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Abstract: In this paper, We propose an algorithm and architecture of a BCD parallel multiplier that exploits some properties of two 

different redundant BCD codes to speed up its computation. In this paper, we also develop new techniques to reduce the latency and 

area of previous representative high performance implementations. The Partial products are generated in parallel using a signed-digit 

radix-10 recoding of BCD multiplier with the digit set [-5, 5], and set of positive multiplicand multiples (0X, 1X, 2X, 3X, 4X, 5X) coded in 

excess-3 code(XS-3). This encoding has many advantages. First, it is self-complementing codes, so that a negative multiplicand multiple 

can be obtained by just inverting bits of the corresponding positive one. The available redundancy allows a fast and simple generation of 

multiplicand multiples in a carry free way. The partial products can be recoded to the overloaded BCD representation (ODDS) by just 

adding a constant factor into the partial product reduction tree. To show the advantages of our proposed architecture, we have 

synthesized a RTL model for 16 x 16-digit multiplications and performed a comparative survey of the existing representative designs. We 

show that the proposed multiplier has an area improvement roughly in the range 20-35 percent for similar target delays with respect to 

the fastest implementation. 
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1. Introduction 
 

DECIMAL fixed-point and floating-point formats are 

important in financial, commercial, and user-oriented 

computing, where conversion and rounding errors that are 

inherent to floating-point binary representations cannot be 

tolerated. The new IEEE 754-2008 Standard for Floating- 

Point Arithmetic, which contains a format and specification 

for decimal floating-point (DFP) arithmetic has encouraged 

a significant amount of research in decimal hardware. Since 

area and power dissipation are critical design factors in 

state-of-the-art DFPUs, multiplication and division are 

performed iteratively by means of digit-by-digit algorithms 

and therefore they present low performance. Moreover, the 

aggressive cycle time of these processors puts an additional 

constraint on the use of parallel techniques for reducing the 

latency of DFP multiplication in high-performance DFPUs. 

Thus, efficient algorithms for accelerating DFP 

multiplication should result in regular VLSI layouts that 

allow an aggressive pipelining. Hardware implementations 

normally use BCD instead of binary to manipulate decimal 

fixed-point operands and integer significands of DFP 

numbers for easy conversion between machine and user 

representations. BCD encodes a number X in decimal (non-

redundant radix-10) format, with each decimal digit Xi E 

[0,9] represented in a 4-bit binary number system. However, 

BCD is less efficient for encoding integers than binary, since 

codes 10 to 15 are unused. Moreover, the implementation of 

BCD arithmetic has more complications than binary, which 

lead to area and delay penalties in the resulting arithmetic 

units. A variety of redundant decimal formats and 

arithmetics have been proposed to improve the performance 

of BCD multiplication. The BCD carry-save format 

represents a radix-10 operand using a BCD digit and a carry 

bit at each decimal position. It is intended for carry-free 

accumulation of BCD partial products using rows of BCD 

digit adders arranged in linear or tree-like configurations. 

Decimal signed-digit (SD) representations rely on a 

redundant digit set {a; . . . ; 0; . . . ; a},5 <a < 9, to allow 

decimal carry-free addition.BCD carry-save and signed-digit 

radix-10 arithmetic offer improvements in performance with 

respect to nonredundant BCD. However, the resultant VLSI 

implementations in current technologies of multioperand 

adder trees may result in more irregular layouts than binary 

carry-save adders (CSA) and compressor trees. The 

overloaded BCD (or ODDS—overloaded decimal digit set) 

representation was proposed to improve decimal 

multioperand addition , and sequential and parallel decimal 

multiplications. In this code, each 4-bit binary value 

represents a redundant radix-10 digit Xi E[0, 15]. The 

ODDS presents interesting properties for a fast and efficient 

hardware implementation of decimal arithmetic.(1)it is a 

redundant decimal representation so that it allows carry-free 

generation of both simple and complex decimal multiples 

(2X, 3X, 4X, 5X, 6X,. . .) and addition, (2) since digits are 

represented in the binary number system, digit operations 

can be performed with binary arithmetic, and (3) unlike 

BCD, there is no need to implement additional hardware to 

correct invalid 4-bit combinations. A disadvantage with 

respect to signed-digit and self-complementing codes, is a 

slightly more complex implementation of 9’s complement 

operation for negation of operands and subtraction. In this 

work, we focus on the improvement of parallel decimal 

multiplication by exploiting the redundancy of two decimal 

representations: the ODDS and the redundant BCD excess-3 

(XS-3) representation, a self-complementing code with the 

digit set [-3, 12]. We use a minimally redundant digit set for 

the recoding of the BCD multiplier digits, the signed-digit 

radix-10 recoding [30], that is, the recoded signed digits are 

in the set {-5,-4,-3,-2,-1, 0, 1, 2, 3, 4, 5}. For this digit set, 

the main issue is to perform the x3 multiple without long 

carry-propagation (note that x2 and x5 are easy multiples for 

decimal and that x4 is generated as two consecutive x2 

operations). We propose the use of a general redundant BCD 

arithmetic (that includes the ODDS, XS-3 and BCD 
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representations) to accelerate parallel BCD multiplication in 

two ways: Partial product generation (PPG). By generating 

positive multiplicand multiples coded in XS-3 in a carry free 

form. An advantage of the XS-3 representation over non-

redundant decimal codes (BCD and 4221/ 5211) is that all 

the interesting multiples for decimal partial product 

generation, including the 3X multiple, can be implemented 

in constant time with an equivalent delay of about three 

XOR gate levels. Moreover, since XS-3 is a self-

complementing code, the 9’s complement of a positive 

multiple can be obtained by just inverting its bits as in 

binary. Partial product reduction (PPR). By performing the 

reduction of partial products coded in ODDS via binary 

carry-save arithmetic. Partial products can be recoded from 

the XS-3 representation to the ODDS representation by just 

adding a constant factor into the partial product reduction 

tree. The resultant partial product reduction tree is 

implemented using regular structures of binary carry-save 

adders or compressors. The 4-bit binary encoding of ODDS 

operands allows a more efficient mapping of decimal 

algorithms into binary techniques. By contrast, signed-digit 

radix-10 and BCD carry-save redundant representations 

require specific radix-10 digit adders. 

 

2. Redundant BCD Representations 
 

The proposed decimal multiplier uses internally a redundant 

BCD arithmetic to speed up and simplify the 

implementation. This arithmetic deals with radix-10 ten’s 

complement integers of the form: 

 
where d is the number of digits, sz is the sign bit, and Zi E [l 

– e,m- e] is the ith digit, with 

 
Parameter e is the excess of the representation and usually 

takes values 0 (non excess), 3 or 6. The redundancy index p 

is defined as p=m-l+1-r, being r=10. On the other hand, the 

binary value of the 4-bit vector representation of Zi is given 

by 

 
zi;j being the jth bit of the ith digit. Therefore, the value of 

digit Zi can be obtained by subtracting the excess e of the 

representation from the binary value of its 4-bit encoding, 

that is, 

 
Note that bit-weighted codes such as BCD and ODDS use 

the 4-bit binary encoding (or BCD encoding) defined in 

Expression (2). Thus, Zi =[Zi] for operands Z represented in 

BCD or ODDS. 

 

This binary encoding simplifies the hardware 

implementation of decimal arithmetic units, since we can 

make use of state-of-the-art binary logic and binary 

arithmetic techniques to implement digit operations. In 

particular, the ODDS representation presents interesting 

properties (redundancy and binary encoding of its digit set) 

for a fast and efficient implementation of multiper and 

addition. Moreover, conversions from BCD to the ODDS 

representation are straightforward, since the digit set of BCD 

is a subset of the ODDS representation. 

 

In our work we use a SD radix-10 recoding of the BCD 

multiplier [30], which requires to compute a set of decimal 

multiples ({-5X, . . . , 0X, . . . , 5X}) of the BCD 

multiplicand. The main issue is to perform the x3 multiple 

without long carry-propagation. 

 

For input digits of the multiplicand in conventional BCD 

(i.e., in the range [0, 9], e =0, p=0), the multiplication by 3 

leads to a maximum decimal carry to the next position of 2 

and to a maximum value of the interim digit (the result digit 

before adding the carry from the lower position) of 9. 

Therefore the resultant maximum digit (after adding the 

decimal carry and the interim digit) is 11. Thus, the range of 

the digits after the x3 multiplication is in the range [0, 11]. 

Therefore the redundant BCD representations can host the 

resultant digits with just one decimal carry propagation. 

 

An important issue for this representation is the ten’s 

complement operation. Since after the recoding of the 

multiplier digits, negative multiplication digits may result, it 

is necessary to negate (ten’s complement) the multiplicand 

to obtain the negative partial products. This operation is 

usually done by computing the nine’s complement of the 

multiplicand and adding a one in the proper place on the 

digit array. The nine’s complement of a positive decimal 

operand is given by 

 
The implementation of (9- Zi) leads to a complex 

implementation, since the Zi digits of the multiples 

generated may take values higher than 9. A simple 

implementation is obtained by observing that the excess-3 of 

the nine’s complement of an operand is equal to the bit 

complement of the operand coded in excess-3. 

 

 Table 1: Nine’s Complement for the XS-3 Representation 

 
In Table 1 we show how the nine’s complement can be 

performed by simply inverting the bits of a digit Zi coded in 

XS-3. At the decimal digit level, this is due to the fact that: 

 
for the ranges Zi E[-3,12] ([Zi] E [0, 15]). Therefore to have 

a simple negation for partial product generation we produce 

the decimal multiples in an excess-3 code. The negation is 

performed by simple bit inversion, that corresponds to the 
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excess-3 of the nine’s complement of the multiple. 

Moreover, to simplify the implementation we combine the 

multiple generation stage and the digit increment by 3 (to 

produce the excess-3) into a single module by using the XS-

3 code. 

 

In summary, the main reasons for using the redundant XS-3 

code are: (1) to avoid long carry-propagations in the 

generation of decimal positive multiplicand multiples, (2) to 

obtain the negative multiples from the corresponding 

positive ones easily, (3) simple conversion of the partial 

products generated in XS-3 to the ODDS representation for 

efficient partial product reduction. 

 

3. High-Level Architecture 
 

The high-level block diagram of the proposed parallel 

architecture for dx d-digit BCD decimal integer and fixed-

point multiplication is shown in Fig. 1. This architecture 

accepts conventional (non-redundant) BCD inputs X, Y , 

generates redundant BCD partial products PP, and computes 

the BCD product P =X x Y . It consists of the following 

three stages1: (1) parallel generation of partial products 

coded in XS-3, including generation of multiplicand 

multiples and recoding of the multiplier operand, (2) 

recoding of partial products from XS-3 to the ODDS 

representation and subsequent reduction, and (3) final 

conversion to a non-redundant 2d-digit BCD product. 

 
Figure 1: Combinational SD radix-10 architecture 

 

Stage 1) Decimal partial product generation. A SD radix-10 

recoding of the BCD multiplier has been used. This recoding 

produces a reduced number of partial products that leads to a 

significant reduction in the overall multiplier area. 

Therefore, the recoding of the d-digit multiplier Y into SD 

radix-10 digits Ybd-1, . . . , Yb0, produces d partial products 

PP[d-1], . . . , PP[0], one per digit; note that each Ybk 

recoded digit is represented in a 6–bit hot-one code to be 

used as control input of the multiplexers for selecting the 

proper multiplicand multiple, {-5X . . . ,-1X, 0X, 1X, . . . , 

5X}. An additional partial product PP(d) is produced by the 

most significant multiplier digit after the recoding, so that 

the total number of partial products generated is d+1. 

 

Stage 2) Decimal partial product reduction. In this stage, the 

array of d+1 ODDS partial products are reduced to two 2d-

digit words (A, B). Our proposal relies on a binary carrysave 

adder tree to perform carry-free additions of the decimal 

partial products. The array of d +1 ODDS partial products 

can be viewed as adjacent digit columns of height h< d + 1. 

Since ODDS digits are encoded in binary, the rules for 

binary arithmetic apply within the digit bounds, and only 

carries generated between radix-10 digits (4-bit columns) 

contribute to the decimal correction of the binary sum. That 

is, if a carry out is produced as a result of a 4-bit (modulo 

16) binary addition, the binary sum must be incremented by 

6 at the appropriate position to obtain the correct decimal 

sum (modulo 10 addition). 

 

Stage 3) Conversion to (non-redundant) BCD. We consider 

the use of a BCD carry-propagate adder to perform the final 

conversion to a non-redundant BCD product P =A+B. The 

proposed architecture is a 2d-digit hybrid parallel 

prefix/carry-select adder, the BCD Quaternary Tree adder. 

The sum of input digits Ai, Bi at each position i has to be in 

the range [0,18] so that at most one decimal carry is 

propagated to the next position i +1 . Furthermore, to 

generate the correct decimal carry, the BCD addition 

algorithm implemented requires Ai + Bi to be obtained in 

excess-6. Several choices are possible. We opt for 

representing operand A in BCD excess-6 (Ai e [0, 9], [Ai] = 

Ai + e, e =6), and B coded in BCD (Bi E [0, 9], e = 0). 

 

4. Decimal Partial Product Generation 
 

The partial product generation stage comprises the recoding 

of the multiplier to a SD radix-10 representation, the 

calculation of the multiplicand multiples in XS-3 code and 

the generation of the ODDS partial products. 

 

The negative multiples are obtained by ten’s complementing 

the positive ones. This is equivalent to taking the nine’s 

complement of the positive multiple and then adding1. As 

we have shown in Section 2, the nine’s complement can be 

obtained simply by bit inversion. This needs the positive 

multiplicand multiples to be coded in XS-3, with digits in [-

3; 12].The d least significant partial products PP[d-1], . . . 

,PP[0] are generated from digits Ybk by using a set of 5:1 

muxes, as shown in Fig. 2. The xor gates at the output of the 

mux invert the multiplicand multiple, to obtain its 9’s 

complement, if the SD radix-10 digit is negative (Ysk = 1). 

 
Figure 2: SD radix-10 generation of a partial product digit. 

 

A. Generation of the Multiplicand Multiples 

Fig. 3 shows the high-level block diagram of the multiples 

generation with just one carry propagation. This is 

performed in two steps: 
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Figure 3: Generation of a decimal multiples NX 

 

1)Digit recoding of the BCD multiplicand digits Xi into a 

decimal carry 0< Ti<Tmax and a digit -3< Di <12- Tmax, 

such as 

 

 
being Tmax the maximum possible value for the decimal 

carry. 

 

2) The decimal carries transferred between adjacent digits 

are assimilated obtaining the correct 4-bit representation of 

XS-3 digits NXi, that is 

 
The constraint for NXi still allows different implementations 

for NX. For a specific implementation, the mappings for Ti 

and Di have to be selected. Table 2 shows the preferred digit 

recoding for the multiples NX. 

Then, by inverting the bits of the representation of NX, 

operation defined at the ith digit by 

 
Replacing the relation between NXi and [NXi] in the 

previous expression, it follows that 

 

 
 

B. Most-Significant Digit Encoding 

The MSD of each PP[k], PP[dk], is directly obtained in the 

ODDS representation. Note that these digits store the carries 

generated in the computation of the multiplicand multiples 

and the sign bit of the partial product. For positive partial 

products we have 

 
with Td-1 E {0, 1, 2, 3, 4}. Therefore the two cases can be 

expressed as 

 

 
With 

 

Table 2: Preferred Digit Recoding Mappings for NX 

Multiples 

 
 

C. Correction Term 

The pre-computed correction term is given by 

 
 

D. Product Array 

Fig. 4 illustrates the shape of the partial product array, 

particularizing for d =16. Note that the maximum digit 

column height is d+1. 

 
Figure 4: Decimal partial product array generated for d =16 

 

5. Decimal Partial Product Reduction 
 

The PPR tree consists of three parts: (1) a regular binary 

CSA tree to compute an estimation of the decimal partial 

product sum in a binary carry-save form (S, C), (2) a sum 

correction block to count the carries generated between the 

digit columns, and (3) a decimal digit 3:2 compressor which 

increments the carry-save sum according to the carries count 

to obtain the final double-word product (A,B), A being 

represented with excess-6 BCD digits and B being 

represented with BCD digits. The PPR tree can be viewed as 

adjacent columns of h ODDS digits each, h being the 

column height (see Fig. 4), and h <d+1. 

 

Fig. 5 shows the high-level architecture of a column of the 

PPR tree (the ith column) with h ODDS digits in [0, 15] (4 

bits per digit). Each digit column of the binary CSA tree (the 

gray colored box in Fig. 5) reduces the h input digits and 

ncin input carry bits, transferred from the previous column 

of the binary CSA tree, to two digits, Si, Ci, with weight 10i. 

Moreover, a group of ncout carry outputs are generated and 

transferred to the next digit column of the PPR tree. 

Roughly, the number of carries to the next column is ncout = 

h-2. 
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Figure 5: High-level architecture of the proposed decimal 

PPR tree (h inputs, 1-digit column) 

 

The digit columns of the binary CSA tree are implemented 

efficiently using 4-bit 3:2, 4:2 and higher order compressors 

made of full adders. These compressors take advantage of 

the delay difference of the inputs and of the sum and carry 

outputs of the full adders, allowing significant delay 

reductions. Thus, there is a difference between the value of 

the carry outs generated at the i-column and the value of the 

carries transferred to the (i+1)-column. This difference, T, is 

computed in the sum correction block of every digit column 

and added to the partial product sum (S, C) in the decimal 

CSA. 

 
the contribution of the column i to the sum correction term T 

is given by 

 

Therefore, the sum correction is given by 

 
Consequently, the sum correction block evaluates Wix6. 

This module is composed of a m-bit binary counter and a x6 

operator. A straightforward implementation would use m = 

ncout and a decomposition of the x6 operator into x5 and x1 

(both without long carry propagations), and then a four to 

two decimal reduction to add the correction to the PPR tree 

result. 

 

6. Final Conversion to BCD 
 

The selected architecture is a 2d-digit hybrid parallel prefix/ 

carry-select adder, the BCD Quaternary Tree adder. The 

delay of this adder is slightly higher to the delay of a binary 

adder of 8d bits with a similar topology. 

 

The decimal carries are computed using a carry prefix tree, 

while two conditional BCD digit sums are computed out of 

the critical path using 4-bit digit adders which implements 

 

[Ai] + Bi+ 0 and [A] + Bi+1.  

 

These conditional sums correspond to each one of the carry 

input values. If the conditional carry out from a digit is one, 

the digit adder performs a -6 subtraction. The selection of 

the appropriate conditional BCD digit sums is implemented 

with a final level of 2 : 1 multiplexers. 

 

To design the carry prefix tree we analyzed the signal arrival 

profile from the PPRT tree, and considered the use of 

different prefix tree topologies to optimize the area for the 

minimum delay adder. 

 

7. Synthesis Results 
 

Finally, we present a more detailed comparison of the fastest 

BCD 16x16-digit combinational multipliers in terms of 

latency and area. The corresponding areadelay synthesis 

values are shown in Fig.6. 

 

 
Figure 10: Area-delay space for the fastest 16x16-digit 

mults. 

 

8. Simulation Results 
 

 
 

 
Figure 11: RTL Schematic 
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Figure 12: Internal RTL Schematic 

 

 
Figure 13: Technology Schematic 

 

9. Conclusion 
 

In this paper we have presented the algorithm and 

architecture of a new BCD parallel multiplier. The 

improvements of the proposed architecture rely on the use of 

certain redundant BCD codes, the XS-3 and ODDS 

representations. Partial products can be generated very fast 

in the XS-3 representation using the SD radix-10 PPG 

scheme: positive multiplicand multiples (0X, 1X, 2X, 3X, 

4X, 5X) are precomputed in a carry-free way, while negative 

multiples are obtained by bit inversion of the positive ones. 

On the other hand, recoding of XS-3 partial products to the 

ODDS representation is straightforward. The ODDS 

representation uses the redundant digit-set [0, 15] and a 4-bit 

binary encoding (BCD encoding), which allows the use of a 

binary carry-save adder tree to perform partial product 

reduction in a very efficient way. 
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