An Asymetric Cryptographic System with Double Key

Jamel Ghanouchi

ghanouchi.jamel@gmail.com

Abstract: We will present in this document a new cryptographic system with double key.

Keywords: Asymetric, Cryptography, Double Key

1. Approach

- 1) Bob creates the message.
- 2) Alice must read it. She makes public two keys: e; e0, two reals and $n = p_1 q_1$

With p_1 , q_1 two other reals known only by her. Bob sends to Alice C

and C0: with MM the integral message and M = log(MM)

$$C = M^{\frac{e}{(p-1)(q-1)}}$$

$$C' = M^{\frac{e'}{(p-u)(q-u)+b}}$$

p; q; u; b are known only by Bob with n = pq. But u for which

$$(p-u)(q-u)(p-1)(q-1) = wC_1 = w(p_1-1)(q_1-1)(p_1-u_1)(q_1-u_1)$$

Alice does not know w. But

$$\frac{e'\log(C)}{e\log(C')} = \frac{(p-u)(q-u)+b}{(p-1)(q-1)} = a$$

$$(p-u)(q-u) = a(p-1)(q-1)-b$$

Let
$$C'' = M^{\frac{e}{(p-u)(q-u)}}$$

Let
$$C'' = M^{\frac{e'}{(p-u)(q-u)}}$$

But
$$\log(C)\log(C'') = \frac{ee'}{(p-1)(q-1)(p-u)(q-u)}\log(M)^2$$

$$= \frac{ee'}{(a(p-1)(q-1)-b)(p-1)(q-1)}\log(M)^2$$

$$= \frac{ee'}{a(p-1)^2(q-1)^2 - b(p-1)(q-1)}\log(M)^2$$

$$= \frac{ee'}{(a(p-1)(q-1)-b)(p-1)(q-1)} \log(M)^{2}$$

$$= \frac{ee'}{a(p-1)^2(q-1)^2 - b(p-1)(q-1)} \log(M)^2$$

$$= \frac{ee'}{ae^2 \frac{\log(M)^2}{\log(C)^2} - be \frac{\log(M)}{\log(C)}} \log(M)^2$$

$$= \frac{e'}{ae \frac{\log(M)}{\log(C)^2} - b \frac{1}{\log(C)}} \log(M)$$

$$(\frac{1}{ae} \frac{\log(C'')}{\log(C)} - e') \log(M) = b \log(C'')$$

$$\log(M) = \frac{b \log(C") \log(C)}{\frac{1}{ae} \log(C") - e' \log(C)} = \frac{(p-1)(q-1)}{e} \log(C)$$

Volume 4 Issue 6, June 2015

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

International Journal of Science and Research (IJSR)

ISSN (Online): 2319-7064
Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

$$(p-1)(q-1) = \frac{eb \log(C'')}{1} \frac{1}{\log(C'') - e' \log(C)}$$

$$(p-u)(q-u) = \frac{wC_1}{(p-1)(q-1)} = a(p-1)(q-1) - b = \frac{e' \log(M)}{\log(C')}$$

$$= \frac{ae \log(M)}{\log(C)} - b$$

$$b = (\frac{ae}{\log(C)} - \frac{e'}{\log(C')}) \log(M)$$
But for Alice e0 = f(e); f known only by Alice, then $e' = f(e)$

$$b = (\frac{ae}{\log(C)} - \frac{f(e)}{\log(C')}) \log(M)$$

$$e = g(b, \log(M))$$

$$b = (\frac{ag(b, \log(M))}{\log(C)} - \frac{f(g(b, \log(M)))}{\log(C')}) \log(M)$$

$$b = \frac{h(\log(M))}{1} \log(C'') - e' \log(C')$$
And we have M if we know $\log(C'')$ but
$$w = \frac{(p-1)(q-1)(a(p-1)(q-1) - b)}{C_1}$$

$$\frac{1}{ae} \log(C'') - e' \log(C)$$

$$\frac{1}{ae} \log(C') - e' \log(C')$$

Volume 4 Issue 6, June 2015

 $= e'(\frac{a}{\log(C)} - \frac{e}{e'\log(C)})\log(M) = b$

 $\log(M) = \frac{be' \log(C)}{ae' - e} = (p - 1)(q - 1)\log(C)$

 $= (\frac{ae}{\log(C)} - \frac{e'}{\log(C'')})\log(M)$

International Journal of Science and Research (IJSR)

ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

$$\begin{split} \log(M) &= \frac{h(\log(M))e'\log(C)}{ae'-e} \\ (p-1)(q-1) &= \frac{be'}{ae'-e} = \frac{eb\log(C'')}{\frac{1}{ae}\log(C'') - e'\log(C)} \\ \log(C'') &= \frac{e'(\frac{1}{ae}\log(C'') - e'\log(C))}{e(ae'-e)} \end{split}$$

And we have log(C'') and then log(M)

2. Advantages of the Method

Comparing to other systems like RSA, the advantage is that we do not work with great numbers, because it is very difficult to identify p; q knowing pq.

3. Inconvenients

It is in the function f which must be hidden. The challenge is to find one which can not be broken.

4. Conclusion

The analytic approach has allowed to put in evidence a new method of cryptography.

References

- [1] Wiener, Michael J. (May 1990). "Cryptanalysis of short RSA secret exponents". *Information Theory, IEEE Transactions on* **36** (3): 553–558.
- [2] Håstad, Johan (1986). "On using RSA with Low Exponent in a Public Key Network". *Advances in Cryptology CRYPTO '85 Proceedings*. Lecture Notes in Computer Science **218**. pp. 403–408

Online): 2319