
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 7, July 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Cost Optimized Data Access with Rank-Join

Sudhir G. Chavan
1
, Vijay B. Patil

 2

1Department of Computer Science & Engineering, MIT (E) Aurangabad, 431028, Maharashtra, India

2Assistant Professor, Department of Computer Science & Engineering, MIT (E) Aurangabad, 431028, Maharashtra, India

Abstract: The prime task of search computing is to join the result of complex query plans. Join of complex query plan problem is

classified in the conventional rank aggregation i.e. combining different ranked lists of objects to produce single valid ranking. Rank-

join algorithms provide best overall results without accessing total objects in list. This paper describes further views on topic by

emphasizing the study and experiments on algorithms that operate with joining the ranked results produced by search services. The

rank-join problem is considered to be extending rank aggregation algorithm to the case of join in setting of relational database. On the

other hand search computing join diverges from orthodox relational concepts in many ways. Random and sorted access patterns are

used to access the services; accessing service is costly in terms of response time, because usually they are remotely located. The output is

returned in pages of answers and criteria is some top-k ranking function; multiple search services to answer the same query, user can

also redefine the search criteria. This paper proposes Cost Aware Rank-Join with Random and Sorted Access (CARS) methodology in

the context of rank join algorithms for the efficiency of search computing. Experimental results prove that CARS strategy outperforms

the existing methods of Data Access in terms of access cost.

Keywords: Top-k, Rank-Join, Cost Optimization, Query Optimization, Search Computing, TA Algorithm

1. Introduction

Search services uses different types of techniques to rank

query answers. Generally, users are only looking for most

important query answers, i.e. top-k answers, from bulk of

answers. Currently many emerging applications assure that

the effective support for top-k queries is there. For example,

the success rate of meta-search engines [1] [2] is directly

proportional to the use of effective rank aggregation

methods. The next challenge is to firmly combine the ranked

list of objects and create a single unanimous ranking for the

objects. Many applications produce top-k results by joining

& aggregating the results from multiple inputs.

Methods in this paper will concentrate on a special kind of

top-k processing techniques, i.e. rank-join algorithms [1],

which gets the top-k combinations from a data set that comes

from joining multiple data sources. These kind of top-k

processing techniques are very significant for answering

multi-domain queries. This involves the answers to be

extracted and combined from domain specific search system.

Finally, an aggregation function used to form global ranking

for every combined answer, so that algorithm can provide

answers with top score to user.

Figure 1: Rank-Join Query Example

The data set produces the output tuples sorted by some score;

here the score is certain field of tuples. The ranked list may

consist of large number of items represented in pages and

cost of accessing these kinds of pages is sometime become

intolerable. The objects in the list are retrieved by some

methods like sorted i.e. resulting a large list of objects ranked

by some function, or random i.e. resulting a limited set of

objects, not ranked but some condition over attribute is

fulfilled.

2. Issues of Search Computing

Search computing concentrates on answering complex search

queries combining data from several multi-domain search [2]

services on web or other platform. These combinations are

ranked and joined by some score attached to them. Every

combination has a score, usually computed by some

aggregation function over scores of every data elements.

Mostly users only browse the top answers sorted by score. A

simple but effective way is, first fetching the data elements

from the data sets, second results are joined to form the

combinations, third compute the score of every combinations

and finally ordering the combinations by their scores. The

basic concepts of rank join algorithms are to explore situation

where the input data sets, i.e. relational data table, are already

sorted by some score. That is why solution can be proposed

to avoid the retrieving of tuples because the top-k

combinations of answers can already be formed. The major

task then of the conventional rank join algorithms [1], [5],

[7] is to optimize or minimize the input/output cost with

respect to extremely simple join and sort approach discussed

earlier.

Fig. 1 describes a Rank-Join Query example in which two

services are used namely Hotel and Restaurant. Hotel service

has attributes like HotelName, Location, Street and Stars.

The data of this service is ranked by Stars. The other service

Restaurant has similar attributes like RestaurantName,

Location, Street, and Rating. Restaurants are ranked by Users

Rating. In this example the results from each service is

filtered, sorted, ranked and joined by using Rank-Join

Algorithm.

Rank join algorithms are very important aspects of search

computing along with that we also need to analyze the

individual characteristics search computing especially when

Paper ID: SUB157003 2199

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 7, July 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

operating data sets are dynamic search services rather than

relational database tables. In next section we will see an

overview of core concepts that elaborate search computing

framework [2].

a) Access Pattern- Search services have some limitation like

input to some fields is compulsory to give to get the results.

To deal with this kind of restriction, we consider that each

service is characterized by a given number of combinations

of input and output parameters, called access patterns,

pointing it to different ways that it can be retrieved. Access

pattern is not handled by search computing framework

therefore search computing must define a access strategy for

its requirements.

b) Access Cost- Extraction of data is costly and should be

handled by effective rank join algorithms i.e. fetching data

must be cost optimized. Access cost is partially depends on

invoked services and applied access methods. Random and

sorted access methods are available methods in context of

rank join problem.

Sorted access method retrieves tuples that are sorted by some

score and result is open to all search services, but for every

new call results in a page of data elements instead of a tuple.

In some situation, only one ranking criteria might be present

for sorted access to search service. For example, consider a

query that aims to find hotels by its stars, like 3 stars or 5

stars, but instead available service can only retrieve the

results ordered by its nearest location from airport. In such

situation if relation between the stars and location can be

mapped then rank join algorithms might find themselves

useful to answer such queries.

Random access extracts tuples that relates to a given object,

e.g. all the Chinese cuisine restaurants in the city of Mumbai

and permits to terminate rank join algorithm early when it is

available, and thus lessening the number of input/output

operation. In a relational setting, random access can be

provided by building an index on top of one of the attributes

of a table. This is not a suitable option when operating in

search computing. However, when a search service, say

s1,only provides sorted access, it is to some extent possible to

obtain random access by invoking another search service, say

s2,returning data items of the same kind, although s2 might be

characterized by a different access cost and contain only a

subset of the data items of s1 Moreover, random access in

search computing framework might return a subset of data

items sorted by score and organized in pages instead of

returning all data elements that refers to given object.

c) Redundancy of Data Sources- There may be different

search services which can be potentially invoked to answer

identical or similar queries. Consider, for example, the

excessive number of identical services that looks for movies.

Such a redundant availability of data sources comes with no

additional cost in search computing framework. If correctly

managed, it can be positively used in two ways: one,

improving the system response time and second, the

robustness to time-varying access costs or service failures.

Regarding first goal, parallel invocation of multiple services

can be implemented. The availability of multi-domain search

services, each referred by its access cost, may provide

random access when single service is not able to do so.

d) Users in the Loop- The queries proposed by users of a

search computing system can be formed at runtime to help

satisfying the user’s information requirement. The liquid

queries concept portrays a set of operations that can be

performed at the client side. Some of these operations do not

require communication with the remote search services, since

they only impact the visualization of data already available at

the client side. Others require extraction of additional data

from remote services. For example, the user might want to

dynamically modify the aggregation function. In a weighted

sum, this is achieved by changing the weights assigned to the

different search services. In order to preserve the guarantee

of displaying the top results, further data might need to be

extracted. If a statistical model describing the user interaction

with the weights can be given, then rank-join algorithms can

be adapted to pre-fetch the data items that are more likely to

be used and store them in a cache at the client side.

Costs: Cost is associated with each result which when we

expect from the search service such that cost of invoking a

result. Cost may vary for different services; similarly it also

depends on which access pattern we use for fetching the

results from search services. We have seen two types of

accesses, one is sorted access & other is random access, so

does exist cost of access i.e. sorted access cost sci and

random access cost rci [1]. These costs may correspond to the

average service response time.

3. Rank-Join Query Processing

In Top-k join query model, the scores are assumed to be

associated to join results rather than base tuples. A top-k join

query joins a set of relations based on some subjective join

condition, assigns scores to join results based on some

scoring function, and provides the top-k join results. A rank-

join algorithm implementation is given in [1] [11].

Figure 2: Rank-Join Query Processing

Fig. 2 describes the working of execution and work flow of

Rank-Join query. First through interface the query is taken as

input then the processing on that query begins where

appropriate pulling strategy is applied for accessing data. In

Paper ID: SUB157003 2200

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 7, July 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

this case cost optimized random and sorted access is applied

which uses Rank-Join Algorithm. Finally after all processing

the top answers are fetched and reported back to the user.

3.1 Overview of Rank-Join Algorithm

The Rank-join algorithm work on four tuples (R1, R2, S, k)

where R1 and R2 are the two relations located in different

database and accessed with sorted access, in decreasing order

of S, and random access, based on an input join attribute

value. S is a scoring function scoring function upon which

the join results are being ranked. k is value between 1 and

total number of join result of R1 and R2 i.e. top-k answers and

k is any positive integer. A solution is an ordered relation O

containing the top-k combinations from R1 join R2 ordered

by S.

Now the outline for the Rank-Join Algorithm as follows. The

input for Rank-Join Algorithm is two relations R1 and R2. S is

the scoring function. The result size is. k. The most likely

output will be the top-k combination from R1 and R2 with

highest aggregate score. The data necessary will be buffers

i.e. P1, P2, RB1, RB2 and O. The P1 and P2 are buffers to hold

the data from two relations R1 and R2 respectively. The RB1

and RB2 buffers will be required to hold the sorted and

filtered results with upper bound and lower bound from two

relations R1 and R2 respectively. A solution is an ordered

relation O containing the top-k combinations from R1 join

R2 ordered by S.

At beginning the upper bound is not known and the buffers,

P1, P2, RB1 and RB2, will be null. Retrieve tuples from R1

and R2 and sort them in descending order of their individual

score. For every new retrieved tuple following operations

will be performed. First, new valid join combination between

tuples of both relations is produced. Second, for every new

join combination compute the score by using some

predefined score aggregation function. The algorithm

preserves a threshold T bounding the scores of join results

that are not found yet. The top-k join results are acquired

when the minimum score of the k join results with the

maximum score values is not below threshold T. the Rank-

Join algorithm maintains the scores of the completely seen

join combinations only. As a result, the Rank-Join algorithm

reports the exact scores of the top-k tuples. This procedure

will continue till new combination that has a score of exactly

equal to the lower bound or given limit is found. As soon as

this happens the algorithm stops and gives the top-k

combination as final result.

3.2 Rank-Join query plan

Fig. 2 depicts the query plan generated by Rank-Join

Algorithm. The join expression is a kind of a rank join

operator. Rank operators pipeline their outputs by upper

bounding the scores of their unseen inputs, allowing for

consuming a small number of tuples in order to find the top-k

query results. Rank operators need to be integrated with

query optimizers to be practically useful. Top-k queries often

involve different relational operations such as joins,

selections and aggregations. Building a query optimizer that

generates efficient query plans satisfying the requirements of

such operations, as well as the query ranking requirements, is

vital for efficient processing.

Figure 3: Rank-Join Query Plan

An observation that encourages the need for integrating rank

operators within query optimizers is that using a rank

operator may not be always the best way to produce the

required ranked results.

The plan enumeration phase of the query optimizer is

extended to allow for mixing and interleaving rank operators

with convectional operators, creating a rich space of different

top-k query plans.

3.3 HRJN

A two-way hash join implementation of the Rank-Join

algorithm, known as Hash Rank Join Operator (HRJN), is

presented in [11]. HRJN is based on symmetrical hash join.

HRJN operator [11] keeps a hash table for each relation that

is in the process of join, and a priority queue is also

maintained to buffer the join results in the order of their

scores. The hash tables contains input tuples seen so far and

are used to compute the valid join answers. The HRJN

operator implements the old-fashioned iterator interface of

query operators, which comprise two methods: Open and

GetNext [11]. The Open method is liable for initializing the

necessary data structure; the priority queue Q, and the left

and right hash tables.

In [4], an enhancement of HRJN algorithm is provided where

a dissimilar bounding scheme is used to compute the

threshold T. This is accomplished by computing a feasible

region in which unseen objects may exist. Feasible region is

computed upon the objects seen so far, and knowing the

possible range of score predicates. The algorithm reports the

next top join result as soon as the join result at queue top

includes an object from each ranked input.

4. Cost Optimized Approach

This paper introduce CARS (Cost Aware rank join with

Random and Sorted access), a pulling strategy described at

compile time that takes into account access costs. The pulling

strategy is attained by solving an optimization problem that

seeks to minimize the cost incurred by Rank-Join Algorithm

Paper ID: SUB157003 2201

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 7, July 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

to find a target number of top combinations. Formally,

following problem is resolved:

Minimize
1 2(n ,n)C

Subject to
1 2(n , n) KTK with [0, N]i in N …. (1)

Where
1 2(n ,n)K

denotes the expected number of

combinations that can be formed by retrieving ni tuples from

service si by means of sorted accesses only,
1 2(n ,n)C is the

related likely cost of execution of both sorted and random

accesses, i.e., those desired to find the top-k combinations

according to Rank Join Algorithm, and KT is a target number

of combinations. Both prospects are taken with respect to all

the possible ways of composing the tuples returned by the

services. Note that problem/equation (4) does not constrain

the number of top combinations directly, but rather the

expected number
K

 of combinations constructible using

sorted access only. These may be taken as good combinations

since, being fetched by sorted access; they have high scores

both for s1 and the s2 sub tuples. The rationale behind this

choice is that

1) This optimization does not require any information about

the score distribution, which might be difficult to obtain;

2) When K good combinations are found after sorted access

by Rank Join Algorithm at least K top combinations (which

include all the K good combinations) will be formed with

random access.

Similarly, solve the problem of maximizing the number of

top-k combination to be found, as:

Minimize
1 2(n ,n)K

Subject to
1 2(n , n) TC C , with [0, N]i in N …. (2)

Where, K and C
are as declared before and

TC is the target

cost.

4.1 Cost Constraint Formulation

In order to find the top-k combinations, now make random

accesses. For that it is essential to retrieve the tuples in s2

whose join value appeared at least once in the first n1 tuples

of s1, and vice versa. Top combinations are essentially

included in the union of the combinations formed after the

sorted accesses and random accesses.

In the following, assume that the cost of retrieving the tuples

dominates over the cost of computing the combinations and

their scores [10]. This is sensible in this context, since

services are typically accessed remotely on the web. This

Paper implements the following additive cost model:

1 2 1 1 2 2 2 1 1 1 2 2(n , n) sc sc (n) rc (n)C n n rc j j

…… (3)

Where
isc is the unitary sorted access cost (per tuple),

irc is the unitary random access cost (per distinct join

attribute tuple), and

(n)i ij is the number of distinct join attribute tuples retrieved

from
is .

Note that the random access cost of
1s rest on on

irc and

on (n)i ij , and vice versa.

In order to solve the query optimization problem formulated

above, which refers to a single rank-join operator on two

services, CARS described a cost model that illustrates the

cost function C(n1, n2). Most of the previous literature on

rank-join adopts a simple additive model, whereby the cost is

defined as the sum of the costs of all I/O operations. Both

sorted and random access (whenever available) costs need to

be taken into account, meanwhile they are possibly

characterized by heterogeneous costs, because of the fact that

random accesses might potentially refer to data that is stored

in other external data sources. While this approach is still

applicable in the context of search computing, we want to

take benefit of the fact that services are typically available at

remote servers. Therefore, more flexibility is given in the

way services can be invoked, i.e. by exploiting parallel

invocation. Nevertheless, parallelism also influences both the

actual execution strategy and the cost model that drives the

query optimization and these problems are carefully

addressed in ours cost model.

5. Experiments

Examine the overall cost to return the top-k combination

when applied Rank-Join search that has CARS (Cost Aware

Random and Sorted) Access which uses the Rank-Join

Algorithm. This experiment conducts analysis on real data

sets. For now assess the impact of parameters i.e. Top-k

Combinations, Score Distribution and Overall Cost.

Data Sets: Firstly consider two services which provide both

sorted and random access. The first service is “hotel” for

hotels as s1 and “restaurant” for restaurants as service s2.

The service and available access patterns lets us requesting

hotels by sorted access ranked by stars in descending order

from luxury hotels down to hotels with no stars, and by

random access by searching for hotels in a given street.

Results are paginated with page size P1=23 tuples/page. The

total number of tuples of s1 is N1=516, the number of distinct

join values i.e. different streets is J1=186. The average

number of hotels per street is Q1=2.77.

The service s2 can be invoked by sorted access returning

restaurants ranked by customer rating in the [0, 10] range and

by random access by searching for restaurants in a given

street.

Search results are paginated with a page size P2=20

tuples/page. The total number of tuples of s2 is N2=509, the

number of J2=171. The average number of restaurants per

street is Q2=2.97.

Methods: Test two different pulling strategies applied to

rank join algorithm, endowed with both random and sorted

access:

1) Round Robin:

Paper ID: SUB157003 2202

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 7, July 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

It’s alternating Sorted Access to s1 and s2. This pulling

strategy is well-defined by “HRJN” [11] and Fagin’s

“Combined Algorithm” as regards sorted access. Fagin’s

“Combined Algorithm” forces to perform all random

access. When two services are characterized by dissimilar

page sizes, the round robin strategy is adapted to select the

service with the least depth, so as to make sure that both

services are explored up to same depth.

2) Score-Aware (SA)

 Score-Aware strategy [9] that decides which service to

access next based on the scores of the retrieved tuples by

comparing their bounds. This strategy is used in

HRJN*[10]. SA produces better results but takes much

more time i.e. Cost is higher in compare with Round

Robin.

3) Cost-Aware with Random and Sorted Access (CARS):

 CARS is the pulling strategy that defined in previous

section. In this particular data access method aim is to

minimize the COST at the same time maximizing the Top-

k combinations to be found.

When given the input of P1 23 and P2 20, CARS along with

Rank-Join algorithm is used to generate the results then to

find the top 100 hotel restaurant combination in just 15

miliseconds. In comaparison with the results of Round Robin

Strategy, Round Robin takes 39 miliseconds.

Figure 4: Top-k hotel restaurant combination on given street

Result Analysis: The Results obtained on the given datasets

are shown in fig 3.

As CARS strategy generates way better results than Round

Robin method. Now in the following section overlook the

individual parameters i.e. page size, top-k combinations

found, score distribution and cost.

Page Size – page size is individual & one kind of input

parameter. Search services usually return the results in pages,

the number of results on each page may be large sometimes.

For that reason characterize the search service result with a

page size Pi.

Top-k combinations found – Fig. 5 shows the result of

CARS method and Round Robin method when required to

find top-k hotel restaurants. As given in figure when given

the input of P1=23 and P2=20, CARS is able to find top-100

combinations where Round Robin is only able to find 20

combinations. This Experiment has tested the result with

many different inputs still CARS produces better results in all

cases.

Figure 5: Top-k combination found

Score Distribution – Fig. 6 depicts the results of score

distributions of CARS and Round Robin method. In score

distribution the maximum score is actually the score of the

top most combination and minimum score is score of low

most combination. The formula to calculate the score is Hotel

star * Restaurant rating. The score distribution of CARS

methodology is way better than Round Robin. The maximum

score generated by CARS is 50; this is highest score that can

generate in any case using any methodology. The minimum

score generated by CARS is 21. Where, Round Robin

method generates the maximum score of 20 and minimum

score of 5. Though given the different inputs CARS is able to

produce long range of score distribution. So CARS method

has long range to produce the top-k combination while

Round Robin, in comparison, has very narrow range to

produce the top-k combination.

Cost – Cost is the most important and algorithm defining

factor here, upon this cost parameter experiment is able to

prove which methodology is better. As in fig. 7 we can

observe that, after the execution the Round Robin method

takes 39 MS to execute and produce the result. While on the

other hand CARS methodology which uses Rank-Join

algorithm is able to produce the required top-k combination

in 15 MS. So in comparison CARS method is way ahead of

Round Robin.

Paper ID: SUB157003 2203

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 7, July 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 6: Score Distribution

Figure 7: Overall Cost

From the results of CARS methodology and the performance

analysis seen in the previous figures CARS Method has

produced a cost optimized strategy that uses rank-join

algorithm. The performance of CARS method is cost

optimized.

6. Related work

Threshold algorithm [8] scans multiple lists, showing

different rankings of the same set of objects. An upper bound

T is maintained for the overall score of unseen objects. The

upper bound is computed by applying the scoring function to

the partial scores of the last seen objects in different lists.

Each newly seen object in one of the lists is looked up in all

other lists, and its scores are aggregated using the some

scoring function to get the overall score. All objects with

total scores that are greater than or equal to T can be

reported. The algorithm halts after returning the K
th

 output.

The Rank-Join algorithm [1] [8] integrates the ranking and

joining tasks in one efficient operator. Rank-Join Algorithm

describes the main Rank-Join procedure. The Rank-Join

algorithm scans input lists (the joined relations) in the order

of their scoring predicates. Join results are discovered

incrementally as the algorithm moves down the ranked input

relations. For each join result j, the algorithm computes a

score for j using a score aggregation function F. The

algorithm maintains a threshold T bounding the scores of join

results that are not discovered yet. The top-k join results are

obtained when the minimum score of the k join results with

the maximum F() values is not below the threshold T.

7. Conclusion

Encouraged by the goal of answering multi-domain queries

with cost optimization propose an execution strategy in this

paper, which retrieves top-k combinations that can be formed

by joining the results of heterogeneous search services. By

using random and sorted access this paper have defined

optimized cost aware strategy with an additive cost model.

This paper have successfully implemented Rank-Join

algorithm to achieve optimality in terms of cost as well as

accuracy by using both access methods i.e. random and

sorted data access.

In the future work, the query optimization framework can be

extended to the non-additive cost model that will access the

services in parallel along with pipelining the joins.

References

[1] Davide Martinenghi, Marco Tagliasacchi, “Cost-Aware

Rank Join with Random and Sorted Access,” IEEE

TRANSACTIONS ON KNOWLEDGE AND DATA

ENGINEERING, VOL. 24, NO. 12, DECEMBER 2012.

[2] Search Computing - Challenges and Directions, M.

Brambilla and S. Ceri, eds. Springer, Mar. 2010.

[3] Nicolas Bruno, Surajit Chaudhuri, Luis Gravano, “Top-k

selection queries over relational databases: Mapping

strategies and performance evaluation” ACM

Transactions on Database Systems 27(2), 153–187 2002.

[4] Karl Schnaitter, Neoklis Polyzotis, “Evaluating Rank

Joins with Optimal Cost,” ACM 978-1-60558-108-

8/08/06, Vancouver, BC, Canada, 2008.

[5] Christian A. Lang, Yuan-Chi Chang, John R. Smith,

“Making the Threshold Algorithm Access Cost Aware”

IEEE TRANSACTIONS ON KNOWLEDGE AND

DATA ENGINEERING, VOL. 16, NO. 10, OCTOBER

2004.

[6] Jonathan Finger, Neoklis Polyzotis, “Robust and

Efficient Algorithms for Rank Join Evaluation”

SIGMOD’09, June 29–July 2, 2009, Providence, Rhode

Island, USA, ACM 978-1-60558-551-2/09/06, 2009.

[7] Reza Akbarinia, Esther Pacitti, Patrick Valduriez, “Best

Position Algorithms for Top-k Queries” ACM 978-1-

59593-649-3/07/09, VLDB ’07, September 23-28,

Vienna, Austria, 2007.

[8] IHAB F. ILYAS, GEORGE BESKALES, and

MOHAMED A. SOLIMAN, “A Survey of Top-k Query

Processing Techniques in Relational Database Systems”,

ACM Comput. Surv. 40, 4, Article 11, ACM 0360-

0300/2008/10-ART11, October 2008.

[9] J. Finger and N. Polyzotis, “Robust and Efficient

Algorithms for Rank Join Evaluation,” Proc. 35th ACM

SIGMOD Int’l Conf. Management of Data, pp. 415-428,

2009.

[10] K. Schnaitter, J. Spiegel, and N. Polyzotis, “Depth

Estimation for Ranking Query Optimization,” Proc.

ACM SIGMOD Int’l Conf. Management of Data

(VLDB), pp. 902-913, 2007.

Paper ID: SUB157003 2204

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 7, July 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[11] I.F. Ilyas, W.G. Aref, and A.K. Elmagarmid,

“Supporting Top-k Join Queries in Relational

Databases,” VLDB J., vol. 13, no. 3, pp. 207-221, 2004.

Author Profile

Sudhir G. Chavan has received the B.E. degree in

Computer Science and Engineering from Marathwada

Institute of Technology, Aurangabad, Maharashtra,

India in 2010. During 2011-12 he worked as a lecturer

in Maharashtra Institute of Technology, Aurangabad. He is

currently pursuing Master of Engineering in Software Engineering

with dissertation topic on Cost Optimized Data Access with Rank-

Join. His area of interest for research is Database management

system, Query processing and Optimization, ranking queries.

Vijay B. Patil has received the B.E. and M.E degree in

Computer Science and Engineering in 2004 and 2010

respectively. He has total 10 years of Experience. His

research work area is Database Management and Data

mining.

Paper ID: SUB157003 2205

