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Abstract: A shock tube is equipment that can produce a moving normal shock wave produced by the sudden bursting of diaphragm 

separating a high pressure gas section from one at lower pressure gas section. It is used in high speed test facilities. The objective is to 

solving shock tube problem with CFD code is to  calculate the fluid flow property and observed how fluid parameters are varies with 

time because of shock tube used for high speed test and finding out the behavior of normal shock in the test field.  In the present study, 

dimensional Euler equations are used as governing equation. The spatial discretization is carried out by unstructured cell-centered 

Finite Volume Method. Here the convective fluxes are evaluated using Van Leer Flux Splitting Scheme. Species transport equations are 

also added in the Euler equation for treatment of non-reacting mixing of the gas.  
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1. Introduction 
 

Continuous effort is being made to increase the limit of 

maximum obtainable speed by mankind. Research and 

development towards this effort lead us to develop efficient 

and affordable test facilities. Day by day it is becoming 

difficult to ignore the short duration, high speed flow test 

facilities. This thing compelled us and increases our curiosity 

to know about the high speed flow test facilities. Interest has 

recently been revived by researchers towards this high speed 

flow conditions which can be used to simulate the real 

conditions encountered by aerospace vehicles in an apparatus 

which was first developed hundred years ago. Today, this 

apparatus is known as shock tube. Shock tube is developed to 

study about the high speed flow like supersonic and 

Hypersonic related to the aerodynamics of aerospace vehicles 

where some concepts such as heat transfer and high 

temperature effects are very important. Shock tube is 

developed to study such phenomena in laboratory condition 

which are not possible in actual flight conditions.   

 

It is a device to produce high speed flow with high 

temperatures, by traversing normal shock waves which are 

generated by rupture of a diaphragm separating a high 

pressure gas from a low pressure gas. In the 19th century, 

interest in the propagation speeds of flame fronts and 

detonation waves led to the construction of the first shock 

tube by Pierre Vieille in France in 1899. Experimental work 

on shock tube has been carried out in the 1940s in the United 

States and Canada, where initial experiments were made to 

find a method of blast pressure measurement. It was later 

realized that shock tubes can be used to investigate 

compressible flow phenomena and extensive experiments on 

interactions of shocks, rarefactions and contact surfaces were 

made in Al-Falahi [1].                            

 

Various simulation software and solvers are being developed 

in the last decade to facilitate various aerodynamic analysis 

on supersonic and Hypersonic flow. Extensive analysis is 

carried out to study and design a one dimensional shock tube 

with configurations of single diaphragm shock tube. Effect of 

variation in pressure ratio, composition of driver gas is also 

studied in this report. All the analysis is being done using 

L1D (Linear One Dimensional) software. The problems are 

also solved analytically and solvers are also developed for 

the study.  

 

2. Governing Equations 
 

For high speed flows, viscous effect is confined to the 

vicinity of the surface, where the large velocity gradient 

exists. This region is known as the boundary layer. Outside 

of the boundary layer, the velocity gradients are negligible 

resulting in zero shear stress. This region is called the 

inviscid region. In the present study, the investigation of 

solution procedures for the inviscid flow region. The 

governing equation is known as the Euler equation [2]. In 

two-dimensional Cartesian coordinates, these can be written 

as  
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The Euler equations governing the 2D flow in the absence of 

body forces with species transport equation in the 

conservative and differential form are, 
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In the above versions of formulations, the total specific 

energy, E=e+0. 5 (u
2
+v

2
) the total specific enthalpy    H=h+0. 

5 (u
2
+v

2
), is the mass fraction of the species given by mi=ρi 

/ρ. This thesis considers a solution to unsteady state Euler 

equations and no surface forces are considered in these 

equations. Euler equation basically expresses the 

conservation of mass, momentum and energy. 

 

2.1 Equations of State 

The governing differential equations for the gas dynamics 

(i.e. Equation 2, Equation 3 and Equation 4) are completed 

by specifying the thermodynamic properties of the gas. For a 

perfect gas, the equation of state is 

P RT                               (6) 

Where, R is the gas constant. And the speed of sound is given 

by a RT  

The Thermodynamic properties of a number of ideal gases 

are given in the Table 1. For the mixtures of gases, the 

perfect gas relations can be used together with the effective 

thermodynamic properties or the mixtures of the gas, can be 

used the perfect gas relations together with the effective 

thermodynamic properties 

i iR M R   i iM   

 Where, „Mi‟ is % mass fraction of the species. Here, the 

summation is over the two species.  

 

Table 1: Thermodynamic properties of ideal gases 

Gas  R ( /j kgK )   

Air 287.0 1.4 

Helium 2077.0 1.66 

Nitrogen 296.8 1.4 

Argon 208.0 1.66 

Co2 188.9 1.4 

 

3. Numerical Method 
 

3.1 Finite volume method formulation 

 

The basic idea of a FVM is to satisfy the integral form of the 

conservation laws to some degree of approximation for each 

of many adjacent control volumes which cover the domain of 

interest.     
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Eq. 3.1 can be written as  
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U is the average value of U over the entire control volume, 

F


is the flux vector and n


 is the unit normal to the surface. 

And I IF F i G j 
  

, is the total inviscid flux, upon integrating 

the inviscid flux over the faces of k
th 

control volume the 

above equation becomes   
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For the 2-D axi-symmetric problems the finite volume 

formulation is given by   
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3.2 Upwind discretization 

 

Upwind schemes use an adaptive or solution-sensitive finite 

difference stencil to numerically simulate the direction of 

propagation of information in a flow field. A general form of 

writing any upwind-type schemes are   
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The upwind scheme is stable if the following Courant 

Friedrich–Lewy condition (CFL) condition is satisfied. Here 

CFL condition is | a t / x | 1 . Scheme is the first order 

accurate explicit scheme with only one unknown ui
n+1

.
..  

 

3.3 Van Leer flux splitting scheme 

 

The Van Leer scheme tells general fluid flow contains wave 

speeds that are both positive and negative (so that eigenvalue 

information can pass both upstream and downstream), the 

basic idea behind all of these techniques is that the flux can 

be split into two components F  and F  so that each may be 

properly discretized using relatively upwind stencils to 

maintain stability and accuracy [3].  
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3.4 Boundary Conditions 

 

Boundary conditions are specifications of properties or 

conditions on the surfaces of fluid domains and sub-domains, 

and are required to fully define the flow simulation. 

Boundary condition decides the solution of the governing 

equation. 

                                                                                                                       

For two dimensional inviscid flow problem the commonly 

encountered boundary conditions are, 2D solid boundary 

fluxes, Inviscid or slip wall boundary condition, Pressure 

extrapolation boundary condition, Mirror image boundary 

condition, Far field boundary condition. 

                                                                                 
 

4. Solver Validation 
 

4.1 Flows through ramp in channel 

The problem consists of a uniform flow being disturbed by a 

small disturbance, in this case the ramp. The supersonic flow 

through a ramp channel is a standard test case to study the 

oblique shock for validation of 2D inviscid flow solvers.  

Free stream condition in this case given by Table 1. To start 

with Euler computations, flow at inlet is supersonic, oblique 

shock will be generated at the wedge. Using the geometry the 

bottom wall is turned upward at the corner through a 

deflection angle,15  that is, the corner of concave. The 

length of the channel is 1.2 meters and height is 1 meter. 

Structured mesh used to have a grid size of 200×200. The 

grid consists of 80601 cells, 80000 points, 160600 faces. The 

flow geometry and corresponding computational mesh are 

shown in Figure 1.  

                

                  Figure 1: Grid for ramp in a channel 

The lower wall, including the ramp, and the top wall are 

modeled as being impermeable boundaries i.e. Slip- wall 

boundary condition is imposed.  For computation, first order 

scheme, with the Van Leer scheme is used for the calculation 

of the convective fluxes. The convergence criterion is based 

on the difference in density values, ρ, at any grid point 

between two successive iterations, that is, 

1 610n n                                                         

Where, n is the iteration index. 

The supersonic flow (Mach=3) at the wall must be tangent to 

the wall, hence the streamline at the corner also deflected 

through the angle15 . Due to this free stream flow is “turned 

into itself” that is the oblique shock which is clear in present 

simulation. From the property of oblique shock theory the 

flow property must be increased. Figure 2 (a) shows the 

Mach number discontinuously decreases.   

            
“(a)”                                           “(b)” 

        
                   “(c)”                                        “(d)” 

Figure 2: property contours in supersonic flow 

The density, temperature and pressure discontinuously 

increases, which are demonstrated in Figure 2 (b), Figure 3 

(c) and Figure 2 (d) respectively. In addition, for validation, 

the oblique shock properties computed from the present 

solver are in excellent agreement with the oblique shock 

relations [4] as shown in Table 3.   

 

 

Paper ID: 25081501 1902



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438 

Volume 4 Issue 8, March 2015 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Table 2:  Free stream condition for ramp in a channel   
Test case Free stream input conditions 

Γ M∞ U∞ (m/s) P∞ in Pa T∞ in K 

1.66 3 1134.16 100000  300  

1.105 3 1350.15 100000  300  

1.4 3 1041.56 100000  300  

      Table 3: Comparison of various parameters across shock 

(wedge) for different species 
Parameter Oblique shock 

theory 

Solver Result 

with  =1.66 

P2/P1 3.143 3.005 

T2/T1 1.692 1.529 

ρ2/ρ1 1.992 1.994 

M2 2.019 2.083 

Β 34.205 33.331 

   

5. Result and Discussion  
 

5.1 Shock tube problem 1D and 2D with various species 

 

A shock tube consists of a long tube, usually of circular or 

rectangular cross section, which is separated by a thin 

diaphragm into two parts which is shown in Figure 3. One of 

them, the low pressure chamber, is a field with the test gas. 

The compressed driver gas fed into the second part, the high 

pressure chamber [5]. The dimension of the tube can vary. 

 

 
Figure 3: Schematic diagram of shock tube at time t=0, t=t1 

 

 A shock tube is equipment that can produce a moving 

normal shock wave produced by the sudden bursting of 

diaphragm separating a high pressure gas section from one at 

lower pressure gas section. It is used in high speed test 

facilities. The objective is to solve shock tube problem by the 

solver to determine the fluid flow property under the tube. 

 

5.2 Test condition of shock tube 

The shock tube problem is the study of the propagation of 

shock waves in a one and two dimensional. Assume a neutral 

gas exists in the tube, as there are no charged particles. At the 

beginning, the system is divided into two parts with different 

pressure and density. The Initial condition for the solution is 

given by the Table 4.                                     

Table 4: Initial condition for 1D, 2D and L1D shock 

tube

 

The first, 1D case, divide the one dimensional space of  the   

present simulation into 1000 uniform grid points as shown in 

Figure 4 The total length of the simulation region is 1 meter, 

so the (∆x=0.01).  

 
Figure 4: Schematic of 1D grid for shock tube (Not to scale) 

 

Second, for the 2D case, the geometry of the shock tube used 

is as follows: The length of the tube is 1 meter and height is 

0.4 meters. The grid consists of 6191 cells, 6000 points, 

12190 faces. The flow geometry and corresponding 

computational mesh are shown in Figure 5. 

 
Figure 5: Schematic of 2D grid of shock tube 

Here two cases are solved by the solver. For computation, 

first order scheme is used for discritization, which means that 

only one step is needed to finish a round of computation. For 

time, a uniform time step is adopted for simplicity that is, 

t=0.004. It cannot be sure that this is right, after check the 

result to see whether the time step is sufficient. If not, change 

the step. 

The stability criterion is based on time for both the cases, that 

is, 

allowed signalt t CFL t                                             (14) 

where, allowedt smallest value for all cells and CFL is the 

specified Courant- Friedrich- Lewy number. It is normally 

restricted to CFL≤ 1.0. Here the CFL number is set to 0.3. 

For each cell, the invicid signal time for 1D and 2D case is 

approximated as Equation 7 and Equation 8 respectively.   

signal

j j
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From the Figure 6, Figure 7 and Figure 8 shows the result of 

shock tube problem (1D and 2D) at time t=0.4 ms, together 

with the analytical solution (L1d, which gives exact result for 

shock tube) result of the problem at the same time [6]. The 

simulation result fits the basic configuration of analytical 

result quite well. We can also see clearly that diffusive error 

is very obvious in some part of the result and all the corners 

are smoothed. These plots are generated only after the 

bursting of diaphragm.  

 

 
Figure 6: Pressure variation along a simple shock 

tube 

 
Figure 7: Density variation along simple shock tube 

 

 

Figure 8: Temperature variation along simple shock tube 

Also assume that there is no motion at the beginning. Figure 

9 shows the state of the shock tube at t=0From the contour 

representation of 2D shock tube case shows the effects of the 

moving shock wave propagation which is clear in Figure 10, 

Figure 11 and Figure 12. 

 

 
Figure 9: Diaphragm position at t=0 before 

bursting 

 
Figure 10: Pressure contour at t=0.4 ms in shock tube 

 

 
Figure 11: Density contour at t=0.4 ms in shock tube after 

diaphragm 

 
Figure 12: Temperature contour at t=0.4 ms in shock tube 

after diaphragm 

 

6. Conclusion 
 

The work has been carried out keeping in mind that this 

project is about numerical simulation through different solver 

and thus design of a one dimensional shock tube with 

configurations of single diaphragm shock tube is done. The 

simulation has been done to reach the supersonic Mach 

number 3.0 and the solver facilitates measurement of the 

properties behind the normal shock wave and their variation 

across the shock. Simulation is done using different pressure 

ratio across the shock in order to get wide range of Mach 

number. From results of CFD simulation for reflected wave 

shock tube, one can conclude that Van leer Flux Vector 

Splitting Scheme cannot be applied for low Mach number 
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flows but can be successfully applied for the supersonic and 

hypersonic flows. A good match has been found between 

CFD results and the L1D results. 
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