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Abstract: In this paper, we apply the fractional calculus technique for the class UT(n,p 8,1, 8) and Q,,(a, ¥, i) which consists of p-
valent and univalent functions with Negative coefficients by using the definition of fractional differentiation, and Integration, we

establish four distortion theorems. The theorems 1 to 4 are established for the Saigo Fractional Integral Operator Ig‘g"S applying on the

classes of p-valent functions.
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1. Introduction and Definitions

In this paper, we apply the fractional calculus technique for
the class UT (n,p B,n,6) and Q,, (a,y, 1) which consists of
p-valent and univalent functions with Negative coefficients
by using the definition ofSaigo Fractional Integral Operator,
we establish four distortion theorems here.

11 Definitions:
(1) Saigo’s Fractional Integral Operator:

The fractional integral operator Ig‘,;f‘ﬁ is defined by
[2, p. 2810, eq. (3.4)]
an, x4 x _
Ig7 Sf(x) = o Jyx =01, R (a +1,-8 a1 —
Loftdr, ...(1.1.1)

Heref (x)is an analytic function and ,F (a,b;c;z) is the
Gauss hypergeometric function.

(i) Gauss hypergeometric function:
The Gauss hypergeometric functiondefined as follows[4,
p.2, eq. (1.1.3)]:

zFl(a'b;C;Z) = 25{? b.;z}

& () b),
. 20, W

(iii) Univalent and p-Valent Functions
Let S denote the class of function [2, p. 2807, eq. (1.1)]

f@) =z+ 3¢, a 2" ..(1.1.3)

Which are analytic and univalent in U = {z: |z] < 1}.
Let T denotes the subclass of S consisting of functions of the
form
[2, p. 2808, eq. (1.4)]

f@) =z-3¥,az", (ap =0)
A function fof Tisin
0,1, (0<y<1meN,=NU{O},N ={1.2,... D If
[2, p. 2808, eq. (1.5)]

Re (D™f(2)) >,

..(1.1.4)

zelU

...(1.1.5)
Where D™ f (z)denotes usual m™ order derivative introduced
by Rusheweyh.

The class Q,, (y)was introduced and studied by Uralegaddi
and Sarangi [5].
We aim to study the class Q,,(a,y,u)which consists of
functionsf € T, and satisfied the conditions
(@) -1

a(D™f(2)) +(1-y)
For0<y<1, 0<a<10< u<l.
Let S(n, p) be the class of functions f(z)of the form [1, p.
1090, eq. (1.1)]
f(2) =28 + Xy az",

<u, zeU ...(1.1.6)

n,p EN={1,23,..}
.(1.1.7)
And

(ap, 20; n,p EN

f(z) =2zF — a,z",
k;-p ‘
={1,23,..})

...(1.1.8)
This is analytic p-valent in the open unit disk U=
{z€c:|z] <1}

Let S*WA (n,p,B) denotes the subclass of S (n, p)
consisting of p-valent star like functions of orderf,0 < <
p, if it also satisfies the inequality
[1, p. 1090, eq. ,(1.2)]
Re {%} >fp, zeU
...(1.1.9)

And also, let CWA (n, p, ) denotes the subclass of S (n, p)
consisting of p-valent star like functions of orderf,0 < g <
p, if it also satisfies the inequality (for more details see [1, p.
1090, eq. (1.3)]) )
Re{1+%}>ﬂ, ZE€U
...(1.1.10)
Then, we see that f(z) € CWA(n,p,B) if and only if

zf'(z) € S*WA (n,p, B).
2. Results Required

The following results are required here

The following Saigo Fractional Integral Operatorformulas
are also required here

LetB >,k >n—38—1,then [2, p. 2811]
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B8 _k _ TR+DIK—N+8+1)

by z" = T(k—n+1)T (k+B+5+1) !
n
...(2.1)

The following two lemmas for the class of functions
Q. (a,y, 1) and UT (n, p, B,n, §)are also required.

Lemma: 1 [2, p. 2808, eq. (2.1)]:

Let the function f be defined by (2.2.2). thenfeQ,, (a, v, w)if
and only if. ¥4, k(1 + pa)8(m, K)ay, < pla + (1 —y))

...2.2)

Where0<a<1,0<y<1,0<u<landme
No,(m =n)

s(m, k) = (m+nli—1)
...(2.3)

I'(m+k)

§(m, k) = r(m+1)r (k)

...(2.4)
The result (2.2.11) is sharp for the function

Theorem -1:

—p_ _et-p) i
f@) =20 — s 2 kzn+p

...(2.5)
Lemma 2 [5, p. 72, eq. (3.16), p. 64, eq. (1.2)]:
A function f(z) €e UT(n,p, 8,1, 6) fory(—1 <y <
Iland k(4#20) if and only if A=n+pooa(y,m,
k)ak<t=n+pooa(y,m, k)ak<1—y

...(2.6)
The result is sharp for
(1-y) &k
=g = 7
f(z)=z somnZ Jk=n+p

...(2.7)
3. Main Results
The following four distortion theorems for p-valent function

concerning to Saigo Fractional Integral Operatorare
established as the main results.

Let the function f(z)is a p-valent function and defined in the class

Qm (a,v, ), then we have

Tp+DIrp—n+5+1)

2@ =

p—n+DIp+B+6+1)

|Z|P—Yl

[ _r(n+p+1)F(n+p—n+5+1F(p—n+1)F(p+l3+5+1))H(a+(1—Y))F(m+1)F(“+P)|Z|n] (3.1)
In+p—n+DIr(n+p+p+8+1I'(p+DT' (p—m+8+1)I'(m+n+p)(1+pa)(n+p) B

For zeU, where U, = {

U, nSl}
U-{0}, n>1

the result which sharp for the function f(z) given by the following form

f(Z) — g0 _ Fn+p+ DI (n+p—n+8+1r(p—n+1I (p+B+5+1))u(a+1—y))I (m+1)I (n+p) n+p
IT'(n+p—n+Ir(n+p+B+5+ VI (p+)I'(p—n+6+1)I(m+n+p)(1+ua)(n+p)

...(3.2)

Theorem-2:Let the function f (z)is a p-valent function and defined in the class
Q. (a,y, ), then we have

Tp+VDI(p—n+8+1)

2" f(2)| <

Tp—n+VDI(p+B+5+1)
+F(n+p+1)[‘(n+p—n+8+1l"(p—n+1)l"(p+B+8+1))u(oc+(1—y))l"(m+1)l"(n+p)

|Z|p_7l

Th+p—M+DIn+p+B+5+DIr(p+DIl(p—m+86+DI'(m+n+p)(1 + pa)(n + p)

|z|"

..(33)

For zeU, where U, = {

U, nsl}
U-{0}, n>1

the result which sharp for the function f(z) given by the following form

f(Z) — g Fn+p+Dr(n+p—n+8+1r(p—n+1 (p+B+5+1))u(a+1—y))I (m+1)I' (n+p) n+p
IF(n+p—n+Dr(n+p+f+5+ VI (p+1)I'(p—n+8+1)I(m+n+p)(1+ua)(n+p)

...(3.4)

Theorem -3: Let the function f(z) is p-valent function and defined in the class UT (n,p, 5,0, §)if {o(v,m, k)}f-psp D E
N is a non-decreasing sequence, then we have

FTp+VDIp—n+5+1)

151 f(2)| =

Tp—n+DIrp+p+5+1)

|Z|P—YI

[ _ I'(n+p+DT(n+p-n+8+1TF(p—n+1T(p+B+8+1))(1—y)
I'n+p—+D)I(n+p+B+8+1I(p+1I'(p—n+8+1)o(y,m,n+p)

For zeU, where U, = {

|z|n]...(3.5)

U, ns1}
U-{0}, n>1

the result which sharp for the function f(z) given by the following form

f(2) =zF -

F(n+p+1)F(n+p—n+6+11"(p—r]+1)F(p+/>’+6+1))(1—y)

n+p

Frm+p—-n+DIrn+p+p+6+Drp+Drp—n+8+ 1oy, mn+p)

...(3.6)
Theorem -4: Let the function f (z) is p-valent function and defined in the class UT (n,p, 8,1, 8)if {o(v,m, k)}i-p4p M D E
N is a non-decreasing sequence, then we have

157°F ()] =

FTp+VDIp—n+5+1)

Fp—n+Drp+p+5+1)
F(n+p+1)I‘(n+p—n+8+1F(p—n+1)F(p+B+6+1))(1—y)

|Z|p_'7

Tn+p—-Mm+DI(n+p+B+8+DI'(p+ DI'(p—nm+8+ Doy, mn+p)

|z
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..(3.7)

For zeU, where U, = {

U, nSl}
U-{0}, n>1

the result which sharp for the function f(z) given by the following form

f2) =zF -

I'(n+p+DI (n+p—n+5+1T (p—n+DI (p+B+5+1))(1—y)

Proof of Theorem —1:
To establish the theorem — 1, we first apply the operator
I{f,’z”"S on both sides of (1.1.8), we have
0 f @) =192
— Z aklg"znrazk’
k=n+p
EN
On making use of (2.1), we obtain
1" f ()
_ Tp+DI'(p—n+46+1)
TTp-n+DIp+p+0+1)"
Fk+1)Ik—n+56+1)
T(k—n+ DI+ +6+1) *
k=n+p
It can be written in the following form
Iﬁ'n’gf(z) Ip—m+DI(p+B+6+1) 7
0z T+ DI (p—-n+686+1)

=zP — Z aka(l)(k,n;,B;a)

k=n+p

a, =0,n,p

p—n

k—n

Where
_ T+ DI (k=N 48+ (p—n+1DT (p+L+5+1)
(b(k,?’),ﬁ, 5) - IF'(k—=+Drk+p+6+DT(p+DIr'(p—n+5+1)
...(3.9)
Since for k > n + p, ¢(k,n, B, 6) is a decreasing function of
k

We have

¢(k,n,B,6) < ¢(n+p,n,B,6)

¢(k,n,B,6) <

I(n+P+1)I (n+p-n+6+1)I'(p—n+1)I'(p+L+6+1)
r(n+p—n+)Ir(n+p+F+5+1)r (p+1)I'(p—n+5+1)
...(3.10)
on setting
.6 F—n+Dr{p+p+5+1)
G(Z) = Igzn f(Z) I'p+)I'(p—n+5+1) !
...(3.11)There for this above

equation in view of (3.9), (3.10), reduce in to the following
inequality

i.e.

|G(2)| = |z|P — ¢(n +p,n,B,6)
X |z|m+e Z a

k=n+p
> |zIP —p(n+p,n,B,0)|z" P ay.,

...(3.12)
Now from the Lemma — 1 on using (2.2), (2.3), (2.5), we
have

I'(n+p-n+DIr(n+p+B+5+)Ir(p+ DI (p—n+5+1)0 (y,m,n+p)

P .(3.8)

[oe]

n+p)A+ ua)d(m,n +p) Z ay

k=n+p
[oe]

< Z ké(m, k)a, (1 + pa)

= M(a + (1 - ]/)) An+p
pla+1-y)
“d(mn+P) +pua)(n+p)
Then on using (2.4), we have
a < u(a+(1—y))F(m+1)I' (n+p)
AP = Pn4n+P)(1+ua)(m+p)

...(3.13)
The result in (3.12) in view of (3.13) takes the following
form

|G (2)]
< |z[P —p(n
o B.8) ,u(a +(1- y))F(m + DI'(n + p) 2|

'm+n+P)(1+ ua)(n+p)

Now on using the result in (3.10) and (3.11), we at once
arise at the derived result in (3.1) for the function defined in
(3.2).

Proof of Theorem — 2:
To establish the theorem — 2, we first apply the operator

I(’f_'z’“s on both sides of (1.1.7), we have
.8 7,8
Igzn f(z) = Igzn zP

[oe]
.0
+ Z aklé;zn Zk,

k=n+p
EN
On making use of (2.1), we obtain

1o, ()
Tp+DI(p—n+6+1)
= Z
FTp—Mm+DI(p+p+5+1)
T(k+DI(k—n+6+1)
L T(k—n+ DIk + B +6+1) %7
—tp
It can be written in the following form
F'p—M+DI(p+p+5+1
1E79 £ (2) (P—n+DIp+B )
’ Tp+DI(p—n+d6+1)

— 2+ Z a2 d(k, 7, B, 5)

k=n+p

a, =0,np

p—n

k—n

Where
F(k+D)F(k—m+6+DI'(p—m+DI' (p+p+6+1
ok, 5,6) = ng_ Pk J(p—+1) (P_ﬁ )
N+DIk+p+5+DIF(p+1)I'(p—n+5+1)
...(3.14)
Since for k = n + p, ¢(k,n, B, 6) is a decreasing function of
k

We have

¢(k,n,B,6) < p(n+p,n,B,6)
¢(k,n,B,6) <

i.e.
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I'm+P+1)I (n+p—n+6+DI'(p—n+DI' (p+L+6+1)
I'n+p-—n+1D)I'(n+p+p+6+1)I'(p+1)I'(p—n+6+1)

...(3.15)
on setting

_ (Bns F-n+DI (p+B+5+1)
G(2) =1, " f(@) T+ (p-n+5+1) z
...(3.16)There for this above

equation in view of (2.3.42), (2.3.43), reduce in to the
following inequality

OLG(Z)l < |z + p(n +p,n,B,8)|z|" 1P

x @< lzl + o+ pn, B Ol ayy,

k=n+p

...(3.17)
Now from the Lemma — 1 on using (2.2), (2.3), (2.5), we
have
(4P +p)8mn+p) Y @
k=n+p

[oe]

< Z kS(m, ) ay (1 + ua)
k=n+p
<pla+ @A -7)an,
ula+ 1 -yp)
“o(mn+P)(1+ ux)(n+p)
Then on using (2.4), we have
a < #(a+(1—y))F (m+1)T'(n+p)
ntp = IF(m+n+P)(1+ua)(n+p)

...(3.18)

The result in (3.17) in view of (3.18) takes the following
form

1G(2)]

< lzlP + ¢(n

N 5,6) p(a+ (1 —y))F(m+ 1)T'(n + p)

b1 Py I(m+n+P)1+pa)(n+p)

Now on using the result in (3.15) and (3.16), we at once
arise at the derived result in (3.3) for the function defined in
(3.4).

|Z|n+p

Proof of Theorem — 3:

To establish the theorem — 3, we first apply the operator
I(’f,'z""s on both sides of (1.1.8), we have
1570 f(2) = 1570 2P

Z
[oe]

Bm.o k
_ Z aklo,z z",

k=n+p
EN
On making use of (2.1), we obtain
16, f(2)
_ Te+DIp-n+6+1)
TTp-n+DIp+p+o+1)"
IF'k+DI'tk—n+6+1)

S 4 T(k—n+ DI+ +06+1) *
=n+p

It can be written in the following form
Iﬁ'n’ﬁf(z) Tp—Mm+DI(p+p+5+1) 7
0.z Tp+DIr(p—m+d6+1)

— z a 2" ¢k, 1, B,5)

k=n+p

a, = 0,np

p—n

k—n

Where
F(k+1D)I'(k—n+6+DI(p—+DI'(p+p+5+1
ok, 5,6) = ng_ )Pk J(p—n+1) (p_l? )
N+ k++5+DF(p+DI(p—n+6+1)
...(3.19)
Since for k = n + p, ¢(k,n, B, 8) is a decreasing function of
k

We have

o(k,n,B,6) < dp(n+p,n,pB,6)
¢(k,n,B,0) <

IT'm+P+1)I (n+p—n+6+VDI'(p—n+DI' (p+L+5+1)
I'(n+p—+D)r(n+p+L+5+D)I'(p+1)I'(p—n+6+1)
...(3.20)

on setting

_ Bns Cp—n+ DI (p+B+5+1)
6@ =l f@D = o 2

...(3.21)There for this above
equation in view of (3.19), (3.20), reduce in to the following
inequality
1G(2)| = |z|" — ¢(n +p,n, B,8)|z|"*P

D w12l = g+ pn B Ol P a,

k=n+p

i.e.

...(3.22)
Now from the Lemma — 2 on using (2.6), (2.7), we have

oy, myn+p) Z ay
k=n+p w
< ) omia < A=V a,
k=n+p
1-v)
“o(yymn+P)

...(3.23)
The result in (3.22) in view of (3.23) takes the following

form
1G] = [21° = b + pm, B8 —— D
- PP o(y,m,n + P)
m=>0-1<y<1
Now on using the result in (3.20) and (3.21), we at once
arise at the derived result in (3.5) for the function defined in
(3.6).

|Z|n+p

Proof of Theorem — 4:
To establish the theorem — 4, we first apply the operator

Ig'z"“s on both sides of (1.1.7), we have
187 F (@) = 1§ 77

[oe]
.6
+ Z a, 187 Zk,

k=n+p
EN
On making use of (2.1), we obtain

o, f (@)
_ Te+DIp-—n+6+1)
-+ DIp+B+6+1D)°
—  T(k+DI(k—n+8+1)
L Tk—n+DI(k+B+6+1)
It can be written in the following form

a, =0,n,p

a,zk"
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Iﬁ'n’ﬁf(z) Tp—Mm+DI(p+p+5+1) .
0.z Tp+DIr(p—m+d6+1)
=z + Z a,z*¢(k,n, B, 8)
k=n+p
Where
bk, B,8) = [(k+1)I (k—n+8+ 1) (p—n+1DT (p+E+6+1)

[ (k—N+DI(k+B+6+DT @+ (p—n+5+1)
...(3.24)

Since for k = n + p, ¢ (k,n, B, §) is a decreasing function of

k.

We have

¢(k,n,B,6) < p(n+p,n,B,6) _
i.e.
¢k, B,6) <
rm+P+1)r (n+p—n+8+1)I'(p—n+1I'(p+B+5+1) 3 25)
r'(n+p—n+DIr(n+p+B+5+1)I (p+ 1) (p—n+5+1) C
on setting
_ Bmé I'p—n+1DIr(p+B+6+1) n
G2 =1, f(2) T+ (p-n+6+1)
...(3.26)
There for this above equation in view of (3.24), (3.25),
reduce in to the following inequality
oolG(Z)l < |z|” + p(n+p,n,B,8)|z|" P
ap < |zIP + ¢(n+p,n. B, 8)|z[" P ay,
k=n+p
...(3.27)
Now from the Lemma — 2 on using (2.6), (2.7), we have
a(y,mn+p) Z ay
k=n+p
< Z oy, mk)a, < (1 —y)ayy,
k=n+p
1-y)
“o(y,mn+P)
...(3.28)

The result in (3.27) in view of (3.28) takes the following

form
G| > [2lP + b+ po1, . 8) ———D—
- PP o(y, m,n + P)
m=>0-1<y<1
Now on using the result in (3.25) and (3.26), we at once

arise at the derived result in (3.7) for the function defined in
(3.8).

|Z|n+p

4. Special Cases

(1) If in (3.1) and (3.3), we take n = p = 1, then these results
reduce to the following known results [2, p. 2811, eqns.
(3.7),(3.8)] i.e.

157 f @] =
r2-n+6) 1— _
T2-n)r(2+8+6) |z [1
2—+8pa+1—y2+B+8(2—)1+pam+1z...(4.1)

m=n,m,n € N,

157 f(2)]| <

r2-n+6) 1-n
rC-nr2+p+6) || [1 +
lzI]...(4.2)

Q-n+8)p(a+(1-y))
m=nm,ne€N,

2+B+8)(2—) (A +pa)(m+1)
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