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Example 3.3 

 

Let Gs₁ and Gs2 be two strong fuzzy graphs 

 
 

 
Figure 2 

 

From fig 2 implies Gs₁   ⃘ Gs₂ is the normal product of two 

strong fuzzy graphs is also a strong fuzzy graph.  

 

From the above figs 

µ((u₁,u₂)(v₁,u₂)) = σ(u₁,u₂) ∧ σ(v₁, u₂) = .6 ∧ .6 = .6  

µ((u₁,v₂)(u₁,w₂)) = σ(u₁,v₂) ∧ σ(u₁,w₂) = .4 ∧ .5 =.4  

 

Similarly finding the membership value of all the edges, we 

get a strong fuzzy graph. Hence the normal product Gs₁   ⃘ Gs₂ 

of two strong fuzzy graphs Gs₁ and Gs₂ is also a strong fuzzy 

graph.  

 

Theorem 3.4 If Gs₁ :( σ₁, µ₁) and Gs₂: (σ₂, µ₂) be two strong 

fuzzy graphs then   ⃘   

Proof: Let Gs₁ :( σ₁, µ₁) and Gs₂: (σ₂, µ₂) are strong fuzzy 

graphs.  :(σ, )= =  ,  : (V, )  

(σ1, )=  (V1 , ) (σ2, =  (V2 , )    ⃘  : ( 

σ₁  ⃘ σ₂,   ⃘  Now , the various types of edges say e , 

joining the vertices of V are the following and it suffices to 

prove that =   ⃘  in each case. Case(i)  

 e=(u,u2)(u,v2) u2v2  E2 Then e  E and G being strong 

hence  (e)=0 Also (   )(e)=0 u₂v₂ € ̸E₂ =  (e). Case 

(ii)  

 e=(u,u2)(u,v2) u2 ≠ v2 and u2v2  E2 Then e  E , so μ(e)=0 

Now  (e) = σ(u, u₂) ∧ σ (u, v₂)  

 = [σ₁(u) ∧ (σ₂(u₂)] ∧ [(σ₁(u) ∧ σ₂(v₂)]  

 = σ₁(u) ∧ [σ₂(u₂) ∧ σ₂(v₂)] u2v2  E2 (   )(e) = σ₁(u) 

∧  (u₂v₂) 

 = σ₁(u) ∧ [σ₂(u₂) ∧ σ₂(v₂)]  

 =  (e)  

 

 

Case(iii) 

 e = (u1,w)(v1,w) u₁v₁  E₁ Here e  E and  (e)=0 Also 

u₁v₁ €  Hence (   )(e) = 0 

Case(iv) 

 e = (u1,w)(v1,w) u₁v₁  E₁ Here e  E , so μ(e)=0 and  

  (e) = σ(u1, w₂) ∧ σ (v1,w) 

 = [σ₁(u1) ∧ (σ₂(w)] ∧ [(σ₁(v1) ∧ σ₂(w)]  

 = [σ₁(u1) ∧ σ₁(v1)] ∧ σ₂(w) 

Also u₁v₁   

 (   )(e) =  (u₂v₂) ∧ σ2(w)  

 = [σ₁(u1) ∧ σ₁(v1)] ∧ σ₂(w) 

 =  (e)  

Case(v) 

 e=(u₁,u₂)(v₁,v₂) u₁v₁€ E₁, and u₂v₂€ E₂ Here e  E and  

(e)=0 Also since u₁v₁  and u₂v₂ €̸  We have (   

)(e) = 0 

Case(vi) 

 e=(u₁,u₂)(v₁,v₂) u₁v₁€ E₁, and u₂v₂ €̸  Then e  E , so 

μ(e)=0 Also  (e) =  (e) = 0 u₁v₁  and u₂v₂€ E₂ 

Then (   )(e) = 0 

Case(vii) 

 e=(u₁,u₂)(v₁,v₂) u₁v₁  E₁, and u₂v₂€ E₂ Then e  E , so 

μ(e)=0 Also  (e)=0 Then (   )(e) = 0 

Case(viii) 

 e=(u₁,u₂)(v₁,v₂) u₁v₁  E₁, and u₂v₂ €̸  Then e  E , so 

μ(e)=0 

  (e) = σ(u1, u₂) ∧ σ (v1,v2)  

 = [σ₁(u1) ∧ σ2(u2)] ∧ [σ₁(v1) ∧ σ2(v2)]  
 = [σ₁(u1) ∧ σ₁(v1) ] ∧ [σ2(u2) ∧ σ2(v2)]  

Since u₁v₁  E₁, ⇒ u₁v₁   

 u₂v₂  E₂ ⇒ u₂v₂   

Hence (   )(e) =  (u₁v₁)Λ  (u₂v₂)  

 =[σ₁(u₁) ∧ σ₁( v₁ )]∧ [σ₂(u₂)∧σ2(v2)]  

 =  (e) 

 Thus from case (i) to (viii) it follows that   ⃘ 

 .  

 

4. Conclusion 
 

In this paper we have proposed, complement of strong fuzzy 

graphs, normal products of strong fuzzy graphs and the 

complement properties for tensor product of strong fuzzy 

graphs. In the fuzzy environment it is reasonable to discuss 

complement of strong fuzzy graphs and its properties. 
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