
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 7, July 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

High Speed Radix-10 Multiplication Using

Redundant BCD Codes

T. Sudha
1
, T. Jyothi

2

1P.G Student, VLSI Design, Dept of ECE, Sri Venkatesa Perumal College of Engineering and Technology, RVS Nagar, Puttur, A.P. India

2Assistant Professor, Dept of ECE, Sri Venkatesa Perumal College of Engineering and Technology, RVS Nagar, Puttur, A.P. India

Abstract: In this paper, We propose an algorithm and architecture of a BCD parallel multiplier that exploits some properties of two

different redundant BCD codes to speed up its computation. In this paper, we also develop new techniques to reduce the latency and

area of previous representative high performance implementations. The Partial products are generated in parallel using a signed-digit

radix-10 recoding of BCD multiplier with the digit set [-5, 5], and set of positive multiplicand multiples (0X, 1X, 2X, 3X, 4X, 5X) coded in

excess-3 code(XS-3). This encoding has many advantages. First, it is self-complementing codes, so that a negative multiplicand multiple

can be obtained by just inverting bits of the corresponding positive one. The available redundancy allows a fast and simple generation of

multiplicand multiples in a carry free way. The partial products can be recoded to the overloaded BCD representation (ODDS) by just

adding a constant factor into the partial product reduction tree. To show the advantages of our proposed architecture, we have

synthesized a RTL model for 16 x 16-digit multiplications and performed a comparative survey of the existing representative designs. We

show that the proposed multiplier has an area improvement roughly in the range 20-35 percent for similar target delays with respect to

the fastest implementation.

Keywords: Parallel multiplication, decimal hardware, overloaded BCD representation, redundant excess-3 code, redundant arithmetic

1. Introduction

DECIMAL fixed-point and floating-point formats are

important in financial, commercial, and user-oriented

computing, where conversion and rounding errors that are

inherent to floating-point binary representations cannot be

tolerated. The new IEEE 754-2008 Standard for Floating-

Point Arithmetic, which contains a format and specification

for decimal floating-point (DFP) arithmetic has encouraged

a significant amount of research in decimal hardware. Since

area and power dissipation are critical design factors in

state-of-the-art DFPUs, multiplication and division are

performed iteratively by means of digit-by-digit algorithms

and therefore they present low performance. Moreover, the

aggressive cycle time of these processors puts an additional

constraint on the use of parallel techniques for reducing the

latency of DFP multiplication in high-performance DFPUs.

Thus, efficient algorithms for accelerating DFP

multiplication should result in regular VLSI layouts that

allow an aggressive pipelining. Hardware implementations

normally use BCD instead of binary to manipulate decimal

fixed-point operands and integer significands of DFP

numbers for easy conversion between machine and user

representations. BCD encodes a number X in decimal (non-

redundant radix-10) format, with each decimal digit Xi E

[0,9] represented in a 4-bit binary number system. However,

BCD is less efficient for encoding integers than binary, since

codes 10 to 15 are unused. Moreover, the implementation of

BCD arithmetic has more complications than binary, which

lead to area and delay penalties in the resulting arithmetic

units. A variety of redundant decimal formats and

arithmetics have been proposed to improve the performance

of BCD multiplication. The BCD carry-save format

represents a radix-10 operand using a BCD digit and a carry

bit at each decimal position. It is intended for carry-free

accumulation of BCD partial products using rows of BCD

digit adders arranged in linear or tree-like configurations.

Decimal signed-digit (SD) representations rely on a

redundant digit set {a; . . . ; 0; . . . ; a},5 <a < 9, to allow

decimal carry-free addition.BCD carry-save and signed-digit

radix-10 arithmetic offer improvements in performance with

respect to nonredundant BCD. However, the resultant VLSI

implementations in current technologies of multioperand

adder trees may result in more irregular layouts than binary

carry-save adders (CSA) and compressor trees. The

overloaded BCD (or ODDS—overloaded decimal digit set)

representation was proposed to improve decimal

multioperand addition , and sequential and parallel decimal

multiplications. In this code, each 4-bit binary value

represents a redundant radix-10 digit Xi E[0, 15]. The

ODDS presents interesting properties for a fast and efficient

hardware implementation of decimal arithmetic.(1)it is a

redundant decimal representation so that it allows carry-free

generation of both simple and complex decimal multiples

(2X, 3X, 4X, 5X, 6X,. . .) and addition, (2) since digits are

represented in the binary number system, digit operations

can be performed with binary arithmetic, and (3) unlike

BCD, there is no need to implement additional hardware to

correct invalid 4-bit combinations. A disadvantage with

respect to signed-digit and self-complementing codes, is a

slightly more complex implementation of 9’s complement

operation for negation of operands and subtraction. In this

work, we focus on the improvement of parallel decimal

multiplication by exploiting the redundancy of two decimal

representations: the ODDS and the redundant BCD excess-3

(XS-3) representation, a self-complementing code with the

digit set [-3, 12]. We use a minimally redundant digit set for

the recoding of the BCD multiplier digits, the signed-digit

radix-10 recoding [30], that is, the recoded signed digits are

in the set {-5,-4,-3,-2,-1, 0, 1, 2, 3, 4, 5}. For this digit set,

the main issue is to perform the x3 multiple without long

carry-propagation (note that x2 and x5 are easy multiples for

decimal and that x4 is generated as two consecutive x2

operations). We propose the use of a general redundant BCD

arithmetic (that includes the ODDS, XS-3 and BCD

Paper ID: SUB157036 2368

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 7, July 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

representations) to accelerate parallel BCD multiplication in

two ways: Partial product generation (PPG). By generating

positive multiplicand multiples coded in XS-3 in a carry free

form. An advantage of the XS-3 representation over non-

redundant decimal codes (BCD and 4221/ 5211) is that all

the interesting multiples for decimal partial product

generation, including the 3X multiple, can be implemented

in constant time with an equivalent delay of about three

XOR gate levels. Moreover, since XS-3 is a self-

complementing code, the 9’s complement of a positive

multiple can be obtained by just inverting its bits as in

binary. Partial product reduction (PPR). By performing the

reduction of partial products coded in ODDS via binary

carry-save arithmetic. Partial products can be recoded from

the XS-3 representation to the ODDS representation by just

adding a constant factor into the partial product reduction

tree. The resultant partial product reduction tree is

implemented using regular structures of binary carry-save

adders or compressors. The 4-bit binary encoding of ODDS

operands allows a more efficient mapping of decimal

algorithms into binary techniques. By contrast, signed-digit

radix-10 and BCD carry-save redundant representations

require specific radix-10 digit adders.

2. Redundant BCD Representations

The proposed decimal multiplier uses internally a redundant

BCD arithmetic to speed up and simplify the

implementation. This arithmetic deals with radix-10 ten’s

complement integers of the form:

where d is the number of digits, sz is the sign bit, and Zi E [l

– e,m- e] is the ith digit, with

Parameter e is the excess of the representation and usually

takes values 0 (non excess), 3 or 6. The redundancy index p

is defined as p=m-l+1-r, being r=10. On the other hand, the

binary value of the 4-bit vector representation of Zi is given

by

zi;j being the jth bit of the ith digit. Therefore, the value of

digit Zi can be obtained by subtracting the excess e of the

representation from the binary value of its 4-bit encoding,

that is,

Note that bit-weighted codes such as BCD and ODDS use

the 4-bit binary encoding (or BCD encoding) defined in

Expression (2). Thus, Zi =[Zi] for operands Z represented in

BCD or ODDS.

This binary encoding simplifies the hardware

implementation of decimal arithmetic units, since we can

make use of state-of-the-art binary logic and binary

arithmetic techniques to implement digit operations. In

particular, the ODDS representation presents interesting

properties (redundancy and binary encoding of its digit set)

for a fast and efficient implementation of multiper and

addition. Moreover, conversions from BCD to the ODDS

representation are straightforward, since the digit set of BCD

is a subset of the ODDS representation.

In our work we use a SD radix-10 recoding of the BCD

multiplier [30], which requires to compute a set of decimal

multiples ({-5X, . . . , 0X, . . . , 5X}) of the BCD

multiplicand. The main issue is to perform the x3 multiple

without long carry-propagation.

For input digits of the multiplicand in conventional BCD

(i.e., in the range [0, 9], e =0, p=0), the multiplication by 3

leads to a maximum decimal carry to the next position of 2

and to a maximum value of the interim digit (the result digit

before adding the carry from the lower position) of 9.

Therefore the resultant maximum digit (after adding the

decimal carry and the interim digit) is 11. Thus, the range of

the digits after the x3 multiplication is in the range [0, 11].

Therefore the redundant BCD representations can host the

resultant digits with just one decimal carry propagation.

An important issue for this representation is the ten’s

complement operation. Since after the recoding of the

multiplier digits, negative multiplication digits may result, it

is necessary to negate (ten’s complement) the multiplicand

to obtain the negative partial products. This operation is

usually done by computing the nine’s complement of the

multiplicand and adding a one in the proper place on the

digit array. The nine’s complement of a positive decimal

operand is given by

The implementation of (9- Zi) leads to a complex

implementation, since the Zi digits of the multiples

generated may take values higher than 9. A simple

implementation is obtained by observing that the excess-3 of

the nine’s complement of an operand is equal to the bit

complement of the operand coded in excess-3.

 Table 1: Nine’s Complement for the XS-3 Representation

In Table 1 we show how the nine’s complement can be

performed by simply inverting the bits of a digit Zi coded in

XS-3. At the decimal digit level, this is due to the fact that:

for the ranges Zi E[-3,12] ([Zi] E [0, 15]). Therefore to have

a simple negation for partial product generation we produce

the decimal multiples in an excess-3 code. The negation is

performed by simple bit inversion, that corresponds to the

Paper ID: SUB157036 2369

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 7, July 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

excess-3 of the nine’s complement of the multiple.

Moreover, to simplify the implementation we combine the

multiple generation stage and the digit increment by 3 (to

produce the excess-3) into a single module by using the XS-

3 code.

In summary, the main reasons for using the redundant XS-3

code are: (1) to avoid long carry-propagations in the

generation of decimal positive multiplicand multiples, (2) to

obtain the negative multiples from the corresponding

positive ones easily, (3) simple conversion of the partial

products generated in XS-3 to the ODDS representation for

efficient partial product reduction.

3. High-Level Architecture

The high-level block diagram of the proposed parallel

architecture for dx d-digit BCD decimal integer and fixed-

point multiplication is shown in Fig. 1. This architecture

accepts conventional (non-redundant) BCD inputs X, Y ,

generates redundant BCD partial products PP, and computes

the BCD product P =X x Y . It consists of the following

three stages1: (1) parallel generation of partial products

coded in XS-3, including generation of multiplicand

multiples and recoding of the multiplier operand, (2)

recoding of partial products from XS-3 to the ODDS

representation and subsequent reduction, and (3) final

conversion to a non-redundant 2d-digit BCD product.

Figure 1: Combinational SD radix-10 architecture

Stage 1) Decimal partial product generation. A SD radix-10

recoding of the BCD multiplier has been used. This recoding

produces a reduced number of partial products that leads to a

significant reduction in the overall multiplier area.

Therefore, the recoding of the d-digit multiplier Y into SD

radix-10 digits Ybd-1, . . . , Yb0, produces d partial products

PP[d-1], . . . , PP[0], one per digit; note that each Ybk

recoded digit is represented in a 6–bit hot-one code to be

used as control input of the multiplexers for selecting the

proper multiplicand multiple, {-5X . . . ,-1X, 0X, 1X, . . . ,

5X}. An additional partial product PP(d) is produced by the

most significant multiplier digit after the recoding, so that

the total number of partial products generated is d+1.

Stage 2) Decimal partial product reduction. In this stage, the

array of d+1 ODDS partial products are reduced to two 2d-

digit words (A, B). Our proposal relies on a binary carrysave

adder tree to perform carry-free additions of the decimal

partial products. The array of d +1 ODDS partial products

can be viewed as adjacent digit columns of height h< d + 1.

Since ODDS digits are encoded in binary, the rules for

binary arithmetic apply within the digit bounds, and only

carries generated between radix-10 digits (4-bit columns)

contribute to the decimal correction of the binary sum. That

is, if a carry out is produced as a result of a 4-bit (modulo

16) binary addition, the binary sum must be incremented by

6 at the appropriate position to obtain the correct decimal

sum (modulo 10 addition).

Stage 3) Conversion to (non-redundant) BCD. We consider

the use of a BCD carry-propagate adder to perform the final

conversion to a non-redundant BCD product P =A+B. The

proposed architecture is a 2d-digit hybrid parallel

prefix/carry-select adder, the BCD Quaternary Tree adder.

The sum of input digits Ai, Bi at each position i has to be in

the range [0,18] so that at most one decimal carry is

propagated to the next position i +1 . Furthermore, to

generate the correct decimal carry, the BCD addition

algorithm implemented requires Ai + Bi to be obtained in

excess-6. Several choices are possible. We opt for

representing operand A in BCD excess-6 (Ai e [0, 9], [Ai] =

Ai + e, e =6), and B coded in BCD (Bi E [0, 9], e = 0).

4. Decimal Partial Product Generation

The partial product generation stage comprises the recoding

of the multiplier to a SD radix-10 representation, the

calculation of the multiplicand multiples in XS-3 code and

the generation of the ODDS partial products.

The negative multiples are obtained by ten’s complementing

the positive ones. This is equivalent to taking the nine’s

complement of the positive multiple and then adding1. As

we have shown in Section 2, the nine’s complement can be

obtained simply by bit inversion. This needs the positive

multiplicand multiples to be coded in XS-3, with digits in [-

3; 12].The d least significant partial products PP[d-1], . . .

,PP[0] are generated from digits Ybk by using a set of 5:1

muxes, as shown in Fig. 2. The xor gates at the output of the

mux invert the multiplicand multiple, to obtain its 9’s

complement, if the SD radix-10 digit is negative (Ysk = 1).

Figure 2: SD radix-10 generation of a partial product digit.

A. Generation of the Multiplicand Multiples

Fig. 3 shows the high-level block diagram of the multiples

generation with just one carry propagation. This is

performed in two steps:

Paper ID: SUB157036 2370

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 7, July 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 3: Generation of a decimal multiples NX

1)Digit recoding of the BCD multiplicand digits Xi into a

decimal carry 0< Ti<Tmax and a digit -3< Di <12- Tmax,

such as

being Tmax the maximum possible value for the decimal

carry.

2) The decimal carries transferred between adjacent digits

are assimilated obtaining the correct 4-bit representation of

XS-3 digits NXi, that is

The constraint for NXi still allows different implementations

for NX. For a specific implementation, the mappings for Ti

and Di have to be selected. Table 2 shows the preferred digit

recoding for the multiples NX.

Then, by inverting the bits of the representation of NX,

operation defined at the ith digit by

Replacing the relation between NXi and [NXi] in the

previous expression, it follows that

B. Most-Significant Digit Encoding

The MSD of each PP[k], PP[dk], is directly obtained in the

ODDS representation. Note that these digits store the carries

generated in the computation of the multiplicand multiples

and the sign bit of the partial product. For positive partial

products we have

with Td-1 E {0, 1, 2, 3, 4}. Therefore the two cases can be

expressed as

With

Table 2: Preferred Digit Recoding Mappings for NX

Multiples

C. Correction Term

The pre-computed correction term is given by

D. Product Array

Fig. 4 illustrates the shape of the partial product array,

particularizing for d =16. Note that the maximum digit

column height is d+1.

Figure 4: Decimal partial product array generated for d =16

5. Decimal Partial Product Reduction

The PPR tree consists of three parts: (1) a regular binary

CSA tree to compute an estimation of the decimal partial

product sum in a binary carry-save form (S, C), (2) a sum

correction block to count the carries generated between the

digit columns, and (3) a decimal digit 3:2 compressor which

increments the carry-save sum according to the carries count

to obtain the final double-word product (A,B), A being

represented with excess-6 BCD digits and B being

represented with BCD digits. The PPR tree can be viewed as

adjacent columns of h ODDS digits each, h being the

column height (see Fig. 4), and h <d+1.

Fig. 5 shows the high-level architecture of a column of the

PPR tree (the ith column) with h ODDS digits in [0, 15] (4

bits per digit). Each digit column of the binary CSA tree (the

gray colored box in Fig. 5) reduces the h input digits and

ncin input carry bits, transferred from the previous column

of the binary CSA tree, to two digits, Si, Ci, with weight 10i.

Moreover, a group of ncout carry outputs are generated and

transferred to the next digit column of the PPR tree.

Roughly, the number of carries to the next column is ncout =

h-2.

Paper ID: SUB157036 2371

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 7, July 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 5: High-level architecture of the proposed decimal

PPR tree (h inputs, 1-digit column)

The digit columns of the binary CSA tree are implemented

efficiently using 4-bit 3:2, 4:2 and higher order compressors

made of full adders. These compressors take advantage of

the delay difference of the inputs and of the sum and carry

outputs of the full adders, allowing significant delay

reductions. Thus, there is a difference between the value of

the carry outs generated at the i-column and the value of the

carries transferred to the (i+1)-column. This difference, T, is

computed in the sum correction block of every digit column

and added to the partial product sum (S, C) in the decimal

CSA.

the contribution of the column i to the sum correction term T

is given by

Therefore, the sum correction is given by

Consequently, the sum correction block evaluates Wix6.

This module is composed of a m-bit binary counter and a x6

operator. A straightforward implementation would use m =

ncout and a decomposition of the x6 operator into x5 and x1

(both without long carry propagations), and then a four to

two decimal reduction to add the correction to the PPR tree

result.

6. Final Conversion to BCD

The selected architecture is a 2d-digit hybrid parallel prefix/

carry-select adder, the BCD Quaternary Tree adder. The

delay of this adder is slightly higher to the delay of a binary

adder of 8d bits with a similar topology.

The decimal carries are computed using a carry prefix tree,

while two conditional BCD digit sums are computed out of

the critical path using 4-bit digit adders which implements

[Ai] + Bi+ 0 and [A] + Bi+1.

These conditional sums correspond to each one of the carry

input values. If the conditional carry out from a digit is one,

the digit adder performs a -6 subtraction. The selection of

the appropriate conditional BCD digit sums is implemented

with a final level of 2 : 1 multiplexers.

To design the carry prefix tree we analyzed the signal arrival

profile from the PPRT tree, and considered the use of

different prefix tree topologies to optimize the area for the

minimum delay adder.

7. Synthesis Results

Finally, we present a more detailed comparison of the fastest

BCD 16x16-digit combinational multipliers in terms of

latency and area. The corresponding areadelay synthesis

values are shown in Fig.6.

Figure 10: Area-delay space for the fastest 16x16-digit

mults.

8. Simulation Results

Figure 11: RTL Schematic

Paper ID: SUB157036 2372

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 7, July 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 12: Internal RTL Schematic

Figure 13: Technology Schematic

9. Conclusion

In this paper we have presented the algorithm and

architecture of a new BCD parallel multiplier. The

improvements of the proposed architecture rely on the use of

certain redundant BCD codes, the XS-3 and ODDS

representations. Partial products can be generated very fast

in the XS-3 representation using the SD radix-10 PPG

scheme: positive multiplicand multiples (0X, 1X, 2X, 3X,

4X, 5X) are precomputed in a carry-free way, while negative

multiples are obtained by bit inversion of the positive ones.

On the other hand, recoding of XS-3 partial products to the

ODDS representation is straightforward. The ODDS

representation uses the redundant digit-set [0, 15] and a 4-bit

binary encoding (BCD encoding), which allows the use of a

binary carry-save adder tree to perform partial product

reduction in a very efficient way.

References

[1] A. Aswal, M. G. Perumal, and G. N. S. Prasanna, ―On

basic financialdecimal operations on binary machines,‖

IEEE Trans. Comput., vol. 61, no. 8, pp. 1084–1096,

Aug. 2012.

[2] M. F. Cowlishaw, E. M. Schwarz, R. M. Smith, and C.

F. Webb, ―A decimal floating-point specification,‖ in

Proc. 15th IEEE Symp.Comput. Arithmetic, Jun. 2001,

pp. 147–154.

[3] M. F. Cowlishaw, ―Decimal floating-point: Algorism

for computers,‖ in Proc. 16th IEEE Symp. Comput.

Arithmetic, Jul. 2003,pp. 104–111.

[4] S. Carlough and E. Schwarz, ―Power6 decimal divide,‖

in Proc. 18
th

 IEEE Symp. Appl.-Specific Syst., Arch.,

Process., Jul. 2007, pp. 128–133.

[5] S. Carlough, S. Mueller, A. Collura, and M. Kroener,

―The IBM zEnterprise-196 decimal floating point

accelerator,‖ in Proc. 20
th
 IEEE Symp. Comput.

Arithmetic, Jul. 2011, pp. 139–146.

[6] L. Dadda, ―Multioperand parallel decimal adder: A

mixed binary and BCD approach,‖ IEEE Trans.

Comput., vol. 56, no. 10,pp. 1320–1328, Oct. 2007.

[7] L. Dadda and A. Nannarelli, ―A variant of a Radix-10

combinational multiplier,‖ in Proc. IEEE Int. Symp.

Circuits Syst., May 2008, pp. 3370–3373.

[8] L. Eisen, J. W. Ward, H.-W. Tast, N. Mading, J.

Leenstra, S. M. Mueller, C. Jacobi, J. Preiss, E. M.

Schwarz, and S. R. Carlough, ―IBM POWER6

accelerators: VMX and DFU,‖ IBM J. Res. Dev., vol.

51, no. 6, pp. 663–684, Nov. 2007.

[9] M. A. Erle and M. J. Schulte, ―Decimal multiplication

via carrysave addition,‖ in Proc. IEEE Int. Conf Appl.-

Specific Syst., Arch.,Process., Jun. 2003, pp. 348–358.

[10] M. A. Erle, E. M. Schwarz, and M. J. Schulte, ―Decimal

multiplication with efficient partial product generation,‖

in Proc. 17th IEEE Symp. Comput. Arithmetic, Jun.

2005, pp. 21–28.

[11] Faraday Tech. Corp. (2004). 90nm UMC L90 standard

performance low-K library (RVT).

[Online].Available:http://freelibrary.faraday-tech.com/

[12] S. Gorgin and G. Jaberipur, ―A fully redundant decimal

adder and its application in parallel decimal

multipliers,‖ Microelectron. J.,vol. 40, no. 10, pp. 1471–

1481, Oct. 2009.

[13] S. Gorgin and G. Jaberipur. (2013, May). ―High speed

parallel decimal multiplication with redundant internal

encodings,‖ IEEE Trans. Comput. vol. 62, no. 5,

[Online]. Available:

http://doi.ieeecomputersociety.org/10.1109/TC.2013.16

0

[14] L. Han and S. Ko, ―High speed parallel decimal

multiplication with redundant internal encodings,‖ IEEE

Trans. Comput., vol. 62, no. 5, pp. 956–968, May 2013.

Paper ID: SUB157036 2373

