$f(z) = z^{p} - \frac{\mu(\alpha + (1-\gamma))}{k(1+\mu\alpha)\delta(m,k)} z^{k}, k \ge n + p$$
...(2.5)

Lemma 2 [5, p. 72, eq. (3.16), p. 64, eq. (1.2)]: A function $f(z) \in UT(n, p, \beta, \eta, \delta)$ for $\gamma(-1 \le \gamma < 1)$ 1 and $k(k \ge 0)$ if and only if $k = n + p \infty \sigma(\gamma, m)$, k) $ak \le k = n + p \infty \sigma(\gamma, m, k) ak \le 1 - \gamma$...(2.6)

The result is sharp for
$$f(z) = z^p - \frac{(1-\gamma)}{\sigma(\gamma,m,k)} z^k, k \ge n + p$$
...(2.7)

3. Main Results

The following four distortion theorems for p-valent function concerning to Saigo Fractional Integral Operatorare established as the main results.

Theorem -1: Let the function f(z) is a p-valent function and defined in the class

Theorem -1: Let the function
$$f(z)$$
 is a p-valent function and defined in the class $Q_m(\alpha, \gamma, \mu)$, then we have
$$|I_{0,z}^{\beta,\eta,\delta}f(z)| \geq \frac{\Gamma(p+1)\Gamma(p-\eta+\delta+1)}{\Gamma(p-\eta+1)\Gamma(p+\beta+\delta+1)}|z|^{p-\eta}$$

$$\left[1 - \frac{\Gamma(n+p+1)\Gamma(n+p-\eta+\delta+1\Gamma(p-\eta+1)\Gamma(p+\beta+\delta+1))\mu(\alpha+(1-\gamma))\Gamma(m+1)\Gamma(n+p)}{\Gamma(n+p-\eta+1)\Gamma(n+p+\beta+\delta+1)\Gamma(p+1)\Gamma(p-\eta+\delta+1)\Gamma(m+n+p)(1+\mu\alpha)(n+p)}|z|^n\right]...(3.1)$$
 For $z \in U_0$ where $U_0 = \begin{cases} U, & \eta \leq 1 \\ U - \{0\}, & \eta > 1 \end{cases}$ the result which sharp for the function $f(z)$ given by the following form

the result which sharp for the function
$$f(z)$$
 given by the following form
$$f(z) = z^p - \frac{\Gamma(n+p+1)\Gamma(n+p-\eta+\delta+1\Gamma(p-\eta+1)\Gamma(p+\beta+\delta+1))\mu(\alpha+(1-\gamma))\Gamma(m+1)\Gamma(n+p)}{\Gamma(n+p-\eta+1)\Gamma(n+p+\beta+\delta+1)\Gamma(p+1)\Gamma(p-\eta+\delta+1)\Gamma(m+n+p)(1+\mu\alpha)(n+p)} z^{n+p}$$

Theorem-2:Let the function f(z) is a p-valent function and defined in the class

the result which sharp for the function
$$f(z)$$
 given by the following form
$$f(z) = z^p - \frac{\Gamma(n+p+1)\Gamma(n+p-\eta+\delta+1\Gamma(p-\eta+1)\Gamma(p+\beta+\delta+1))\mu(\alpha+(1-\gamma))\Gamma(m+1)\Gamma(n+p)}{\Gamma(n+p-\eta+1)\Gamma(n+p+\beta+\delta+1)\Gamma(p+1)\Gamma(p-\eta+\delta+1)\Gamma(m+n+p)(1+\mu\alpha)(n+p)} z^{n+p}$$

Theorem -3: Let the function f(z) is p-valent function and defined in the class $UT(n, p, \beta, \eta, \delta)$ if $\{\sigma(\gamma, m, k)\}_{k=n+n}^{\infty}$ $n, p \in$

In
$$f(z)$$
 is p-valent function and defined in the class $UT(n, p, \beta, \eta, \delta)i$
 N is a non-decreasing sequence, then we have
$$\left|I_{0,z}^{\beta,\eta,\delta}f(z)\right| \geq \frac{\Gamma(p+1)\Gamma(p-\eta+\delta+1)}{\Gamma(p-\eta+1)\Gamma(p+\beta+\delta+1)}|z|^{p-\eta}$$

$$\left[1 - \frac{\Gamma(n+p+1)\Gamma(n+p-\eta+\delta+1\Gamma(p-\eta+1)\Gamma(p+\beta+\delta+1))(1-\gamma)}{\Gamma(n+p-\eta+1)\Gamma(n+p+\beta+\delta+1)\Gamma(p+1)\Gamma(p-\eta+\delta+1)\sigma(\gamma,m,n+p)}|z|^{n}\right]...(3.5)$$
For $z \in U_{0}$ where $U_{0} = \begin{cases} U, & \eta \leq 1 \\ U - \{0\}, & \eta > 1 \end{cases}$

the result which sharp for the function
$$f(z)$$
 given by the following form
$$f(z) = z^p - \frac{\Gamma(n+p+1)\Gamma(n+p-\eta+\delta+1\Gamma(p-\eta+1)\Gamma(p+\beta+\delta+1))(1-\gamma)}{\Gamma(n+p-\eta+1)\Gamma(n+p+\beta+\delta+1)\Gamma(p+1)\Gamma(p-\eta+\delta+1)\sigma(\gamma,m,n+p)} z^{n+p}$$
(3.6)

Theorem -4: Let the function f(z) is p-valent function and defined in the class $UT(n, p, \beta, \eta, \delta)$ if $\{\sigma(\gamma, m, k)\}_{k=n+n}^{\infty}$ $n, p \in$ N is a non-decreasing sequence, then we have

$$\begin{split} \left| I_{0,z}^{\beta,\eta,\delta} f(z) \right| &\geq \frac{\Gamma(p+1)\Gamma(p-\eta+\delta+1)}{\Gamma(p-\eta+1)\Gamma(p+\beta+\delta+1)} |z|^{p-\eta} \\ &\times \left[1 + \frac{\Gamma(n+p+1)\Gamma(n+p-\eta+\delta+1\Gamma(p-\eta+1)\Gamma(p+\beta+\delta+1))(1-\gamma)}{\Gamma(n+p-\eta+1)\Gamma(n+p+\beta+\delta+1)\Gamma(p+1)\Gamma(p-\eta+\delta+1)\sigma(\gamma,m,n+p)} |z|^n \right] \end{split}$$

ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

$$\text{For }z\epsilon U_0 \text{ where } U_0 = \begin{cases} U, & \eta \leq 1 \\ U - \{0\}, & \eta > 1 \end{cases}$$

the result which sharp for the function
$$f(z)$$
 given by the following form
$$f(z) = z^p - \frac{\Gamma(n+p+1)\Gamma(n+p-\eta+\delta+1)\Gamma(p-\eta+1)\Gamma(p+\beta+\delta+1)(1-\gamma)}{\Gamma(n+p-\eta+1)\Gamma(n+p+\beta+\delta+1)\Gamma(p+1)\Gamma(p-\eta+\delta+1)\sigma(\gamma,m,n+p)} z^{n+p} \qquad \dots (3.8)$$

Proof of Theorem – 1:

To establish the theorem -1, we first apply the operator $I_{0,z}^{\beta,\eta,\delta}$ on both sides of (1.1.8), we have $I_{0,z}^{\beta,\eta,\delta}f(z)=I_{0,z}^{\beta,\eta,\delta}z^p$

$$I_{0,z}^{\beta,\eta,\delta}f(z) = I_{0,z}^{\beta,\eta,\delta}z^{p}$$

$$-\sum_{k=n+p}^{\infty} a_{k}I_{0,z}^{\beta,\eta,\delta}z^{k}, \qquad a_{k} \geq 0, n, p$$

$$\in N$$

On making use of (2.1), we obtain

$$\begin{split} &I_{0,z}^{\beta,\eta,\delta}f(z)\\ &=\frac{\Gamma(p+1)\Gamma(p-\eta+\delta+1)}{\Gamma(p-\eta+1)\Gamma(p+\beta+\delta+1)}z^{p-\eta}\\ &-\sum_{k=n+p}^{\infty}\frac{\Gamma(k+1)\Gamma(k-\eta+\delta+1)}{\Gamma(k-\eta+1)\Gamma(k+\beta+\delta+1)}a_kz^{k-\eta} \end{split}$$

$$I_{0,z}^{\beta,\eta,\delta}f(z)\frac{\Gamma(p-\eta+1)\Gamma(p+\beta+\delta+1)}{\Gamma(p+1)\Gamma(p-\eta+\delta+1)}z^{\eta}$$
$$=z^{p}-\sum_{k=n+n}^{\infty}a_{k}z^{k}\phi(k,\eta,\beta,\delta)$$

Where

$$\phi(k,\eta,\beta,\delta) = \frac{\Gamma(k+1)\Gamma(k-\eta+\delta+1)\Gamma(p-\eta+1)\Gamma(p+\beta+\delta+1)}{\Gamma(k-\eta+1)\Gamma(k+\beta+\delta+1)\Gamma(p+1)\Gamma(p-\eta+\delta+1)} \dots (3.9)$$

Since for $k \ge n + p$, $\phi(k, \eta, \beta, \delta)$ is a decreasing function of k.

We have

$$\phi(k, \eta, \beta, \delta) \le \phi(n + p, \eta, \beta, \delta)$$

i.e.

$$\frac{\phi(k,\eta,\beta,\delta)}{\frac{\Gamma(n+P+1)\Gamma(n+p-\eta+\delta+1)\Gamma(p-\eta+1)\Gamma(p+\beta+\delta+1)}{\Gamma(n+p-\eta+1)\Gamma(n+p+\beta+\delta+1)\Gamma(p+1)\Gamma(p-\eta+\delta+1)}}}{\dots(3.10)$$

$$G(z) = I_{0,z}^{\beta,\eta,\delta} f(z) \frac{\Gamma(p-\eta+1)\Gamma(p+\beta+\delta+1)}{\Gamma(p+1)\Gamma(p-\eta+\delta+1)} z^{\eta}$$

..(3.11)There for this above

equation in view of (3.9), (3.10), reduce in to the following inequality

$$|G(z)| \ge |z|^p - \phi(n+p,\eta,\beta,\delta)$$

$$\times |z|^{n+p} \sum_{k=n+p}^{\infty} a_k$$

$$\geq |z|^p - \phi(n+p,\eta,\beta,\delta)|z|^{n+p} a_{n+p}$$

Now from the Lemma -1 on using (2.2), (2.3), (2.5), we have

$$(n+p)(1+\mu\alpha)\delta(m,n+p)\sum_{k=n+p}^{\infty}a_{k}$$

$$\leq \sum_{k=n+p}^{\infty}k\delta(m,k)a_{k}(1+\mu\alpha)$$

$$\leq \mu(\alpha+(1-\gamma))a_{n+p}$$

$$\leq \frac{\mu(\alpha+(1-\gamma))}{\delta(m,n+P)(1+\mu\alpha)(n+p)}$$

Then on using (2.4), we have
$$a_{n+p} \leq \frac{\mu(\alpha + (1-\gamma))\Gamma(m+1)\Gamma(n+p)}{\Gamma(m+n+P)(1+\mu\alpha)(n+p)}$$
...(3.13)

The result in (3.12) in view of (3.13) takes the following form

$$\begin{aligned} &|G(z)|\\ &\leq |z|^p - \phi(n\\ &+ p, \eta, \beta, \delta) \frac{\mu(\alpha + (1-\gamma))\Gamma(m+1)\Gamma(n+p)}{\Gamma(m+n+P)(1+\mu\alpha)(n+p)} |z|^{n+p} \end{aligned}$$
 Now on using the result in (3.10) and (3.11), we at once

arise at the derived result in (3.1) for the function defined in (3.2).

Proof of Theorem – 2:

To establish the theorem -2, we first apply the operator $I_{0,z}^{\beta,\eta,\delta}$ on both sides of (1.1.7), we have $I_{0,z}^{\beta,\eta,\delta}f(z)=I_{0,z}^{\beta,\eta,\delta}z^p$

$$I_{0,z}^{\beta,\eta,\delta}f(z) = I_{0,z}^{\beta,\eta,\delta}z^{p} + \sum_{k=n+p}^{\infty} a_{k}I_{0,z}^{\beta,\eta,\delta}z^{k}, \qquad a_{k} \geq 0, n, p$$

$$\in N$$

On making use of (2.1), we obtain

Taking use of (2.1), we obtain
$$I_{0,z}^{\beta,\eta,\delta}f(z) = \frac{\Gamma(p+1)\Gamma(p-\eta+\delta+1)}{\Gamma(p-\eta+1)\Gamma(p+\beta+\delta+1)}z^{p-\eta} + \sum_{k=n+p}^{\infty} \frac{\Gamma(k+1)\Gamma(k-\eta+\delta+1)}{\Gamma(k-\eta+1)\Gamma(k+\beta+\delta+1)}a_kz^{k-\eta}$$
The be written in the following form

It can be written in the following form
$$I_{0,z}^{\beta,\eta,\delta}f(z)\frac{\Gamma(p-\eta+1)\Gamma(p+\beta+\delta+1)}{\Gamma(p+1)\Gamma(p-\eta+\delta+1)}z^{\eta}$$

$$=z^{p}+\sum_{k=n+n}^{\infty}a_{k}z^{k}\phi(k,\eta,\beta,\delta)$$

Where

$$\phi(k,\eta,\beta,\delta) = \frac{\Gamma(k+1)\Gamma(k-\eta+\delta+1)\Gamma(p-\eta+1)\Gamma(p+\beta+\delta+1)}{\Gamma(k-\eta+1)\Gamma(k+\beta+\delta+1)\Gamma(p+1)\Gamma(p+\eta+\delta+1)} \dots (3.14)$$

Since for $k \ge n + p$, $\phi(k, \eta, \beta, \delta)$ is a decreasing function of

We have

$$\phi(k,\eta,\beta,\delta) \leq \phi(n+p,\eta,\beta,\delta)$$

i.e.

$$\phi(k,\eta,\beta,\delta) \le$$

ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

$$\frac{\Gamma(n+P+1)\Gamma(n+p-\eta+\delta+1)\Gamma(p-\eta+1)\Gamma(p+\beta+\delta+1)}{\Gamma(n+p-\eta+1)\Gamma(n+p+\beta+\delta+1)\Gamma(p+1)\Gamma(p-\eta+\delta+1)}$$

of setting
$$G(z) = I_{0,z}^{\beta,\eta,\delta} f(z) \frac{\Gamma(p-\eta+1)\Gamma(p+\beta+\delta+1)}{\Gamma(p+1)\Gamma(p-\eta+\delta+1)} z^{\eta}$$

.(3.16)There for this above

equation in view of (2.3.42), (2.3.43), reduce in to the following inequality

$$|G(z)| \le |z|^p + \phi(n+p,\eta,\beta,\delta)|z|^{n+p}$$

$$\times \sum_{k=n+p}^{\infty} a_k \le |z|^p + \phi(n+p,\eta,\beta,\delta)|z|^{n+p} a_{n+p}$$

Now from the Lemma -1 on using (2.2), (2.3), (2.5), we have

$$(n+p)(1+\mu\alpha)\delta(m,n+p)\sum_{k=n+p}^{\infty}a_{k}$$

$$\leq \sum_{k=n+p}^{\infty}k\delta(m,k)a_{k}(1+\mu\alpha)$$

$$\leq \mu(\alpha+(1-\gamma))a_{n+p}$$

$$\leq \frac{\mu(\alpha+(1-\gamma))}{\delta(m,n+P)(1+\mu\alpha)(n+p)}$$

Then on using (2.4), we have

$$a_{n+p} \le \frac{\mu(\alpha + (1-\gamma))\Gamma(m+1)\Gamma(n+p)}{\Gamma(m+n+p)(1+\mu\alpha)(n+p)}$$

...(3.18)

The result in (3.17) in view of (3.18) takes the following form

$$|G(z)| \le |z|^p + \phi(n + p, \eta, \beta, \delta) \frac{\mu(\alpha + (1 - \gamma))\Gamma(m + 1)\Gamma(n + p)}{\Gamma(m + n + P)(1 + \mu\alpha)(n + p)} |z|^{n+p}$$
Now on using the result in (3.15) and (3.16), we at once

arise at the derived result in (3.3) for the function defined in (3.4).

Proof of Theorem – 3:

To establish the theorem -3, we first apply the operator

$$I_{0,z}^{\beta,\eta,\delta}$$
 on both sides of (1.1.8), we have
$$I_{0,z}^{\beta,\eta,\delta}f(z) = I_{0,z}^{\beta,\eta,\delta}z^p - \sum_{k=n+p}^{\infty} a_k I_{0,z}^{\beta,\eta,\delta}z^k, \qquad a_k \ge 0, n, p$$

On making use of (2.1), we obtain

Taking use of (2.1), we obtain
$$I_{0,z}^{\beta,\eta,\delta}f(z) = \frac{\Gamma(p+1)\Gamma(p-\eta+\delta+1)}{\Gamma(p-\eta+1)\Gamma(p+\beta+\delta+1)}z^{p-\eta} - \sum_{k=n+p}^{\infty} \frac{\Gamma(k+1)\Gamma(k-\eta+\delta+1)}{\Gamma(k-\eta+1)\Gamma(k+\beta+\delta+1)} a_k z^{k-\eta}$$
The be written in the following form

It can be written in the following form
$$I_{0,z}^{\beta,\eta,\delta} f(z) \frac{\Gamma(p-\eta+1)\Gamma(p+\beta+\delta+1)}{\Gamma(p+1)\Gamma(p-\eta+\delta+1)} z^{\eta}$$

$$= z^{p} - \sum_{k=n+p}^{\infty} a_{k} z^{k} \phi(k,\eta,\beta,\delta)$$

Where

$$\phi(k,\eta,\beta,\delta) = \frac{\Gamma(k+1)\Gamma(k-\eta+\delta+1)\Gamma(p-\eta+1)\Gamma(p+\beta+\delta+1)}{\Gamma(k-\eta+1)\Gamma(k+\beta+\delta+1)\Gamma(p+1)\Gamma(p-\eta+\delta+1)}$$
(3.19)

Since for $k \ge n + p$, $\phi(k, \eta, \beta, \delta)$ is a decreasing function of

We have

$$\phi(k, \eta, \beta, \delta) \le \phi(n + p, \eta, \beta, \delta)$$

i.e.

$$\begin{array}{l} \phi(k,\eta,\beta,\delta) \leq \\ \frac{\Gamma(n+P+1)\Gamma(n+p-\eta+\delta+1)\Gamma(p-\eta+1)\Gamma(p+\beta+\delta+1)}{\Gamma(n+p-\eta+1)\Gamma(n+p+\beta+\delta+1)\Gamma(p+1)\Gamma(p-\eta+\delta+1)} \\ \dots (3.20) \end{array}$$

$$G(z) = I_{0,z}^{\beta,\eta,\delta} f(z) \frac{\Gamma(p-\eta+1)\Gamma(p+\beta+\delta+1)}{\Gamma(p+1)\Gamma(p-\eta+\delta+1)} z^{\eta}$$

..(3.21)There for this above

equation in view of (3.19), (3.20), reduce in to the following inequality

$$\sum_{k=n+p}^{\infty} |G(z)| \ge |z|^p - \phi(n+p,\eta,\beta,\delta)|z|^{n+p}$$

$$\sum_{k=n+p}^{\infty} a_k \ge |z|^p - \phi(n+p,\eta,\beta,\delta)|z|^{n+p} a_{n+p}$$

...(3.22)

Now from the Lemma -2 on using (2.6), (2.7), we have

$$\sigma(\gamma, m, n+p) \sum_{k=n+p}^{\infty} a_k$$

$$\leq \sum_{k=n+p}^{\infty} \sigma(\gamma, m, k) a_k \leq (1-\gamma) a_{n+p}$$

$$\leq \frac{(1-\gamma)}{\sigma(\gamma, m, n+p)}$$

...(3.23)

The result in (3.22) in view of (3.23) takes the following

$$\begin{split} |G(z)| \geq |z|^p - \varphi(n+p,\eta,\beta,\delta) \frac{(1-\gamma)}{\sigma(\gamma,m,n+P)} |z|^{n+p} \\ m \geq 0, -1 \leq \gamma < 1 \end{split}$$

Now on using the result in (3.20) and (3.21), we at once arise at the derived result in (3.5) for the function defined in (3.6).

Proof of Theorem – 4:

To establish the theorem -4, we first apply the operator $I_{0,z}^{\beta,\eta,\delta}$ on both sides of (1.1.7), we have $I_{0,z}^{\beta,\eta,\delta}f(z)=I_{0,z}^{\beta,\eta,\delta}z^p$

$$I_{0,z}^{\beta,\eta,\delta}f(z) = I_{0,z}^{\beta,\eta,\delta}z^{p} + \sum_{k=n+p}^{\infty} a_{k}I_{0,z}^{\beta,\eta,\delta}z^{k}, \qquad a_{k} \ge 0, n, p$$

On making use of (2.1), we obtain

$$I_{0,z}^{\beta,\eta,\delta}f(z) = \frac{\Gamma(p+1)\Gamma(p-\eta+\delta+1)}{\Gamma(p-\eta+1)\Gamma(p+\beta+\delta+1)}z^{p-\eta} + \sum_{k=n+p}^{\infty} \frac{\Gamma(k+1)\Gamma(k-\eta+\delta+1)}{\Gamma(k-\eta+1)\Gamma(k+\beta+\delta+1)}a_kz^{k-\eta}$$

It can be written in the following for

ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

$$I_{0,z}^{\beta,\eta,\delta}f(z)\frac{\Gamma(p-\eta+1)\Gamma(p+\beta+\delta+1)}{\Gamma(p+1)\Gamma(p-\eta+\delta+1)}z^{\eta}$$
$$=z^{p}+\sum_{k=n+p}^{\infty}a_{k}z^{k}\phi(k,\eta,\beta,\delta)$$

Where

$$\phi(k,\eta,\beta,\delta) = \frac{\Gamma(k+1)\Gamma(k-\eta+\delta+1)\Gamma(p-\eta+1)\Gamma(p+\beta+\delta+1)}{\Gamma(k-\eta+1)\Gamma(k+\beta+\delta+1)\Gamma(p+1)\Gamma(p-\eta+\delta+1)} \dots (3.24)$$

Since for $k \ge n + p$, $\phi(k, \eta, \beta, \delta)$ is a decreasing function of k.

We have

$$\phi(k,\eta,\beta,\delta) \leq \phi(n+p,\eta,\beta,\delta)$$
 i.e.
$$\phi(k,\eta,\beta,\delta) \leq \frac{\Gamma(n+P+1)\Gamma(n+p-\eta+\delta+1)\Gamma(p-\eta+1)\Gamma(p+\beta+\delta+1)}{\Gamma(n+p-\eta+1)\Gamma(n+p+\beta+\delta+1)\Gamma(p+1)\Gamma(p-\eta+\delta+1)} \qquad \dots (3.25)$$
 ting

on setting

$$G(z) = I_{0,z}^{\beta,\eta,\delta} f(z) \frac{\Gamma(p-\eta+1)\Gamma(p+\beta+\delta+1)}{\Gamma(p+1)\Gamma(p-\eta+\delta+1)} z^{\eta}$$

There for this above equation in view of (3.24), (3.25), reduce in to the following inequality

$$\sum_{k=n+p}^{\infty} a_k \le |z|^p + \phi(n+p,\eta,\beta,\delta)|z|^{n+p}$$

...(3.27)

...(3.26)

Now from the Lemma -2 on using (2.6), (2.7), we have

$$\sigma(\gamma, m, n+p) \sum_{k=n+p}^{\infty} a_k$$

$$\leq \sum_{k=n+p}^{\infty} \sigma(\gamma, m, k) a_k \leq (1-\gamma) a_{n+p}$$

$$\leq \frac{(1-\gamma)}{\sigma(\gamma, m, n+p)}$$

...(3.28)

The result in (3.27) in view of (3.28) takes the following form

$$\begin{split} |G(z)| \geq |z|^p + \varphi(n+p,\eta,\beta,\delta) \frac{(1-\gamma)}{\sigma(\gamma,m,n+P)} |z|^{n+p} \\ m \geq 0, -1 \leq \gamma < 1 \end{split}$$

Now on using the result in (3.25) and (3.26), we at once arise at the derived result in (3.7) for the function defined in (3.8).

4. Special Cases

Paper ID: SUB157362

(1) If in (3.1) and (3.3), we take n = p = 1, then these results reduce to the following known results [2, p. 2811, eqns. (3.7), (3.8)] i.e.

$$\begin{aligned} \left|I_{0,z}^{\beta,\eta,\delta}f(z)\right| &\geq \\ \frac{\Gamma(2-\eta+\delta)}{\Gamma(2-\eta)\Gamma(2+\beta+\delta)}\left|z\right|^{1-\eta} \left[1 - 2 - \eta + \delta\mu\alpha + 1 - \gamma 2 + \beta + \delta(2-\eta)1 + \mu\alpha m + 1z...(4.1)\right] \\ m &= n, m, n \in \mathbb{N}_{0} \end{aligned}$$

$$\begin{aligned} & |I_{0,z}^{\beta,\eta,\delta}f(z)| \leq \\ & \frac{\Gamma(2-\eta+\delta)}{\Gamma(2-\eta)\Gamma(2+\beta+\delta)} |z|^{1-\eta} \left[1 + \frac{(2-\eta+\delta)\mu(\alpha+(1-\gamma))}{(2+\beta+\delta)(2-\eta)(1+\mu\alpha)(m+1)} |z| \right] ...(4.2) \\ & m = n, m, n \in N_0 \end{aligned}$$

References

- [1] Atshan, W.G., Kulkarni, S.R., and Murugusundaramoorthy, G.,: Application of fractional calculus on certain class of p- valent functions with Negative coefficients defined by Ruscheweyh derivative, Int. journal of Mathematics Analysis, Vol. 1, No.22, (2007), pp. 1089-1101.
- [2] Esa, G. H. and Darus, M.,: Application of fractional calculus operators to a certain class of univalent functions with negative coefficients, International Mathematical Forum, 57(2), (2007), pp.2807-2814,
- [3] Frasin, B.A., Murugusundaramoorthy, G. and Mageshand N.,: Integral Means and fractional calculus operators for comprehensive family of univalent functions with negative coefficients, General Mathematics Vol. 14, No. 3 (2006), pp. 61–78.
- [4] Rain Ville E.D.,: Special functions, Chelsia Publishing Company, Bronex (1966)
- [5] Uralegddi, B.A. and Sarangi, S.M.,: Some classes of univalent functions with negative coefficients, An Stiint Univ. "Al.ICuza" Iasi Sectia Mat(N.S.) Vol. 34 (1988), pp. 7-11.