from N, or another way to look at it is that it's a linear combination of the rows of N using coefficients from L, so we can take the rows of N equal to the basis of the row space of matrix M or another matrix with its rows some elements (vectors) in the row space of M not necessary be the basis . If we want to reduce the entities of M and M is an square matrix then according to the proposition, M must be singular.

Example

	5	7	8	3	4	
	7	10	11	4	5	
Let $M =$	8	11	13	5	7	
	3	4	5	2	3	
	4	5	7	3	5	

Then we can do row operation to M so as to get its basis as follows:

Now we can take

AB = M where $B = \begin{bmatrix} 5 & 7 & 8 & 3 & 4 \\ 0 & 1 & -1 & -1 & -3 \end{bmatrix}$ $A \times \begin{bmatrix} 5 & 7 & 8 & 3 & 4 \\ 0 & 1 & -1 & -1 & -3 \end{bmatrix} = M$

Multiplying both sides with B^t we get

$$A \times \begin{bmatrix} 5 & 7 & 8 & 3 & 4 \\ 0 & 1 & -1 & -1 & -3 \end{bmatrix} B^{t} = MB^{t}$$

$$A \times \begin{bmatrix} 5 & 7 & 8 & 3 & 4 \\ 0 & 1 & -1 & -1 & -3 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 7 & 1 \\ 8 & -1 \\ 3 & -1 \\ 4 & -3 \end{bmatrix} = \begin{bmatrix} 5 & 7 & 8 & 3 & 4 \\ 7 & 10 & 11 & 4 & 5 \\ 8 & 11 & 13 & 5 & 7 \\ 3 & 4 & 5 & 2 & 3 \\ 4 & 5 & 7 & 3 & 5 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 7 & 1 \\ 8 & -1 \\ 3 & -1 \\ 4 & -3 \end{bmatrix} = \begin{bmatrix} 163 & -16 \\ 225 & -20 \\ 264 & -28 \\ 101 & -12 \\ 140 & -20 \end{bmatrix}$$
Multiplying both sides with

$$D^{-1} = \begin{bmatrix} 163 & -16\\ -16 & 12 \end{bmatrix}^{-1} = \begin{bmatrix} \frac{3}{425} & \frac{4}{425}\\ \frac{4}{425} & \frac{163}{1700} \end{bmatrix}$$

We get
$$A = \begin{bmatrix} 163 & -16\\ 225 & -20\\ 264 & -28\\ 101 & -12\\ 140 & -20 \end{bmatrix} \begin{bmatrix} \frac{3}{425} & \frac{4}{425}\\ \frac{4}{425} & \frac{163}{1700} \end{bmatrix} \Rightarrow A = \begin{bmatrix} \frac{7}{5} & \frac{1}{5}\\ \frac{8}{5} & -\frac{1}{5}\\ \frac{3}{5} & -\frac{1}{5}\\ \frac{4}{5} & -\frac{3}{5} \end{bmatrix}$$

Now let $r_1 = (5,7,8,3,4)$, $r_2 = (0,1,-1,-1,-3)$ and let $w_1 = r_1 + 2r_2 = (5,9,6,1,-2)$, $w_2 = r_1 + 3r_2 = (5,10,5,0,-5)$, so we can form another factorization for M by taking the matrix

= M

$$B = \begin{bmatrix} 5 & 9 & 6 & 1 & -2 \\ 5 & 10 & 5 & 0 & -5 \end{bmatrix}$$

So we will get
$$AB = M$$
$$\Rightarrow A \times \begin{bmatrix} 5 & 9 & 6 & 1 & -2 \\ 5 & 10 & 5 & 0 & -5 \end{bmatrix}$$

Multiplying both sides with B^t , we get

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 8, August 2015 <u>www.ijsr.net</u> Licensed Under Creative Commons Attribution CC BY.

I	Multiplying	g both side	es with $\begin{bmatrix} 1\\0\\0\\0\\0\\0\\0\\0 \end{bmatrix}$	0 1 0 i 0 0 0 0 0	nstead of .	B^t this wil	l give us	s in the	left side			
	Then we ge $\begin{bmatrix} 1 & 0 \end{bmatrix}$	et]										
	$D = \begin{bmatrix} 0 & 1 \end{bmatrix}$											
	$A \times \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	$1 \frac{-1}{2}$ $-1 \frac{5}{2}$	$\frac{\frac{1}{2}}{\frac{-1}{2}} 0$	$ \begin{array}{c} -1\\ 2\\ 5\\ 2 \end{array} \right] $ $ \begin{array}{c} 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 7 \\ 1 \\ 9 \\ 2 \\ 4 \end{bmatrix}$	7 3 1 5 9 5 4 2	4 6 4 2	4 7 8 3	2 3 2 1	7 11 9 4	4 7 8 3	1 0 1 1 2 1 3 0 4 0 5 0 6 0 7 0 8 0 9 0 10 0 10 0 10 0 10 0 10 0
:	$\Rightarrow A \times \begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 7\\11\\9\\4 \end{bmatrix}$	$\begin{vmatrix} 3\\5\\5\\2 \end{vmatrix} \Rightarrow A =$	7 11 9 4	3 5 5 2	NW.	IJS	r.,	101]
	So			2		17 50	27					
	7 3	4	4	2	11	4 /	3	1 0	$1 -\frac{1}{2}$	$\underline{}$	1 -	-1]
		6	/	3	11				2	2	1	$\frac{2}{5}$
	9 5	4	8	2	9	8 9	5	0 1	$-1 \frac{3}{2}$	$\frac{-1}{2}$	0	$\frac{3}{2}$
	4 2	2	3	1	4	3 4	2 L		12	2		2 J

Note that the sum of the entities on the right hand side is 22 instead of 28 ones in the left side

5. Conclusion

The method of using vectors of the row space in factorizing a matrix is an efficient method for reducing the entities of a data set matrix ,although there are many algorithm for matrix factorization ,this a logarithm will be a good method because it is very simple, easy and accurate so it is more use full in reducing the entities of data set matrix.

References

[1] Mohamed Hassan , Abdelaziz Hamad"|A new method for factor analysis" IJETR

ISSN:2321-0869,Volume 2,Issue-11November 2014

- [2] B.M. Sarwar et al., "Application of Dimensionality Reduction in Recommender System" (WebKDD), ACM Press, 2000.
- [4] D.Gullamet and J.Vitria . "Non-negative matrix factorization for face region . In topics in an artificial intelligence ",Springer ,2002
- [5] Y. Koren, "Factorization Meets the Neighborhood: A Multifaceted Collaborative Filtering Model," ACM Press, 2008.

- [6] A. Paterek, "Improving Regularized Singular Value Decomposition for Collaborative Filtering," ACM Press, 2007
- [7] G. Takács et al., "Major Components of the Gravity Recommendation System," SIGKDD Explorations, vol. 9, 2007.
- [8] R. Salakhutdinov and A. Mnih, "Probabilistic Matrix Factorization," ACM Press, 2008, pp. 1257-1264.
- [9] D.Kuang ,H.Park and C.H.Dig. "Symmetric nonnegative matrix factorization for graph clustering" .In SDM,Volume12,2012
- [10] W.Kim,B.Chen,JKim,Y.Pan,andH.Park. "Sparse none negative factorization for protein sequence motif discovery. Expert system with applications, 2011
- [11] S.Jia and Y Qian . "Constrained non-negative matrix factorization for hyperspectral unmixin" V .2009
- [12] Abdelaziz hamad and Bahrom Sanugi (2011). "Neural Network and Scheduling" Germany : lap Lambert Academic publishing