
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 7, July 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Secured Load Rebalancing for Distributed Files

System in Cloud

Jayesh D. Kamble
1
, Y. B. Gurav

2

1IInd Year ME, Department of Computer Engineering, PVPIT, Savitribai Phule Pune University, Pune , India

2Associate Professor, Department of Computer Engineering, PVPIT, Savitribai Phule Pune University, Pune , India

Abstract: In cloud computing application, distributed file system is very core technology. The file system is used for node storage and

performs many functionalities of computing applications, such applications is rely on the MapReduce programming and having a

number of chunks that are allocated in each nodes. A node accepts the MapReduce program that performs in parallel. Failure of nodes

may be recovered in cloud computing environment also replaced and added the nodes. In computing environment, it dynamically

created, added, deleted or modified the files also in the nodes It results in load imbalance in a distributed file system; that is, the file

chunks are not distributed correctly among all the nodes . This overall performance carried out in load rebalancing and that should be

in distributed file system. But in cloud computing application dynamically load rebalancing is a challenging problem, so for this load

rebalancing has the more efficiency that makes cloud computing more efficient and improves user satisfaction. It includes scalability,

flexibility, fault tolerance, high availability, reduced overhead for users, reduced cost of ownership, on demand services etc. For load

imbalance we proposed a secure and highly developed load rebalancing algorithm that merges with the RSA encryption algorithm. The

appearance of showing result that performs the survey of distributed system in terms of security parameters for our proposed scheme.

For our propose work we are implementing in distributed file system of the Hadoop which is help the progress of investigated the

natural world for a cluster.

Keywords: Cloud Computing; MapReduce; HDFS; Security; Load Rebalancing

1. Introduction

The term “Cloud computing” is, which involves

virtualization, distributed computing, networking, software

and web services. A cloud consists of several elements such

as clients, datacenter and distributed servers. It includes fault

tolerance, high availability, scalability, flexibility, reduced

overhead for users, reduced cost of ownership, on demand

services etc. Central to these issues lies the establishment of

an effective load balancing algorithm. The load can be CPU

load, memory capacity, delay or network load. Load

balancing is the process of distributing the load among

various nodes of a distributed system to improve both

resource utilization and job response time while also

avoiding a situation where some of the nodes are heavily

loaded while other nodes are idle or doing very little work.

Load balancing ensures that all the processor in the system

or every node in the network does approximately the equal

amount of work at any instant of time. Load balancing in

cloud computing systems is really a challenge now. Always

a distributed solution is required. Because it is not always

practically feasible or cost efficient to maintain one or more

idle services just as to fulfill the required demands. Jobs

can’t be assigned to appropriate servers and clients

individually for efficient load balancing as cloud is a very

complex structure and components are present throughout a

wide spread area. Here some uncertainty is attached while

jobs are assigned. The scope of the project is to identify the

load rebalancing problem in distributed file systems

specialized for large scale, dynamic and data-intensive

clouds. A large-scale cloud has hundreds or thousands of

nodes (and in the future may reach tens of thousands).The

main aimis to allocate the chunks of files as uniformly as

possibleamong the nodes such that no node manages an

excessivenumber of chunks. However, most of the existing

solutionspresent are designed without considering both

movement cost and node heterogeneity. In contrast, our

proposal not only takes advantage of physical network

locality in the reallocation of file chunks to reduce the

movement cost but also exploits capable nodes to improve

the overall system performance.

Figure 1 : An example illustrates the load rebalancing

problem,

Where (a)an initial distribution of chunks of six files f1, f2,

f3, f4, f5, and f6 in three

nodesN1, N2, and N3, (b) files f2 and f5 are deleted, (c) f6 is

appended, and

(d) node N4 joins. The nodes in (b), (c), and (d) are in a

load-imbalanced state.

2. Literature Survey

2.1 MapReduce: Simplified Data Processing On Large

Clusters [4]

A programming model of MapReduce is used for many

different intended result of an action at Google side and also

used to produce and a series of actions to achieve a large

scale datasets in distributed file system. Map and Reduce are

the two functions which is used in this programming model.

Paper ID: SUB156753 1721

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 7, July 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

The working of these two functions are, Map function is to

produce a set of key pairs coming between in place or order,

whereas Reduce function combines into a set of key pair of

that values which is occurs together with coming between

key values in place or order in a identical manner. The

performance of parallelize operation is to easy and re-

execute a system of parts in a machine for fault tolerance in

the function of map and reduce. In the execution time, when

system maintains their whole information. This is the

division of input data into parts, a time table of an event of

the program execution across number available machines,

deal with failures and producing intercommunication

between machines. The nodes are in parallel which performs

to compute and the storing operation in the distributed file

system. The large file is the division of chunks into a

number of parts and assign it to definite nodes to make a

MapReduce operation is parallel over nodes. Typically, the

processing of task for MapReduce is on many terabytes of

the information/data of much more different machines.

2.2 The Google File System [8][10]

 The file system is scalable distributed file system for a great

size of distributed data concentrated application.

Implementation of the Google file system is based on a

characteristic of supporting a great size of scalable

distributed data processing workload on valuable hardware.

The file system supplies fault tolerance by repeatedly testing

the operation, very importance data is an exact copy, fast

and automatic recovery and italso handover high

performance which is a whole combines several elements of

the great number of users. In this there are hundreds of

terabytes of storing operations across millions of disk on

over a millions of machines for their largest cluster also it is

concurrently performance with the thousands of users. In a

Google file system cluster having aindividual master and

numerous chunk server and is performs a numerous users.

The system includes the namespace, control information, the

current location of chunks and the mapping from files

tochunks. The control of the system which is an

management of the chunk leases, unused collection of

orphans to chunks. Chunks are move from one side and

settle in another side which they between in the chunk

servers. Each chunk servers are communicated between the

master and the chunk server is place at the master message

called as HeartBeat message which is passes the instruction

and also bring its state.

2.3 Chord: A Scalable Peer-To-Peer Operation Protocol

for Web Application

 For web application Scalable Peer-To-Peer Operation is

used. An elementary drawback that confronts peer-to-peer

applications is that the economical location of the node that

stores a desired information item. Drawbacks of peer-to-peer

applications are to stored item desired information for

economical location of the node. In this paper we overcome

this drawback using distributed operation protocol. Chord

provides support for single operation: set a key, it maps the

key onto a node. Information location is simply enforced on

prime of Chord by associating a key with every information

item, and storing the key/data combines at the node to that

the key maps. Nodes are adopt by chord expeditiously and

leave the system, and may answer queries even though the

system is continuously dynamical. Results from simulations

and theoretical analysis shows that Chord is scalable:

communication price and therefore the state maintained by

every node scale logarithmically with the amount of Chord

nodes.

2.4 Load Balancing Algorithm for DHT Based

Structured Peer to Peer System [14]

 P2P system depends upon the DHT which offers abstraction

for object storage and retrieval. Various solutions has been

proposed for DHT based P2P system to tackle the load

balancing issue. But on the other hand, several solutions

either ignore the shift loads among nodes without

considering heterogeneity nature of the system, proximity

relationships or, both. The aim is to make sure even load

distribution over nodes proportional to their capacities, and

transferring virtual servers between heavily loaded nodes

and lightly loaded nodes in a proximity-aware fashion for

minimize the load-balancing cost. a proximity-aware load

balancing scheme having the two main advantages and they

are, from system viewpoint ,can reduce the bandwidth

consumption for load balancing scheme dedicated to load

movement. Another it can stay away from transferring loads

across high latency wide area links, thereby quick response

to load imbalance and enabling fast convergence on the load

balance.

2.5 Histogram-Based Global Load Balancing in

Structured Peer-to-Peer Systems[9]

 A new era, called Histogram-based Global Load Balancing

(HiGLOB) to assist global load balancing in structured P2P

systems. for each node P in HiGLOB there are two key

components. the first component is The histogram manager ,

it conserves a histogram that replicates global view of the

distribution of the load in the system. It is used to determine

if a node is normally overloaded, loaded, or under loaded.

The load balancing administrator is second component of the

system, which takes arrangements to reallocate the load

whenever a node becomes overloaded or under loaded. The

load-balancing administrator may reallocate the load both

statically when a new node links the system and dynamically

when an surviving node in the system becomes overloaded

or under loaded. Here author presented two techniques that

decrease the preservation cost and decrease the cost of

histogram creation. Creating ahistogram for a new node may

be more costly since it requireshistogram information from

all its neighbour nodes. Moreover,the histograms of the new

node’s neighbours also essential to beupdated since count a

new node to a group of nodes deviationsthe regular load of

that group. To barrier the system into nonoverlappinggroups

of nodes and preserve the average load ofthem in the

histogram at a node. The dropping of overhead ofpreserving

and creating histograms by the planned techniquesare used.

3. Existing System

Distributed file system like Google GFS [8] and Hadoop

HDFSin clouds depend on central nodes to control the

metadatain order of the file system and to balance the loads

Paper ID: SUB156753 1722

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 7, July 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

ofstorage nodes based on that metadata. The centralized

approachsimplifies the design and implementation of a

distributed filesystem. But, recently we examine that when

the number ofaccesses, the number of files and the number

of storage nodesto files increase linearly, the central nodes

(e.g., the masterin Google GFS) become a performance

bottleneck, as they areincapable to put up a large number of

file accesses due to MapReduce applications. The module

servers may be replaced orupgraded and added in the system

because of the node failure.Let F is the set of files, Files in F

may be randomly created,appended and deleted. In view of a

large-scale distributedfile system containing a bunch of

module servers M in acloud. Each file f has fixed-size

modules and partitioned intoa number of disjointed.

Surviving results to balance load inDHTs incur a high

overhead either in terms of load or interms of routing state

movement generated by nodes arrivingor departing the

system. All DHTs create some effort to loadbalance, usually

by(i) making each DHT node responsible for a stable portion

ofthe DHT address space (ii) randomizing the DHT address

associated with each item with a good enough hash function.

First, the typical random partition of the address space

among nodes is not completely balanced. a larger portion of

arbitrarily distributed items are received because some nodes

are end up with a large portion of the addresses. The even

distribution of items is the key problem with DHTs. so as a

result is uneven distribution of module servers [14].

A. Drawbacks of Existing System

 High Movement Cost

 High Network Traffic

 Algorithm Overhead

 Load Imbalance

 Relying on Central Node

 Security difficulties

4. Proposed System: Load Rebalanced

Architecture

In our proposed system our main objective is to allocate the

chunks of files as uniformly as possible among the nodes

such that no node manages an excessive number of chunks.

In Figure 2. Our proposed system we will be able to

rebalancing of node dynamically. And the most important

part is security that we can provide while rebalancing of load

in distributed file system. The security features in CDH4

enable Hadoop to prevent malicious user impersonation.

And in end-to-end system we are going to used MD5

encryption algorithm for data security.

Figure 2: Load Rebalanced System Architecture

Advantages of Proposed System

 Deploy wide-range and failure error domain

 Reduce Network Traffic or Movement Cost

 Maximize the Network Bandwidth

 Improve overall System Performance

 Utilizes Physical Network Locality

 Better throughput and response time

 System consistency (i.e., avoid data loss)

 Excellent security

 Picking lead of node heterogeneity

 Extends resource utilization

5. Algorithms

Algorithm: LoadCalculation(Vid)

Input : provide VM id as Vid

Step 1: user select VM id from available VM’s

Step 2: calculate CPU time and memory allocation by VM

Step 3: calculate load on performance as VL

Step 4: return VL

Output : CPU load in %

Algorithm: Chunk creation

Input: Text files from user Ti

Step 1: user selects Ti randomly

Step 2: initialize [] TotServers for all server id’s

Step 3: for (i : available server sid)

 TotServers[i]=sid[i]

Step 4: calculate cpuLoad[] each server

LoadCalculation(sid[i])

 End for

Step 5: create file chunks base on reserve server space

ChunkServer();

Step 6: allocate each chunk to specified server.

Step 7: if (Transaction)

 Return file store successfully

 Else

 Error in file upload

Output: save chunk on servers

Paper ID: SUB156753 1723

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 7, July 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Procedure Chunk Server ()

Step 1: Read File and calculate filesize

Step 2: Repeat step 2 from 1 to noServers.

Step 3: Distribute file content using bytesPerSplit=

(CpuLoad[sid]/100) * filesize.

Step 4: Write File into ChunkServer.

Step 5: Repeat step 2 (noOfServer)

Step 6: End Function

6. Results

Table 1: Load Distribution Results
VM Name CPU Utilization File Chunk Size

VM 1 50 % 2.8 MB 5.6 MB

VM 2 50 % 2.8 MB 5.6 MB

VM 3 60 % 2.2 MB 4.4 MB

VM 4 75 % 1.4 MB 2.8 MB

VM 5 85 % 0.8 MB 1.6 MB

 Total Size 10.0 MB 20 MB

7. Conclusion

Load rebalancing algorithm is demonstrated to cope with the

load imbalance problem. Transfer the file data separated

different parts of files using load rebalancing and data

encryption stranded DES algorithm after store up into

clouds. Dynamically rebalancing of nodes present in a

system which are overloaded or under loaded and

minimizing the movement cost as much as possible. In

proposed approaches by taking advantage of physical

network locality and node heterogeneity can be done

efficiently. Secured Load Rebalancing for Distributed File

Systems in Private Clouds i.e. our proposed system can

discard the issue like high delays, handle heterogeneous

resources, efficiently adjust to dynamic operational

conditions, offer efficient task distribution, and so it can

provide minimum node idle time. Emerging distributed file

systems in production systems strongly depend on a central

node for chunk reallocation. This dependence is clearly

incompetent in a large-scale, failure-prone environment

because the central load balancer is put under considerable

workload that is linearly scaled withthe system size, and

possibly it will become the performance bottleneck and the

single point of failure.

8. Future Scope

In future we can also implement the file type as jpeg, mp3,

mp4 etc. Using same Load Rebalancing approach we can

implement for images, audio, video etc. with better security.

References

[1] Hung-Chang Hsiao, Hsueh-Yi Chung, HaiyingShen and

Yu-Chang Chao, “Load rebalancing for distributed file

systems in cloud” IEEE Trans. On parallel and

distributed systems, vol. 24, no. 5, pp.951-962, May

2013

[2] HDFSFederation,

http://hadoop.apache.org/common/docs/r0.23.0/hadoo

p-yarn/hadoop-yarn site/Federation.html, 2012.

cPGCON 2015, MET’s Institute of Engineering

[3] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and

I. Stoica,“Load Balancing in Structured P2P Systems,”

Proc. SecondInt’lWorkshop Peer-to-Peer Systems

(IPTPS ’02), pp. 68-79, Feb. 2003.

[4] J. Dean and S. Ghemawat, “Map Reduce: Simplified

Data Processing on Large Clusters,” in Proc. 6th Symp.

Operating System Design and Implementation

(OSDI’04), Dec. 2004, pp. 137–150.

[5] Hadoop Distributed File System,

http://hadoop.apache.org/hdfs/.

[6] Hadoop Distributed File System, “Rebalancing

Blocks,”http://developer.yahoo.com/hadoop/tutorial/mo

dule2.htm lrebalancing

[7] J. W. Byers, J. Considine, and M. Mitzenmacher,

“Simple Load Balancing for Distributed Hash Tables,”

in Proc. 1st Int’l Workshop Peerto- Peer Systems

(IPTPS’03), Feb. 2003, pp. 80– 87.

[8] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The

Google File System,” in Proc. 19th ACM Symp.

Operating Systems Principles (SOSP’03), Oct. 2003,

pp. 29–43.

[9] Q.H. Vu, B.C. Ooi, M. Rinard, and K.-L. Tan, proposed

a “Histogram- Based Global Load Balancing in

Structured Peer-to-Peer Systems,” IEEE Trans.

Knowledge Data Eng., vol. 21, no. 4, pp. 595-608,

Apr.2009.

[10] K. McKusick and S. Quinlan, “GFS: Evolution on Fast-

Forward,” Comm. ACM, vol. 53, no. 3, pp. 42-49, Jan.

2010.

[11] A. Rowstron and P. Druschel, “Pastry: Scalable,

Distributed Object Location and Routing for Large-

Scale Peer-to-Peer Systems,” Proc.IFIP/ACM Int’l

Conf. Distributed Systems Platforms Heidelberg, pp.

161-172, Nov. 2001.

[12] S. Surana, B. Godfrey, K. Lakshminarayanan, R. Karp,

and I. Stoica, “Load Balancing in Dynamic Structured

P2P Systems,”Performance Evaluation, vol. 63, no. 6,

pp. 217-240, Mar. 2006.

[13] P. Ganesan, M. Bawa, and H. Garcia-Molina, “Online

Balancing of Range-Partitioned Data with Applications

to Peer-to-Peer Systems, ”Proc. 13th Int’l Conf. Very

Large Data Bases (VLDB ’04),pp. 444-455, Sept. 2004.

[14] ChahitaTanak, Rajesh Bharati “Load Balancing

Algorithm for DHT Based Structured Peer to

PeerSystem”International Journal of Emerging

Technology and Advanced Engineering (ISSN 2250-

2459, ISO9001:2008 Certified Journal, Volume 3, Issue

1, January 2013)

Paper ID: SUB156753 1724

http://hadoop.apache.org/common/docs/r0.23.0/hadoo

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 7, July 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Author Profile

Mr. Jayesh Kamble is a student of Masters in Engineering,

Computer Department, PVPIT ,Pune University. He received

Bachelors of Engineering in 2013 from Pune University. His

research interests are Computer Networks (Software Defined

Networks), Network Security, Distributed Systems etc.

Prof. Y. B. Gurav is working as Associate Professor and Head of

Department of Computer Engineering in PVPIT, Pune University

with 16 years of teaching experience. He Completed his master in

engineering (CSE) And now he is perusing his Ph.D. His research

interests are Network Security, Distributed Systems, HCI,

Compiler systems etc.

Paper ID: SUB156753 1725

