
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2013): 4.438

Volume 4 Issue 7, July 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Parallel Data Shuffling for Hadoop Acceleration

with Network Levitated Merge and RDMA for

Interconnectivity

Kishorkumar Shinde
1
, Venkatesan N.

2

1,2 Savitribai Phule Pune University, Department of Computer Engineering, SKN Sinhgad Institute of Technology and Science, Lonavala,

Pune, Maharashtra, India

2 Professor, Savitribai Phule Pune University, Department of Computer Engineering, SKN Sinhgad Institute of Technology and Science,

Lonavala, Pune, Maharashtra, India

Abstract: Performance is measure issue in today’s hadoop framework. The execution time required for Map reduce model is depends

on multiple factors. Shuffling and merging in map reduce requires much amount of time. Proper implementation of shuffling and

merging improves the performance of overall system. With this Serialization, multiple interconnect issues are also covered in this paper.

Serialization keeps reduce phase to wait; repetitive merges requires multiple d i s k access and lack of portability for different

interconnections. Repetitive merges can be reduced by network levitated merge algorithm, Serialization issue is overcome by parallelization. RDMA is

used to for multiple interconnects. A non Hadoop and non java machine can also use the hadoop features. If we use pipelining to avoid

serialization some sort of serialization is there in shuffle and merge phase. In pipelining output file is shuffled and merged before

providing it to reduce task. Instead of pipelined shuffling, parallel shuffling is proposed. This reduces the number of disk accesses

resulting in improved performance.

Keywords: Hadoop, Network levitated merge, MapReduce, Big- data, RDMA.

1. Introduction

In the present data age the prerequisite of information is

expanding step by step. The information produced from

distinctive sources is in terabytes every day, which is called

right now Big Data. BIG DATA is huge in size, as well as

data of diverse varieties, distinctive sizes and at distinctive

pace. This enormous information is utilized for distinctive

application or business related administrations like business

insight and some more. To store and procedure this

expansive measure of information we require an effective and

tolerant framework. Google built up a file system to handle

enormous information called as GFS. Hadoop is in light of

the Googles document framework. Hadoop is free and open

source programming structure for putting away and handling

huge information productively. It is made in java

programming language. HDFS (Hadoop Distributed File

System) and MapReduce are the two parts of Hadoop. Map

reduce is implementation for execution of Hadoop for

distributed computing and cloud computing. Map reduce is a

programming model to compose applications for processing

big data. Hadoop is used by numerous associations like

Yahoo, Google, Facebook and it is kept up by Apache

Foundation.

Map-reduce are implemented with the help of two

components: a job tracker and multiple task trackers. The job

tracker is responsible to command the task trackers through

two main functions i.e. map tasks and reduce tasks, the task

trackers used to process data as per the commanded by job

tracker. Job tracker is also in-charge of scheduling map task

and reduces task to task trackers, it assigns job to the task

trackers and also collects the intermediate results. Hadoop

has name node and data node to manage and process data.

Name node is node which stores file system metadata, and

data node is actually store the data.

1.1. MapReduce Programming Model

A MapReduce library requires the programmer to cast the

computation in the form of two functions, Map and Reduce.

The library partitions the input into a number of splits, and

calls Map on each split. Phoenix is a MapReduce library for

multi-core and multi-processor systems [8]. The library

typically has a pool of Map worker threads, one per core, that

repeatedly take a split from a work list and call Map. Each

Map calls output is a set of intermediate key and value pairs.

When all the splits have been processed by Map, the library

calls reduce once for each distinct key produced by the Map

calls, passing Reduce the set of all values produced by the

Maps for that key. Again, the library has a pool of Reduce

worker threads, one per core. Each Reduce generates a set of

output key and value pairs, and the libraries Merge phase

sorts them by key to produce the final output. The

programmer must ensure that the Map and Reduce functions

have no side effects. The charm of MapReduce is that, for

algorithms that can fit that form, the library hides all the

concurrency from the programmer. For example, one can

count the number of occurrences of each word in a body of

text as follows. The Word Count Map function parses the

input, generating an intermediate key/value pair for each

word, whose key is the word and whose value is 1. The

Reduce function (which the library calls once per distinct

word) emits a key/value pair whose key is the word, and

whose value is the number of values. The library gets parallel

Speedup by running many Maps concurrently, each on a

different part of the input file, and by running many Reduces

concurrently on different words. The Merge phase combines

Paper ID: SUB156536 1096

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2013): 4.438

Volume 4 Issue 7, July 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

and sorts the outputs of all the Reduces [7]

1.2. Serialization

Hadoop has a serialization problem. Map task starts

processing when input data is splits into multiple files. After

processing of map task is done, these MOF (Map Output

Files) are gained by reduce task. But reduce task starts

processing when all the segments of MOF are available. This

situation creates a serialization between shuffles and merges

which is shown in figure

1.3. Interconnectivity

Hadoop is developed in java language. Hadoop supports only

TCP/IP as a transport protocol. It does not support other

transport protocols such as RDMA. Many popular systems

using RDMA as transport protocol. RDMAP provides read

and write services directly to applications and enables data to

be transferred directly into ULP Buffers without intermediate

data copies. It also enables a kernel bypass

implementation.[6] Such a lack of portability in hadoop will

prevent it from latest technologies. To overcome this

limitation hadoop architecture is modified to hadoop

acceleration frame work known as Hadoop-A [1].

In hadoop reduce task is start reducing after all the data is

merged together. So this produces the serialization in map

task and reduce task. Figure shows the serialization in

hadoop. Many studies have been carried out to improve the

performance of Hadoop. Yu [1] proposed new merging

algorithm and a new framework of Hadoop. Jiang [2]

identified the four factors that have effect on map reduce

performance. Condie [3] proposed a direct channel between

map tasks and reduce task.

2. Related Work

At this very moment is developing step by step the

administration of information is turning into a basic issue.

The data turns into a Big Data. Big Data is enormous in size

as well as contains information of distinctive size, form, and

from diverse sources. As an illustration New York stock

trade produce information in Terabytes a day, prominent

informal communication site Facebook transfers a huge

number of pictures and features every day whose size in

Terabytes. This information may require for future references

or some business insight reason for some associations.

Existing database administration framework is not equipped

for dealing with this substantial measure of information. It

has numerous reasons like information security, sensibility,

transportability, recuperation from disappointment and so

forth which prompts the need of viable and flaw tolerant

framework. Googles new file system known as Google file

system for his own purpose of big data management. On

basis of Googles file system the Hadoop HDFS and Map

Reduce is designed. Hadoop is kept up by Apache [4]

Foundation and it is used by any associations like Yahoo,

Facebook.

Existing Hadoop framework has numerous execution and

security issues. Hadoop has two fundamental parts map and

reduce. The information which is supplied by customer to

Hadoop framework is isolated into various parts. Every split

is relegated to each map task undertaking. Map task

generates the key value pair of input data. The mappers job is

map input key value pair to intermediate key value. Mapper

transforms the input record to intermediate record. The

number of maps are depends upon number of input blocks.

This intermediate data is supplied to reduce task. Reduce task

merges these key value pair into single value. During the map

task the data is sorted according to user query and shuffled.

We can improve performance with various factors like

merging, data I/O etc. Many studies have been carried out to

improve the performance over existing system. Numbers of

different improvements are made.

Yu [1] suggested many changes to existing system. He

invented a new algorithm network levitated merge. Reduce

task fetches intermediate data i.e. output of map task and

store it locally onto memory. This leads to multiple disk

access and many I/O operations which require more

execution time. New network levitated merge overcomes this

problem. In this algorithm instead of fetching whole segment

only small header is fetched.

In this paper they also proposed a pipelined structure of

Hadoop shuffle, merge and reduce phase which overcomes

the serialization barrier between reduce and merge phase as

there is pipeline structure so without waiting reduce task

directly fetches the header. Due to this intermediate data is

fetched as map out file is generated, this decreases the

execution time.

Existing Hadoop system doesn’t have support for different

network interconnects. It only supports TCP/IP transport

protocol it has no support for RDMA i.e. Remote Direct

Memory Access which good in high performance

communication. In Hadoop-A two new plug-in components

are added MOF-Supplier and NET-Merger to support

RDMA capable interconnects. These two components have C

implementation which allows choice of connections like

RDMA. This framework is optional i.e. user can enable or

disable this framework by setting a parameter.

Jiang [2] identified four important elements that notably

effect on performance of Hadoop which are I/O mode,

Indexing, Parsing, and Sorting. Map function doesn’t take

input directly from storage, a mediator called as reader is

used. A reader takes data from storage and put it into map

buffer. There are two methods for reading data i.e. direct I/O

and streaming I/O. Streaming is mainly used for nodes which

are placed locally or remotely. And direct I/O used for local

nodes. Existing Hadoop uses only streaming I/O method no

matter the node locally placed or remotely placed. And

experiment shows that streaming I/O has 15% more

performance than direct I/O method. Map- reduces uses

range indexing scheme that uses same size data chunk to

create data index. Next factor is parsing i.e. means when

reader reads data from storage to buffer then there is need to

convert this raw data into set of record having key/value pair.

In this the fields from value part needs decoding into

Paper ID: SUB156536 1097

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2013): 4.438

Volume 4 Issue 7, July 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

appropriate type. This decoding has two types immutable and

mutable. Immutable decoder is much slower than mutable

decoder. Next important factor they considered is sorting and

merging. Sorting and merging of data is important task in

map reduce. A fingerprint mechanism is proposed to improve

the sorting of keys, which reduce key comparisons to

improve performance.

XinyuQue [10] proposed Hierarchical Merge [10] for

reduction of the memory buffer usage for Hadoop-A and to

enable scalable data processing.

Condie [3] designed an architecture which directly connects

map and reduce tasks. The intermediate data is pipelined

within different operators. They designed a new prototype

known as Hadoop online prototype [3]. Zaharia [9] designed

a new scheduling algorithm, Longest Approximate Time to

End (LATE) [9], which is highly robust to heterogeneity.

Tiled-Map Reduce (TMR) [11] divides a large MapReduce

job into a number of small sub-jobs and repeatedly processes

one sub job at a time with efficient use of resources and at

last merges the results of all sub-jobs for output

3. Proposed Scheme

The basic idea is to improve the performance by adding

parallelization in shuffling phase. The performance is

depends on many factors. Shuffling and Merging are the two

important factors. Repetitive merging requires multiple disk

access which can degrade the performance. Here the two

different modules are proposed. In first module the job

submission is done locally at server side. Here processing of

data and results are shown to user at user side. In second

module the RDMA protocol is used to transfer data from one

machine to another machine. Use of RDMA is to overcome

platform interconnect limitation. The job is submitted by

client from remote side. Submitted job will be processed by

server i.e. machine containing hadoop framework. Here there

is no need for client to configure hadoop on his machine.

Client needs to provide servers IP address containing hadoop

framework.

3.1 Shuffling

Shuffling is process in which system performs sorting and

rearranging of files and transferring it to reduce task. In

Hadoop shuffling is done by a special shuffle handler [5] or

an additional service for handling shuffle process. In

pipelined shuffling as map files are created, reducer can

access it and start building priority queue. The process of

shuffling and merging is pipelined. In this case if shuffling

and merging is done in parallel fashion the number of disk

access is again decreases resulting high performance.

Figure 1: Shuffling Process

3.2 Merging

It is process where all the map files are merged and stored to

disk. Map generates output files i.e. key, value pair. Each

time a map generates an output file it is stored to disk, when

all files are completed by map task the merging process is

started. Every time map creates output file it incurs disk

access, and for multiple files requires multiple disk access. In

network levitated merge [1] instead of accessing the whole

output files from disk directly, only a header file is accessed.

The header files are lightweight so no need to store them to

disk, which can reduce disk access.

Multiple merging can be avoided using network levitated

merge algorithm. Map output files which are generated by

map task are stored locally on buffer. The buffer size is

100Mb and it can be tuned. After buffer completely fills the

files from buffer are transferred to disk. Each map generates

different output files. After all output files are generated,

these are shuffled and passed to reduce task. In pipelined

method for every map task file a separate shuffling and

merging is done which avoids serialization but number of

disk accesses is still high. This separate shuffling will reduce

the performance but in proposed system a shuffling is done in

parallel fashion. After output files are generated by map task

these are levitated to remote disk and all output files are

shuffled in parallel fashion

In Algorithm 1 the input file is split into multiple splits and

each split is provided each separate map task. The map task

generates MOF which are stored on disk. When reduce task

become free these MOF are provided to the reduce task. Here

merging and shuffling is working in parallel.

3.3 Hadoop Acceleration Framework

Hadoop supports only TCP-IP as a transport protocol. To

support transport protocols like RDMA a new framework is

needed. Hadoop acceleration framework [1] supports

multiple interconnects. Original hadoop is kept as it is. A

new model is used which is developed in C language. It has

two main components MOF supplier [1] and Net Merger [1].

These are remotely operates and provides their output to

original hadoop system. So any technology using other than

TCPIP as a transport protocol can able to process with

hadoop.

Figure 2: System Architecture

Paper ID: SUB156536 1098

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2013): 4.438

Volume 4 Issue 7, July 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

4. Proposed Algorithm

4.1 Algorithm 1

Input: user files

Output: merged result

Input: Task

Output: Reduced disk access

1) Start

2) Split input file into multiple splits

3) Assign each split to each map task

4) Generate MOF

5) Build priority queue from MOF headers

6) Start shuffling when two or more MOF available.

7) Merge files by parallelism

8) Start reducing and generate final reduced tasks

9) Stop

4.2 Algorithm 2

Map Task: // one for each split

Input: Si //Split i, line = transaction

Output :< key, 1>pairs, where key is an element of candidate

item set

1) for each transaction t in Si

2) Map (line offset, t) //Map Function

3) For each item set I in t // I = all possible subsets of t

4) out (I, 1)

5) End foreach

6) End map

7) End foreach

8) End

Reduce Task:

Input: <key2, value2>pairs Minimum support count where

key2 is an element of candidate, Item set and value2 is its

occurrence in each split

Output: <key3, value3>pairs, key3 is an element of frequent

item set and value3 are its occurrences in the whole dataset

1) Reduce (key2, value2) // Reduce function

2) Sum=0

3) While (value, hasNext ())

4) Sum=value2.getNext ();

5) End while

6) If (sum>=min sup count)

7) Out (key2, sum);

8) End

5. Mathematical Model

Let Ti be a task

 1) Input data is spilt into multiple splits

 2) Let S be a set of split i

S = s1, s2, s3.....si

 3) Ti 2 S

ti => Si

 4) We have, Pair = key, value

Value = occurrence in each split

Solution criteria => minimum support count

 5) Select sum such that

T >= minimum support count

Output = (key, T)

 6) In hadoop instead of processing MOF per reduce

Process MOF per core

 7) C = No. of cores

 8) R= No. of Reducers

Number of shuffles will be

 9) M * R

M= no. of mappers

To improve performance M * R should be less

 10) Performance is inversely proportional to M*R

No. of disk access = 1 / M*R

6. Experimental Setup

For conducting the experiment we have installed Ubuntu

12.04 on machine. And second machine may have any OS

with. Ubuntu machines having openjdk1.7 installed in it and

SSH enabled. Hadoop 1.2.1 have been configured on

machine. Hadoop plugins are used to configure eclipse.

The Name Node is center piece of Hadoop in light of the fact

that it controls the entire Data Nodes exhibit in bunch. The

Data Nodes contain all the information in group on which we

will work our MapReduce projects and perspective the

movement information from different points of view. Job

Tracker controls every one of the assignments which are

running on Task Trackers demonstrated in taking after.

A HDFS cluster comprises of a solitary Name Node, a master

server that deals with the file system framework namespace

and manages access to records by customers. Moreover,

there are various Data Nodes, generally one for every node in

the bunch, which oversee capacity connected to the nodes

that they keep running on. HDFS uncovered file system

framework namespace and permits client information to be

put away in records. Inside, a file system is split into one or

more pieces and these blocks are put away in a situated of

Data Nodes.

Remote Direct Memory Access (RDMA permits computers

in a network to exchange information in primary memory

without including the processor, reserve, or working

arrangement of either PC. Like by regional standards based

Direct Memory Access (DMA), RDMA enhances throughput

and execution on the grounds that it authorizes assets. We

have developed word count MapReduce programs which

take the input as a text file and calculate the word counts.

6.1 Module 1 [Locally Submitted Job]:

In this module a job is submitted to the hadoop system.

Before submitting a job i.e. text file is splits into three splits

of same size. These splits are now processed by map reduce

program parallelly.

6.2 Module 2 [Remote Submission of Job]:

In this module a job is submitted to the hadoop system by

remote machine using RDMA protocol. Hadoop is pure java

based framework. So to provide multiplatform connectivity

RDMA protocol is used which overcomes interconnectivity

Paper ID: SUB156536 1099

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2013): 4.438

Volume 4 Issue 7, July 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

rule of TCP/IP. Submitted job is processed by hadoop system

and the results are provided to remote client.

Figure 3: Module 1

Figure 4: Module 2

7. Results

Our experiment is conducted on machines containing hadoop

1.2.1 configuration with core 2 duo and i3 processers.

Proposed scheme provides improved results than existing

system. To find the results our experiment is conducted on

word count program. The data table shows inputs used.

Table 1: Input Dataset
Sr.

No.
Data Size

Execution time (in ms)

Proposed Existing

1 1 MB 0.010 0.081

2 5 MB 0.015 0.100

3 10 MB 0.020 0.057

Proposed results may vary according to processer and

memory availability. As data size grows the performance will

improve.

The graph shows difference between code 1 and code2. Code

1 is existing system and code 2 shows execution time of

proposed system.

Figure 5: Results

8. Conclusion

We have conducted the experiment on different machines.

Particularly, our analysis has focused on data processing

inside Reduce-Tasks. We reveal that there are several critical

issues faced by the existing Hadoop implementation,

including its merge algorithm, its pipeline of shuffle, merge,

and reduce phases, as well as its lack of portability for

multiple interconnects. A parallel shuffling in map and

reduce phase increases the speed of execution by reducing

the number of disk accesses. In future security constraint

requires to be covered. Security becomes another important

issue. If we use strong encryption technique to encrypt data

from client and server, then system will become complete.

References

[1] Weikuan Yu, Member, IEEE, YandongWang, and Xinyu

Que, Design and

[2] Evaluation of Network-Levitated Merge for Hadoop

Acceleration IEEE TRANSACTIONS ON PARALLEL

AND DISTRIBUTED SYSTEMS

[3] Dawei Jiang Beng Chin Ooi Lei Shi Sai Wu, The

Performance of MapReduce: An Indepth Study

Proceedings of the VLDB Endowment, Vol. 3, No. 1

[4] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M.

Hellerstein MapReduce:Online Yahoo! Research

[5] Apache Hadoop Project, http://hadoop.apache.org

[6] Hadoop- The Definitive Guide, 3rd Edition by Tom

White.

[7] R. Recio, P. Culley, D. Garcia, and J. Hilland, An rdma

protocol specification (version 1.0), October 2002.

[8] J. Dean and S. Ghemawat, Mapreduce: Simplified data

processing on large clusters, Sixth Symp. on Operating

System Design and Implementation (OSDI), pp. 137150,

Dec. 2004.

[9] Y. Mao, R. Morris, and F. Kaashoek, Optimizing

mapreduce for multicore architectures, MIT, Tech. Rep.

MIT-CSAIL-TR2010-020, May 2010.

[10] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz,

and I. Stoica, Improving mapreduce performance in

heterogeneous environments, in 8th USENIX

Symposium on Operating Systems Design and

Implementation, OSDI 2008, December 8-10, 2008, San

Diego, California, USA, Proceedings. USENIX

Association, 2008, pp. 2942.

Paper ID: SUB156536 1100

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2013): 4.438

Volume 4 Issue 7, July 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[11] X. Que, Y. Wang, C. Xu, and W. Yu, Hierarchical

merge for scalable mapreduce, in Proceedings of the

2012 workshop on Management of big data systems, ser.

MBDS 12. New York, NY, USA: ACM, 2012, pp. 16.

[12] R. Chen, H. Chen, and B. Zang, Tiled-mapreduce:

optimizing resource usages of data-parallel applications

on multicore with tiling, in Proceedings of the 19th

international conference on Parallel architectures and

compilation techniques, ser. PACT 10. New York, NY,

USA: ACM, 2010, pp. 523534.

[13] Kishorkumar K. Shinde, Prof. Venkatesan N., Review on

Data merging and Data movement to accelerate Hadoop

performance, International Journal Of Engineering And

Computer Science (IJESC), Volume 3 Issue 12

December 2014

[14] Network Levitated Merge for Hadoop Acceleration with

RDMA Accelerated with Parallel Data Shuffling, C-

PGCON Fourth post graduate conference at MITBKC,

Nashik.

Paper ID: SUB156536 1101

