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Abstract: In this paper we introduce a new technique for getting the solution of “First order simultaneous Fuzzy differential equation
by Fifth Order Runge-Kutta Merson method” based on Seikala derivative of fuzzy process [11]. A numerical method based on the
Runge-Kutta Merson method of order five is discussed in detail, followed by a complete error analysis.
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1.1
2. ntroduction

The topics of fuzzy differential equations which attracted a
growing interest for some time, in particular, in relation to
the fuzzy control, have been rapidly developed recent years.
The fuzzy derivative was first introduced by S.L. Chang,
L.A. Zadeh in [4], followed up by D. Dubois, H. Prade in
[5], who defined and used the extension principle. Other
methods have been discussed by M.L. Puri, D.A. Ralescu in
[10] and R. Goetschel, W. Voxman in [6]. Fuzzy
differential equations and initial value problems were
regularly treated by O. Kaleva in [7] and [8], S. Seikkala in
[11]. A numerical method for solving fuzzy differential
equations has been introduced by M. Ma, M. Friedman, A.
Kandel in [9] via the standard Euler method.

The structure of this paper is organized as follows. In
section 2, some basic results on fuzzy numbers and
definition of fuzzy derivative which have been discussed by
S. Seikkala in [11] are given. In section 3 we define the
problem, a fuzzy Cauchy problem whose numerical solution
is the main interest of this paper. We find a numerical
solution of the first order simultaneous fuzzy differential
equation by fifth order Runge-Kutta Merson method in
section 4. Sample problem is illustrated and the complete
error analysis is also included in section 5.

3. Preliminaries

Consider the first order simultaneous differential equation
v =f(ty 2)& gz =g(t,y,2), t, <t <b with initial
dt dt

conditions y(ty) = Yo, z(to) = 2. . . (2.1)

Since, y(tn+1) = y(tn) + Wlkl + W2k2 + W3k3 + W4k4

where, k; = hf(t,, y(t,)

ky =hfltareoh, yitaranik)
i =hiftyresh, glta)rrasiktaszka)
ke= mtn—l:;h: ki [tn}—a; 11{1—3;3113—3;31{_:}
ks = l}ﬂtn_': sh, ki (T.n}—ﬂ sik1tasakatas:ksta 5;1{_«}

.22

Utilizing the Taylor’s series expansion techniques, Runge-
Kutta Merson method of fifth order is given by,

k, +4k, + kg
6
I, +41, +1;

6
ky = hi(tn, y(tn), 2(t))

Yn+l = yn +

Znn=2Zpt

where
ky = hf(tn‘*% : y(tn)+% ki, Z(tn)"'% 1)
kg=hf(ty+ E Y(tn)+ 1 (kitka),z(tn)+ 1 (I1+1)),
3 6 6
ky=hf(t.+ E Y(tn)+ 1 (ky+3ks),z(tn)+ 1 (11+313)),
2 8 8

ks = hf(t,+h, Y(tn)+% (ki — 3k + 4ky), Z(tn)"'% (I = 3ls +

4l,))
and i = hg(tn, y(tn), z(t))

|2 = hg(tn"' E ) y(tn)+ l klv Z(tn)+ l Il)
3 3 3
s = hg(t,+ h Y(tn)+ ] (kitka),z(tn)+ 1 (I1+12)
3 6 6
l,=hg(t,+ h Y(t)+ = (k1 +3ks),z(tn)+ 1 (11+313))
2 8 8

ls = hg(t,+h, Y(tn)"'% (kg — 3ks + 4k,), Z(tn)+%(ll - 3l3 +
4l,)) ... (2.3)

Definition — 2.1

A fuzzy number u is a fuzzy subset of R ie) u: R > [0, 1]

satisfying the following conditions

1) uisnormal, ie 3 XpeR > u(Xp) =1

2) uis a convex fuzzy set ie) u(tx+(1-t)y)>min{u(x),u(y)},
Vvte[0,1] & X,y e R
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3) u is upper semi continuous on R
4) {X e R, u(x) > O} is compact

The set E is the family of fuzzy numbers and arbitrary fuzzy
number is represented by an ordered pair of functions
r)u(r). o < r <1
requirements

1. g(r) is a bounded left continuous non-decreasing

function over [0, 1] w.r.to any ‘r’.

satisfying the following

2. G(r) is a bounded right continuous non-increasing
function over [0, 1] w.r.to any ‘1’

3. g(r) < u(r), 0<r<1,r-level cutis [u], = {x/u(x) >r}, 0
<r <1 asaclosed & bounded interval denoted by [u], =

[g(r), G(r)] and [u]o = {XJu(x) > 0} is compact.

Definition — 2.2

A triangular fuzzy number u is a fuzzy set in E that is
characterized by an ordered triple (uy, Ug, u) e R with u,
<Uc <u, such that [u]o = [u; : u;] and [u]; = [u;]. The
membership function of the triangular fuzzy number u is

given by
i TR

I”:‘”:
wx)=41 T =u 24

| o U Ex N

lu, —u,
and we will have i)u>0ifu>0 ii)u>0ifu>0 iiiju<
Oifu,<0 ivyu<0ifu.,<0
Let | be a real interval. A mappingy : | > E is called a

fuzzy process and its o - level set is denoted by

[y(®)], = [X(L y.z), y(t,y, Z)] tel 0<o

< I. Seikkala derivative y(t) of a fuzzy process is defined by

-1
y(t)], = [ yity.z)y .y, Z)J, tel, 0 < o < | provided
an equation defines fuzzy number as in [11]. Similarly, let |

be a real interval. A mapping z: I->E is called a fuzzy
process and its o - level set is denoted by

£t yz:r)=min{t @uv)|uey(r), v elar) 20
ax{f (t,u,v)| u e[ y(r) (r) 1VE[z 2

ad  fLy,z:r)=m

5. Fifth Order Runge—Kutta Merson Method

Let the exact solution of the given equation [Y(Y)], =
[Yt I’ (t I’)] is approximated by some solution

(), = b'( 0yt zon= 202 )]

is approximated by some solution [z(t)], =

[;(t r)z(t: r)] also we define

t az[;(t,y,z),E(t,y,z)], tel 0<oac<l

Seikkala derivative z(t) of a fuzzy process is defined by,

[Zl(t)]a = [zl(t,y,Z),El(t,y,Z)J, tel,0O<ac<l

provided the equation defines fuzzy number as in [11]. For
u, veE and AeR, u + v and the product Au can be defined by

Q) [u+V]e = [ule + [V]. (i) [Au]
= A[u], where a € [0, 1] and (iii) [l + [V
means the addition of two intervals of R and [Au], means the
product between a scalar and an interval of R.

Arithmetic operation of arbitrary fuzzy numbers u =
@(r), G(r)) v= @(r), Q(r)) and A € R can be defined as
) u=vif u(r)=yr) and u(r)=r)
i) urve (wl)+ 0 Lul )+ ()
i) u-v = ulr) = () ulr) - ) ek
iv) = [x ulr ) Aulr ]J 7.2 0
= (au(r), Au(r)) it2. <o
4. Fuzzy Cauchy Problem

Consider the first order simultaneous differential equation
dy
dt

conditions y(ty) = Yo, z(to) = 2o
Let the function f be a continuous mapping fromR xR 2> R

and y, € E with r-level sets  [yg], = [y(O: r), y(O: r)] r
e [0, 1] and the function g is a continuous mapping from

R X R > R and z, € E with r-level sets [zo], =
[;(0: r), Z(O: r)] re[0, 1]. The extension principle of

Zadeh [4] leads to the definition of f(t, y, z), y = y(t) and z =
z(t) are the fuzzy numbers.

[f(ty,2)] —[ f(t,y,z:r) f(t,y,z:r)],re[o, 1, 1t

follows that

=f(tyz2)& %_g(t Y, Z), t <t < b with initial

3

4

X(tn+l : r)_ y(tn = Zwlﬁ
=

— — 4 —

y(tn+1 : r)— y(tn : r) = ZWi K; where w;’s are constant

i-1

[k, (&, y(t. )], =k (& v )k &y )] i= 1
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2t 1) 2(t, )= w, Gl ) o3t o))
izl - I (t,z(t:r )):hf(n+h at, r)+;(|1—3|3+4|4)j

E(tn+1 : If)_E(tn : r): ZWi Ii where [;’s are constant

= | F(t,y(t:r)

)=kt
(2, =l 2R 2] =2 o)k
)

1

y(t: )+ 4k, it r)+ko(t,yit:r)
)+ dk, ,

y(t: )+ ak, (¢ vt )+ kot y(t: )
3,4and 5 and

)
k,(t, y(t:r))=hf (t,. y(t, 1)) Pt 2(t:r)=1,
(t,z(t:r))=hf(t,, 2(t, : 7)) Qlt,z(t:r))=1,(t, z(t:r

S

+4l,(t 2(t:r))+ 1o

)
)+ 4, (t, z(t:r))+

1, (t, z(t: )
)

h I:(t z2(t:r))
k_l(t, y(t : r)): hf (tn ’9(tn : I’)) g:r?ofe):jag; and approximat sciutlon att,, 0 <n<N are
Lt 2(t:r))=nf{t, 2, 1) vor = nYenl s -
K, (t, y(t:r))=hf (tn +D’X(tn ;r)+1|(l b/(tn ), y(t, 3f)] and B
B 3 h 3_ 1 [Z(tn)]r = [;(tn . r), Z(tn . r)], [Z(tn)]r -
|_2(t Z(t : r))= hf (tn +§ z(t, I’)+§|_1j [;(tn : r),E(tn : I')] respectively.

The solution calculated by the grid pointsata=t, <t; <t, <

h — 1— _
kz(t'Y(t3r)):hf t, +§’y(tn :r)+§kzj ...<ty=b, h= bN—a = t,; — t,. Therefore we have

Y(t,.r)=Y(t, :r)+%|:[tn,\i(tn 1)

6= 1,2t S ) T :1)=70,:0)+ Lok, T, )]
ettt + 2.2t )+ 20,41 ;(tn+1:r)—;<tn:r)+§P[t,,.;(t,,:r)]

Kt ylt: )=t (tn 2302 vk Z(t,:7)=2(t,:1)+ 20k, 26, )]
B N RV My o oy
o) =i, + 2yt 2 v it :0)= 6, )+ Lo, o)
L=t fat 0o Shoa)] g )< Pl 2, o)

r)+2 ol 2t :v)
1, z(t:r))= hf( z(tn:r)+;(ll+3l3)) To show the convergence of these approximation
limy(t:r)=Y(t:r limy(t:r)=Y(t:r
ks(t,y(t:r)):hf[tn+h,y(tn:r)+(k1—3k3+4k4)j fim y(t:r)=Y(t:r), 0 " _) (t:r)
- 2= - limz(t:r)=2Z(t:r) limzt:r)=Z(t:r)
I t, z(t:r)):hf(thrh,z(tn :r)+;(ll—3|3+4|4)j h—0 h—0

o
2’
h— 10— —
kot y(t:r)=hf[ t, + 2yt r)+=(k, +3K _ _
4( y( r)) ( 5 Y( r) 8 1t 3)) Z(tml'l’):Z(th
Lh
2’
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Lemma4.1:

Let a sequence of numbers {\N}g‘zo satisfies [\/\In+1 <A

[\Nn| + B, 0 <n <N -1 for some given positive constants A

,0<n<N-1.[11
1 [11]

and B, then [\Nn| <A" [VVO|+B ':

Lemma 4.2:

Let a sequence of numbers {\N }E‘:o and {\/ }2‘:0 satisfies the
conditions

Wl < W, | + A max W, |V, [}+B
and [Vn+l| < [\/n| + A max {[\Nn|,[\/n|}+ B

for some given positive constants A and B and denote U, =
IW,| + [Vq), 0 < n< N then

A
U, < A"Up+ B —= ,1<n<N
A-1
where A=1+2Aand B=2B
Proof: Consider,

Woa] + Vot < Wo| + Vo] + 2 W, [+, [}+ 28
= (1+2A) {[\Nn|+[\/n|}+28

By lemma 4.1, for W,, 0 < n <N hence it is valid.
Theorem - 4.1

Let F(t, u, v) & G(t, u, v) belong to C*(K) and let the partial
derivatives of F & G be bounded over K, then for arbitrary
fixed value r, 0 < r < 1 are approximate solutions converge
to the exact solutions of X(tn : r) and Y(t, :r)

uniformly in t. Similarly, P(t, u, v) & Q(t, u, v) belong to
CY(K) and let the partial derivatives of P and Q be bounded
over K, then for arbitrary fixed value r, 0 < r < 1 are
approximate solutions converge to the exact solutions of

;(tn : I') and Z(t, : r) uniformly int.
6. Numerical Example

Considerd—y —4y +52 and E=8y—62 with an
dt dt

initial conditions y(0) = (7.6 + 0.4r, 8.2 - 0.2r) and z(0) =
(3.8+0.2r,4.3-0.3r); 0<r<1.

Solution:

The exact solution is Y (t: 1) = 3&('[ : r)et "‘5&('[ : r)e_st

Z(t )= 3&(’[ ) r)e‘ +ﬁ(t : r)e—3t

when t = 1 then the exact solution is given by,

Y(1:r)=(2.75+0.25r)e +5(0.8+0.2r)e”

and Y(L:r)=(3.25-0.25r)e + (1.2-0.2r)e®
Z(L:r)=(2.75+0.25r)e + (0.8+0.2r)e™

and Z(1:r) = (3.25-0.25r)e + (1.2- 0.2r)e*

The exact and approximate solutions obtained by the fifth

order Runge-Kutta Merson method with initial condition for
taking k = 0.1

Table 5.1

Exact Solution withh =0.1

[Y

Y]

[Z2

Z]

0.0

7.6744233017

9.1331383527

7.5151046830

8.8941604245

0.1

7.7473590543

9.0602026002

7.5840574700

8.8252076375

0.2

7.8202948068

8.9872668476

7.6530102571

8.7562548504

0.3

7.8932305594

8.9143310951

7.7219630442

8.6873020633

0.4

7.9661663119

8.8413953425

7.7909158313

8.6183492762

0.5

8.0391020645

8.7684595900

7.8598686184

8.5493964891

0.6

8.1120378170

8.6955238374

7.9288214054

8.4804437021

0.7

8.1849735696

8.6225880849

7.9977741925

8.4114909150

0.8

8.2579093221

8.5496523323

8.0667269796

8.3425381279

0.9

8.3308450747

8.4767165798

8.1356797667

8.2735853408

1.0

8.4037808272

8.4037808272

8.2046325537

8.2046325537

Table 5.2

0.1

Approximation Solution by fifth order Runge-Kutta Merson with h =

r

[y

vl

[z z]

0.0

7.9835987091

9.2810068130

7.7944021225

9.0868310928

0.1

8.0256175995

9.1932840347

7.8354244232

8.9986104965

0.2

8.0676355362

9.1055622101

7.8764467239

8.9103908539

0.3

8.1096553802

9.0178413391

7.9174709320

8.8221721649

0.4

8.1516742706

8.9301195145

7.9584946632

8.7339515686

0.5

8.1936931610

8.8423986435

7.9995169640

8.6457328796

0.6

8.2357130051

8.7546758652

8.0405406952

8.5575122833

0.7

8.2777309418

8.6669540405

8.0815629959

8.4692935944

0.8

8.3197507858

8.5792322159

8.1225881577

8.3810720444

0.9

8.3617696762

8.4915103912

8.1636104584

8.2928533554

1.0

8.4037885666

8.4037885666

8.2046337128

8.2046337128

Table 5.3

Complete Error Analysis with h =0.1

[y ]

[z

7]

0.0

0.3091754074

0.1478684603

0.2792974395

0.1926706683

0.1

0.2782585452

0.1330814345

0.2513669532

0.1734028590

0.2

0.2473407294

0.1182953625

0.2234364668

0.1541360035

0.3

0.2164248208

0.1035102440

0.1955078878

0.1348701016

0.4

0.1855079587

0.0887241720

0.1675788319

0.1156022924

0.5

0.1545910965

0.0739390535

0.1396483456

0.0963363905

0.6

0.1236751881

0.0591520278

0.1117192898

0.0770685812

0.7

0.0927573722

0.0443659556

0.0837888034

0.0578026794

0.8

0.0618414637

0.0295798836

0.0558611781

0.0385339165

0.9

0.0309246015

0.0147938114

0.0279306917

0.0192680146

1.0

0.0000077394

0.0000077394

0.0000011591

0.0000011591
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_|:| — D_ - Exact Solution
o Funge-Eutta Merson Method

nubmsennedeens Exact Solution
= ] j—- Fumge-Eutta Merzon Method

Figure 5.1

7. Conclusion

In this paper we have found the iterative solution of first
order simultaneous fuzzy differential equation using fifth
order Runge-Kutta Merson method.
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