
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 7, July 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Generic Test Automation

Vishal Sangave
1
, Vaishali Nandedkar

2

1 PVPIT College of Engineering, Savitribai Phule Pune University, Pune, India

2Assistant Professor, Department of Computer Engineering, PVPIT, Bavdhan, Pune, India

Abstract: Test automation, that involves the conversion of manual test cases to executable test scripts, is important to hold out

efficient regression testing of GUI-based applications. However, test automation takes significant investment of your time and skilled

effort. Moreover, it’s not a one-time investment because the application or its environment evolves and test scripts require continuous

patching. Thus, it’s difficult to perform test automation in a cost-efficient manner. This projected system gives solution to simplifying

testing efforts, which is the main objective of test automation. We have presented a process of Test Automation using keyword driven

approach. The input in the form of natural language Test cases which intern gets converted to keyword and that will be executed under

framework to produce reports. The technique is based upon looking for keywords that describes actions on the target and calling

functions associated with those. Using this framework, we can improve reusability of test code. The effectiveness and efficiency of

testing can be magnified with the help of Generic Test Automation.

Keywords: Test Automation, Keyword, Framework, Manual Testing.

1. Introduction

1.1 Software Testing

Software testing is used to identify the accuracy, reliability &

quality of developed software. It’s the process of evaluating

a system or system component by manual or automated

means to verify that it satisfies specified requirements.

Following are the concepts related to testing:

1) Test Data: For testing some feature of the software you

need to enter some data as input. Any such data which is

used in tests are known as test data.

2) Test Case: Test case is a smallest unit of testing, a snippet

containing set of inputs, test environment, execution

preconditions and expected output. Inputs are the specific

values, tables, database, or may be file names.

3) Test Suite: Test suite is common term used for the

collection of test cases. It is a container of the set of tests

that helps tester in executing and reporting the test

execution status.

4) Test Plan: Test plan narrates the whole strategy that team

will follow, for testing the software. The task of test plan is

to regulate all testing activities. It includes: What to test?

What strategy/method will be used for testing? Who will

test the software? When to test the software? What risks

are present?

1.2 Functions of Testing

Testing demonstrates that software function appear to be

working accordingly to specifications. It makes software

defect free so user can easily access software and makes

better use of that software to carry out operations. Testing

improves the quality of software so maintenance cost is

reduced to great extent. Testing improves reliability and

efficiency of the software.

1.3 Testing Approaches

To choose Test Approaches is one of major task to perform

before actual testing starts. It is a step in test planning where

the tester plans and documents how to go about testing.

Considering various factors like risks, skills of the testers,

stakeholders, product, business, cost etc. In a broad view, the

testing approaches can be divided into two major types

manual testing and automated testing.

1) Manual Testing: This type of testing is performed

completely by human testers i.e. without using any

automated tools or scripts. While testing the software the

tester performs the role of end user and tests the software

for any unexpected behavior. Testers follow the test plan

to ensure the completeness of testing.

2) Automated Testing: This approach is also known as test

automation includes writing scripts and using software

tools for testing. In this method, testing team can decide to

test some parts of the software using test automation and

some by manual testing. Automation testing helps in

reusing the test scripts, reducing time required for testing

and decreasing human errors.

Table 1: Comparative study of Manual and Automated

Testing
Factors Manual Testing Automated Testing

Time Testers have to write

each and every step

hence it is very time

consuming and tedious

work.

As the tests are performed

by software tool the

execution is fast

Efficiency Testers tend to reproduce

human errors.

Software tool does not

cause human errors and

ensure accuracy.

Cost Huge investment needs to

be done in human

resources.

Initial set up more but once

done can be reused without

human intervention

reducing cost.

Training It does not require

training for generating

Scripts

Testers need to be trained

to software tool to generate

error free test scripts

Paper ID: SUB757031 2668

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 7, July 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

1.4 Merits of Automated Testing

1) It is faster. After the initial time given to generate the test

scripts, the execution of automated tests is much faster.

2) It is more reliable. Once test scripts are written and added

to test suite they cannot be forgotten where tester can

forget to perform some specific tests. Also automated tests

are more accurate than manual tests as they do not involve

human errors.

3) It reduces human and technical risks. If the developer team

changes automated test scripts will help them reuse the

previously developed tests and thus reduce the risks.

4) It is more powerful and flexible Using manual testing we

cannot create 100 virtual users at a time which can be done

by using automated testing. Also the test scripts can be

reused.

2. Related Work

Conventional approaches for test automation include record-

replay and keyword-driven automation, discussed in the

Introduction. Record-replay, which is a feature available in

many commercial and open-source tools (e.g., RFT [8] and

Selenium [7]), requires a human to perform the manual test

steps on the application user interface. Keyword-driven

automation involves the creation of a library of reusable

subroutines or keywords. A manual test case is translated (by

a human) into a sequence of keywords; a driver program

interprets such sequences by invoking appropriate

Subroutines. Both these techniques require human

interpretation of English language tests, whereas our

approach attempts to eliminate this and can work in a more

unattended manner.

There is a large body of work on synthesizing programs via

mechanical interpretation of natural-language phrases, which

is inspired by the ideal of bringing programming to end-users

and bridging the gap between human-readable natural

languages and mechanically interpretable programming

languages [1][3]. Some of limitations arise from a test case

being too specific.

The CoTester system [13] uses an English-like testscripting

language, called ClearScript, which can be automatically

interpreted. CoTester provides a record-replay feature

similar to that available in testing tools, with the difference

that the recorded scripts are in the stylized English form of

ClearScript and, therefore, easily readable even by non-

programmers.

Test cases writing in the form of tuples in web based

application to give an ease to the non technical user. Each

script step is a tuple consisting of an action, the target GUI

element for the action, any associated value, and some

metadata. [2]

Test merging technique for GUI tests. Given a test suite, the

technique identifies the tests that can be merged and creates

a merged test, which covers all the application states that are

exercised individually by the tests, but with the redundant

common steps executed only once.[4]

Test automation usually requires substantial upfront

investments, automation is not always more cost-effective

than manual testing. To support decision-makers in finding

the optimal degree of test automation in a given project, we

propose in this paper a simulation model using the System

Dynamics (SD) modeling technique[5].In this paper study

was to investigate how the simulation model can help

decision-makers decide whether and to what degree the

company should automate their test processes.

3. Proposed System and Framework

In this paper, we are trying to produce automated test script

from manually given input in the form of keyword table.

Also this can be realized using a sequence of keywords

which will automatically call their function calls. These

functions can be created by any non-technical user with the

help of given UI and adding sequence of tuples formed by

given keywords. These test cases created from UI in natural

language are saved in DB.

Our task is to 1. Interpret the test cases written in natural

language. 2. Create test scripts ready for execution. Parsing

of Keywords, action and data is done. The test steps in

keyword script will be dispatched to our test application

framework to generate test scripts automatically for final

execution. [1]

Table 2: A script consisting of key words and specified

actions, their targets and any necessary data
Action Target Test Data

Open

http://localhost:8080/main.jsp

Select Student Login “PVPIT“

Enter Username “PVPIT”

Enter Password “ME2015”

Click Login

Exists ME 2015 Batch

Table II shows the data given by the user in UI application

and this data is used by the generic automation framework

from execution of test cases. This frame work gives user to

add flexibility of adding and creating new keywords. It also

facilitates execution of java code or shell scripts at specific

step.

A. System Architecture

Figure 1: Proposed system architecture

Paper ID: SUB757031 2669

http://localhost:8080/main.jsp

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 7, July 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Our system will try to give complete process from test case

generation to test script formation and their execution under

automation framework generating report for the test.

With this work we will bridge the gap between novice

programmer and testing domain. Tester need not need to

learn any specific programming language to automate test

cases. He need just to fill the excel sheet in natural language

which serves as keyword script to our framework system.

After that generic test automation system will do the rest of

work along with producing final report. There is a test data

module which will directly enter the default data given in

dataset for the given keyword. If data is not present in

default set then system will give appropriate error and user

has to enter specific data in framework data set. Otherwise,

the tool will work without human intervention.

Reusability of test scripts by making test function of selected

few steps will reduce maintenance cost of test cases. Fig. 1

shows the overview architecture of the system and the

structural integration of the modules. Test cases in excel file

is fed as input that is processed and saved in database in

better manageable way and avoid redundant test cases steps.

This is then executed under our frame work as per

instructions in test steps. While execution if some test case

fail due to locator changes then our frame work will try to

resolve the problem and execute the test case. If recovery is

not possible by our recovery module it passes the control to

error handler here the error detail and logs are maintained

which are used in reporting module.

B. Mathematical Model

Figure 2: Mathematical model

Let S be the system consisting of solution of problem.

S={S, I, S11, D, DB, F, Y, TS}

S0=start state of software

Establish connection between software & internet

S11=end state

F=set of failure handling states

={ S1, S5, S8}

DB=Database

TS=test script generator

I=set of inputs

={X1, X2, X3}

X1= Set containing keywords

X2=set containing non-keywords

X3= button click to give input to software

Y=output of actions executed

X1, X2, X3 -> Y

Algorithm 1: The Algorithm for generating a test script from a test case

Algorithm 2: Explore Path

4. Experimental Results

We analyzed 5547 steps over all scripts. Among these, NLP

generates the desired sequence of tuples as the first choice

for 1636 (29%) steps. For another eight steps, NLP generates

the desired sequence, but not as the first choice. These

results indicate that, in many cases, the first choice generated

by NLP is the desired one, and users need not browse the

other choices. Among the remaining steps, users entered

feedback for 1886 (34%) steps, and ATA reused the

feedback for 2017 (37%) steps.

Figure 5 presents the reuse data in more detail: it shows the

number of test steps for which the amount of reuse falls in

Paper ID: SUB757031 2670

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 7, July 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

different ranges. For example, the last bar in the chart

illustrates that, for three steps, the feedback is reused

between 80 and 100 times (in this case, the actual reuse

numbers are 87, 88, and 92). Similarly, for more than 30

steps, reuse occurs 5–10 times. For another 192 steps (not

shown in the figure), reuse occurs once or twice. Overall, the

results demonstrate that similar test steps occur frequently

and, therefore, that feedback-based reuse is a valuable

feature.

To evaluate the effectiveness of ATA’s script-repair

capability, we executed the automated scripts of APP using

different configurations, such as different browser version,

different browser type, and different application version. In

particular, we study the following research questions: (1)

How often is ATA able to repair the scripts automatically?

(2) What are the scenarios in which ATA fails to repair the

scripts.

Figure 3: An illustration of the estimated ambient noise

floor with an increasing number of senders.

5. Conclusion

We designed an error-minimizing-based framework to

localize jammers. Most of the existing schemes for localizing

jammers rely on the indirect measurements of network

parameters affected by jammers, e.g., nodes hearing ranges,

which makes it difficult to accurately localize jammers. In

our method we localized jammers by exploiting directly the

jamming signal strength (JSS).In particular, we combined the

centroid based localization with the existing error

minimizing framework. By combining these two methods we

can achieve the better result to locate the jammer in wireless

sensor network.

6. Future Work

In the future, test script can be generated on its own with just

giving input in natural language statements. Reusing

common steps in hybrid model of framework.

References

[1] “Automating Test Automation” Suresh Thumma lapenta,

Saurabh Sinha, Nimit Singhania, and Satish Chandra†

IBM Research – India (2012)

[2] “Efficient and Change-Resilient Test Automation: An

Industrial Case Study” Suresh Thumma lapenta, Saurabh

Sinha, Nimit Singhania, and Satish Chandra† IBM

Research – India (2013)

[3] “Automatic Early Defects Detection in Use Case

Documents” Shuang Liu, Jun Sun, Yang Liu, Yue Zhang,

Bimlesh Wadhwa, Jin Song Dong and Xinyu Wang -

ASE 2014.

[4] “Efficient and Flexible GUI Test Execution via Test

Merging” Pranavadatta Devaki, Suresh Thummalapenta,

Nimit Singhania, Saurabh Sinha IBM Research – India

(2013).

[5] When to Automate Software Testing? Decision Support

Based on System Dynamics: An Industrial Case Study”

Zahra Sahaf, Vahid Garousi, Dietmar Pfahl, Rob Irving,

Yasaman Amannejad - ICSSP 2014

[6] “Automated Testing of Industrial Automation Software:

Practical Receipts and Lessons Learned” Rudolf Ramler,

Werner Putschögl and Dietmar Winkler, MoSEMInA -

2014.

Author Profile

Vishal Sangave, received the B.E degree in Computer

Science & Engineering from GSM College of

Engineering, Pune in 2010 and is currently pursuing

his M.E (CS) in PVPIT Bavdhan, Pune. His area of

interest lies in Automation Testing and Artificial

Intelligence.

Vaishali Nandedkar, working as Asst. Prof. at PVPIT Bavdhan.

Hold a Master degree in Computer Science. Her interests in

teaching and Cloud Computing.

Paper ID: SUB757031 2671

