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Abstract: In this paper,we introduce the notion of ultra semi 
#
gα-closed graphs and strongly semi 

#
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topological spaces and investigate some of their properties via semi 
#
gα-open sets and semi 

#
gα-closure operator. We also 

introduce the notion of semi 
#
gα-Urysohn space and examine its properties. 
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1. Introduction 
 

In 2009, M.Caldas et.al [1] introduced and studied the 

concept of functions with strongly λ-closed graphs. 

V.Kokilavani and M.Vivek Prabu [4], introduced the 

notion of semi 
#
gα-closed sets in topological spaces 

and examined their relationship with the other existing 

sets. In this paper, we introduce the notion of ultra semi 

#
gα-closed graphs and strongly semi 

#
gα-closed 

graphs in topological spaces and investigate some of 

their properties via semi 
#

gα-open sets and semi 
#

gα-

closure operator. We also introduce the notion of semi 

#
gα-Urysohn space and examine its properties. 

 

2. Preliminaries 
 

Definition 2.1 A subset A of X is called  

1) g-closed [6] if cl(A) ⊆ U, whenever A ⊆ U and U is 

open in X. The complement of g-closed set is called 

g-open. 

2) g
#
α-closed [7] if αcl(A) ⊆ U, whenever A ⊆ U and U 

is g-open in X. The complement of g
#
α-closed set is 

called g
#
α-open. 

3) #
gα-closed [2] if αcl(A) ⊆ U, whenever A ⊆ U and U 

is g
#
α-open in X. The complement of 

#
gα-closed set 

is called 
#

gα-open. 

4) semi 
#

gα-closed [4] if scl(A) ⊆ U, whenever A ⊆ U 

and U is 
#

gα-open in X. The complement of semi 

#
gα-closed set is called semi

#
gα-open. 

 

The union (resp. intersection) of all semi 
#

gα-open (resp. 

semi 
#

gα-closed) sets, each contained in (resp. 

containing) a set A of X is called the semi 
#

gα-interior 

(resp. semi 
#

gα-closure) of A, which is denoted by semi 

#
gα-int(A) (resp. semi

 #
gα-cl(A)). 

 

Definition 2.2 A function f: X→Y is said to be 

1) semi 
#
gα-continuous [4] if for every closed set in Y, 

its inverse image is semi 
#

gα-closed in X. 

2) semi 
#

gα-irresolute [4] if for every semi 
#

gα-closed 

set in Y, its inverse image is semi 
#

gα-closed in X. 

 

Definition 2.3  

1) A space X is said to be semi 
#
gα-T

0
 [5] if for each 

pair of distinct points x and y in X, there exists semi 

#
gα-open sets U and V containing x and y 

respectively, such that x ∈ U and y ∉ U or y ∈ V and 

x ∉ V. 

2) A space X is said to be semi 
#
gα-T

1
 [5] if for each 

pair of distinct points x and y in X, there exists semi 

#
gα-open sets U and V containing x and y 

respectively, such that y ∉ U and x ∉ V. 

3) A space X is said to be semi 
#

gα-T
2
 [5] if for 

each pair of distinct points x and y in X, there 

exists semi 
#

gα-open sets U and V containing x 

and y respectively, such that U ∩ V = ∅. 

 

Definition 2.4 If f:(X,τ)→(Y,σ) is any function, then 

the subset G(f) = {(x,f(x)) : x ∈ X} of the product space 

(X x Y, τ x σ) is called graph of f [3]. 

 

3. Ultra Semi #gα-Closed Graphs 
 

Definition 3.1 A function f: (X,τ)→(Y,σ) is said to 

have a ultra semi 
#

gα-closed graph if for each (x,y) ∈ (X 

x Y) \ G(f), there exist U ⊆ Semi
#

GαO(X,x) and V ⊆ 

Semi
#

GαO(Y,y) such that f(U) ∩ semi 
#

gα-cl(V) = ∅. 

 

Theorem 3.2 If f: (X,τ)→(Y,σ) is a function with a ultra 

semi 
#

gα-closed graph, then for each x ∈ X, f(x) = 

∩{semi 
#

gα-cl(f(U)) : U ⊆ Semi
#

GαO(X,x)}. 

 

Proof. Suppose the theorem is false. Then there exists 

any y ≠ f(x) such that y ∈ ∩{semi 
#

gα-cl(f(U)) : U ⊆ 

Semi 
#

GαO(X,x)}. Hence for every U ⊆ Semi
#

GαO(X,x), y 

∈ semi 
#

gα-cl(f(U)). So V ∩ f(U) ≠ ∅ for every V ⊆ 
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Semi
#

GαO(Y,y). This implies that semi 
#

gα-cl(V) ∩ f(U) 

⊃ V ∩ f(U) ≠ ∅ which contradicts the hypothesis that f is 

a function with a ultra semi 
#

gα-closed graph. Hence the 

theorem holds. 

 

Theorem 3.3 If f:(X,τ)→(Y,σ) is semi 
#
gα-irresolute 

and Y is semi 
#

gα-T
2
, then G(f) is ultra semi 

#
gα-closed. 

 

Proof. Let (x,y) ∈ (X x Y) \ G(f) and V ⊆ 

Semi
#

GαO(Y,y) such that f(x) ∉ semi 
#
gα-cl(V). It 

follows that there is U ⊆ Semi
#

GαO(X,x) such that 

f(U)⊂ Y \ semi 
#
gα-cl(V). Hence, f(U) ∩ semi 

#
gα-

cl(V) = ∅. 

The converse of the above theorem need not be true 

which can be seen from the following example. 

 

Example 3.4 Let X = {a,b,c}, τ = {∅,X,{a}} and 

f:(X,τ)→(X,τ) be an identity map. Then clearly f is semi 

#
gα-irresolute but X is not a semi 

#
gα-T

2 
space. 

Therefore G(f) is not ultra semi 
#
gα-closed. 

 

Theorem 3.5 If f:(X,τ)→(Y,σ) is surjective and has a 

ultra semi 
#

gα-closed graph G(f), then Y is both semi 
#

gα-T
1
 and semi 

#
gα-T

2
. 

 

Proof. Let y1 
≠ y2 

∈ Y. Since f is surjective, there exists 

any x1 ∈ X such that f(x1) = y1. Now (x1,y2) ∈ (X x Y) \ 

G(f). The ultra semi 
#

gα-closed graph G(f) of f implies U 

⊆ Semi
#

GαO(X,x
1
) and V ⊆ Semi

#
GαO(Y,y2) such that 

f(U) ∩ semi 
#

gα-cl(V) = ∅, since y1 ∉ semi 
#

gα-cl(V). 

Therefore there exists any W ⊆ Semi 
#

GαO(Y,y
1
) such 

that W ∩ V = ∅. Thus Y is semi 
#

gα-T2 and hence it is a 

semi 
#

gα-T1 space.  

 

Theorem 3.6 If f: (X,τ)→(Y,σ) is injective and has a 

ultra semi 
#
gα-closed graph G(f), then X is a semi 

#
gα-T1 space. 

 

Proof. Since f is injective, for any pair of distinct points 

x1,x2 ∈ X, f(x1) ≠ f(x2). Here (x1,f(x2)) ∈ (X x Y) \ G(f). 

Since G(f) is ultra semi 
#

gα-closed graph, there exist U ⊆ 

Semi
#

GαO(X,x1) and V ⊆ Semi
#

GαO(Y,f(x2)) such that 

f(U) ∩ semi 
#

gα-cl(V) = ∅. Therefore we have x2 ∉ U. So 

there exist any W ⊆ Semi
#

GαO(X,x2) such that x1 ∉ W. 

Hence, X is a semi 
#

gα-T1 space. 

 

Remark 3.7 If f:(X,τ)→(Y,σ) is bijective and has a 

ultra semi 
#
gα-closed graph G(f), then X and Y are 

semi 
#
gα-T1 spaces. 

Theorem 3.8 A space X is semi 
#

gα-T2 if and only if the 

identity function f: (X,τ)→(X,τ) has a ultra semi 
#
gα-

closed graph G(f). 

 

Proof. Let X be a semi 
#
gα-T2 space. Since the 

identity function f: (X,τ)→(X,τ) is semi 
#
gα-

irresolute, from Theorem 3.3 we conclude that it has 

a ultra semi 
#
gα-closed graph G(f). 

Conversely suppose that f has a ultra semi 
#
gα-closed 

graph G(f). Here clearly f is surjective and hence by 

Theorem 3.5, X is a semi 
#
gα-T2 space. 

 

Definition 3.9 A function f: (X,τ)→(Y,σ) is called 

quasi semi 
#

gα-irresolute, if for each x ∈ X and each V ⊆ 

Semi
#

GαO(Y,f(x)), there exist U ⊆ Semi
#

GαO(X,x) such 

that f(U) ⊂ semi 
#

gα-cl(V). 

 

Theorem 3.10 If a function f:(X,τ)→(Y,σ) is quasi 

semi 
#
gα-irresolute, injective and has a ultra semi 

#
gα-

closed graph G(f), then X is semi 
#

gα-T2. 

Proof. Since f is injective, for any pair of distinct points 

x1, x2 ∈ X, f(x1) ≠ f(x2). Here (x1,f(x2)) ∈ (X x Y) \ G(f). 

Since G(f) is ultra semi 
#

gα-closed graph, there exist U ⊆ 

Semi
#

GαO(X,x1) and V ⊆ Semi
#

GαO(Y,f(x2)) such that 

f(U) ∩ semi 
#

gα-cl(V) = ∅, which implies U ∩ f
−1

(semi 

#
gα-cl(V)) = ∅. Consequently f

−1
(semi 

#
gα-cl(V)) ⊂ X \ 

U. Moreover since f is quasi semi 
#

gα-irresolute, there 

exists any W ⊆ Semi
#

GαO(X,x2) such that f(W) ⊂ semi 

#
gα-cl(V). i.e., W ⊂ f

−1
(semi 

#
gα-cl(V)) ⊂ X \ U. Thus 

W ∩ U = ∅. Hence X is semi 
#

gα-T2. 

 

Theorem 3.11 If a function f:(X,τ)→(Y,σ) is semi 
#
gα-

irresolute, injective and has a ultra semi 
#
gα-closed 

graph G(f), then X is semi 
#

gα-T2. 

 

Proof. Since every semi 
#
gα-irresolute function is 

quasi semi 
#
gα-irresolute, the proof follows from 

Theorem 3.10. 

 

Theorem3.12 If a function f:(X,τ)→(Y,σ) is quasi semi 

#
gα-irresolute, bijective and has a ultra semi 

#
gα-

closed graph G(f), then X and Y are semi 
#

gα-T2. 

Proof. It is obvious from Theorem 3.10 and Theorem 

3.5. 

 

4. Strongly Semi #gα-Closed Graphs 
 

Definition 4.1 A function f: (X,τ)→(Y,σ) is said to 

have a strongly semi 
#

gα-closed graph if for each (x,y) ∈ 

(X x Y) \ G(f), there exist U ⊆ Semi 
#

GαO(X,x) and an 

open set V of Y containing y such that f(U) ∩ V = ∅. 

 

Theorem 4.2 Every ultra semi 
#

gα-closed graph is 
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strongly semi 
#

gα-closed graph. 

 

Proof. It follows from the definitions 3.1 and 4.1. 

 

Theorem 4.3 If f: (X,τ)→(Y,σ) is semi 
#
gα-continuous 

and Y is Hausdroff, then G(f) is strongly semi 
#
gα-

closed in X x Y. 

 

Proof. Let (x,y) ∈ (X x Y) \ G(f). Then f(x) ≠ y. Since 

Y is Hausdroff, there exist open sets V and W in 

containing f(x) and y respectively such that V ∩ W = ∅. 

Also since f is semi 
#
gα-continuous, there exists U ⊆ 

Semi
#

GαO(X,x) such that f(U) ⊂ V. Hence f(U) ∩ W 

= ∅, G(f) is strongly semi 
#
gα-closed. 

 

Theorem 4.4 If f: (X,τ)→(Y,σ) is surjective and has a 

strongly semi 
#

gα-closed graph G(f), then Y is T1. 

Proof. Let y1 ≠ y2 ∈ Y. Since f is surjective, there exists a 

x ∈ X such that f(x) = y2. Hence (x,y1) ∉ G(f). Then by 

the definition 4.1, there exist semi 
#

gα-open set U 

and an open set V containing x and y1 respectively, 

such that f(U) ∩ V = ∅. Hence y2 ∉ V. Thus Y is T1. 

 

Theorem 4.5 If f: (X,τ)→(Y,σ) is a function with a 

strongly semi 
#

gα-closed graph, then for each x ∈ X, f(x) = 

∩{semi 
#

gαcl(f(U)) : U ⊆ Semi
#

GαO(X,x)}. 

 

Proof. It follows from the Theorem 3.2 and Theorem 

4.2. 

 

Theorem 4.6 If f: (X,τ)→(Y,σ) is surjective and has a 

strongly semi 
#

gα-closed graph G(f), then Y is both 

semi
#

gα-T2 and semi 
#

gα-T1. 

 

Proof. It follows from Theorem 3.5 and Theorem 4.2. 

 

Theorem 4.7 If f: (X,τ)→(Y,σ) is an injection and G(f) 

is strongly semi 
#

gα-closed, then X is semi 
#

gα-T1. 

 

Proof. It follows from the Theorem 3.6 and Theorem 

4.2. 

 

Theorem4.8 If f: (X,τ)→(Y,σ) is a bijective function 

with strongly semi 
#
gα-closed graph G(f), then (X,τ) 

and (Y,σ) are semi 
#
gα-T1 space. 

 

Proof. It follows from the Theorem 3.7 and Theorem 

4.2. 

 

Theorem 4.9 If f: (X,τ)→(Y,σ) is semi 
#
gα-irresolute 

and Y is semi 
#

gα-T2, then G(f) is strongly semi 
#

gα-

closed. 

 

Proof. It follows from the Theorem 3.3 and Theorem 

4.2. 

 

Example 4.10 Let X = {a,b,c}, τ = {∅,X,{a}} and f: 

(X,τ)→(X,τ) be an identity map. Then clearly f is semi 

#
gα-irresolute but X is not a semi

#
gα-T2 space. 

Therefore G(f) is not strongly semi 
#
gα-closed. 

 

Theorem 4.11 A space X is semi 
#

gα-T2 if and only if 

the identity function f: (X,τ)→(X,τ) has a strongly semi 

#
gα-closed graph G(f). 

 

Proof. It follows from the Theorem 3.8 and Theorem 

4.2. 

 

Theorem 4.12 If a function f: (X,τ)→(Y,σ) is a quasi 

semi 
#
gα-irresolute injection with a strongly semi 

#
gα-

closed graph G(f), then X is semi 
#

gα-T2. 

 

Proof. It follows from the Theorem 3.10 and Theorem 

4.2. 

 

Theorem 4.13 If a function f: (X,τ)→(Y,σ) is semi 

#
gα-irresolute, injective and has a strongly semi 

#
gα-

closed graph G(f), then X is semi 
#

gα-T2. 

 

Proof. Since every semi 
#
gα-irresolute function is 

quasi semi 
#
gα-irresolute, the proof follows from 

Theorem 3.11. 

 

Theorem 4.14 If a function f: (X,τ)→(Y,σ) is quasi 

semi 
#
gα-irresolute, bijective and has a strongly semi 

#
gα-closed graph G(f), then X and Y are semi 

#
gα-T2. 

 

Proof. It is obvious from Theorem3.12 and 

Theorem4.2. 

 

5. Semi #gα-Urysohn Space 
 

Definition 5.1 A topological space X is called semi 
#

gα-

Urysohn if every pair of distinct points x, y ∈ X, there exist 

U ⊆ Semi
#

GαO(X,x) and V ⊆ Semi
#

GαO(X,y) such that 

semi 
#

gα-cl(U) ∩ semi 
#

gα-cl(V) = ∅. 

 

Theorem 5.2 Every semi 
#

gα-Urysohn space is a semi 

#
gα-T2 space.  

 

Proof. Let x and y be two distinct points of X. Since X is 

semi 
#

gα-Urysohn, there exist U ⊆ Semi
#

GαO(X,x) and 

V ⊆ Semi
#

GαO(X,y) such that semi 
#

gα-cl(U) ∩ semi 

#
gα-cl(V) = ∅. Hence U ∩ V = ∅. Thus X is semi 

#
gα-

T2. 

 

Theorem 5.3 If Y is semi 
#
gα-Urysohn and f: 

(X,τ)→(Y,σ) is quasi semi 
#

gα-irresolute injection, then 

X is semi 
#

gα-T2. 
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Proof. Since f is injective, for any pair of distinct points 

x1 ,x2 ∈ X, f(x1) ≠ f(x2). Also since Y is semi 
#

gα-

Urysohn, there exist Vi ⊆ Semi
#

GαO (Y,f(xi)), i = 1,2 

such that semi 
#
gα-cl(V1) ∩ semi 

#
gα-cl(V2) = ∅. 

Hence f
−1

(semi 
#

gα-cl(V1)) ∩ f
−1

(semi
#

gα-

cl(V2))=∅.Since f is quasi semi 
#

gα-irresolute, there exist 

Ui ⊆ Semi
#

GαO(X,xi), such that f(Ui) ⊆ semi 
#

gα-

cl(Vi),i = 1,2. Hence Ui ⊆ f−1
(semi 

#
gα-cl(Vi)), i = 1,2. 

Therefore U1 ∩ U2 ⊆ f
−1

(semi 
#

gα-cl(V1)) ∩ f
−1

(semi 

#
gα-cl(V2)) = ∅. Thus X is semi 

#
gα-T2. 

 

Definition 5.4 A function f: (X,τ)→(Y,σ) is pre semi 
#

gα-

open if f(A) ⊆ Semi
#

GαO(Y) for all A ⊆ Semi
#

GαO(X). 

 

Lemma 5.5 Let f: (X,τ)→(Y,σ) be pre semi 
#

gα-open, 

bijective. Then for any B ⊆ Semi
#

GαC(X), f(B) ⊆ 

Semi
#

GαC(Y). 

 

Theorem 5.6 If f: (X,τ)→(Y,σ) is pre semi 
#
gα-open, 

bijective and X is semi 
#
gα-Urysohn, then Y is semi 

#
gα-Urysohn. 

 

Proof. Let y1 ≠ y2 ∈ Y. Since f is bijective, f
−1

(y1) ≠ 

f
−1

(y2) ∈ X. Also since X is semi 
#

gα-Urysohn, there exist 

U ⊆ Semi
#

GαO(X,f
−1

(y1)) and V ⊆ Semi 

#
GαO(X,f

−1
(y2)) such that semi 

#
gα-cl(U) ∩ semi 

#
gα-

cl(V) = ∅. Since semi 
#

gα-cl(U) is a semi 
#

gα-closed set 

in X, by Lemma 5.5 we have f(semi 
#

gα-cl(U)) ⊆ 

Semi
#

GαC(Y). Also U ⊆ semi 
#

gα-cl(U) implies f(U) ⊆ 

f(semi 
#

gα-cl(U)) and hence semi 
#

gα-cl(f(U)) ⊆ semi 

#
gα-cl(f(semi 

#
gα-cl(U))) = f(semi 

#
gα-cl(U)). Similarly 

we have semi 
#

gα-cl(f(V)) ⊆ f(semi 
#

gα-cl(V)). Since f is 

injective, semi 
#

gα-cl(f(U)) ∩ semi 
#

gα-cl(f(V)) ⊆ f(semi 

#
gα-cl(U)) ∩ f(semi 

#
gα-cl(V)) = f(semi 

#
gα-cl(U) ∩ 

semi 
#

gα-cl(V)) = ∅. Also since f is pre semi 
#

gα-open, 

there exist f(U) ⊆ Semi
#

GαO(Y,y1) and f(V) ⊆ Semi 

#
gαO(Y,y2) such that semi 

#
gα-cl(f(U)) ∩ semi 

#
gα-

cl(f(V)) = ∅. Thus Y is semi 
#

gα-Urysohn. 

 

Theorem5.7 If f: (X,τ)→(Y,σ) is pre semi 
#
gα-open, 

bijective and X is semi 
#

gα-T2, then G(f) is ultra semi 

#
gα-closed. 

 

Proof. Let (x,y) ∈ (X x Y) \ G(f). Then y ≠ f(x). Since f 

is bijective, x ≠ f
−1

(y). Also since X is semi 
#

gα-T2, 

there exist Ux, Uy ⊆ Semi
#

GαO(X) such that x ∈ Ux, 

f
−1

(y) ∈ Uy and Ux ∩ Uy = ∅. Moreover as f is pre 

semi 
#

gα-open and bijective, we have f(x) ∈f (Ux) ⊆ 

Semi
#

GαO(Y), y ∈ f(Uy) ⊆ Semi
#

GαO(Y) and f(Ux) 

∩ f(Uy) = ∅. Hence f(Ux) ∩ semi 
#
gα-cl(f(Uy)) = ∅. 

Therefore G(f) is ultra semi 
#
gα-closed. 

 

Theorem5.8 If f:(X,τ)→(Y,σ) is quasi semi 
#
gα-

irresolute and Y is semi 
#

gα-Urysohn, then G(f) is ultra 

semi 
#

gα-closed. 

Proof. Let (x,y) ∈ (X x Y) \ G(f). Then y ≠ f(x). Since 

Y is semi 
#

gα-Urysohn, there exist V ⊆ Semi
#

GαO(Y,y) 

and W ⊆ Semi
#

GαO(Y,f(x)) such that semi 
#

gα-cl(V) ∩ 

semi 
#

gα-cl(W) = ∅. Since f is quasi semi 
#

gα-irresolute, 

there exists U ⊆ Semi
#

GαO(X,x) such that f(U) ⊆ semi 

#
gα-cl(W). Hence we have f(U) ∩ semi 

#
gα-cl(V) = ∅. 

Thus G(f) is ultra semi 
#

gα-closed. 
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