The Study of Failure Analysis of Centrifugal Pump on the Basis of Survey

Deeptesh Singh¹, Dr. Amit Suhane², M. K. Thakur³

¹Student, Department of Mechanical Engineering, Maulana Azad National Institute of Technology, Bhopal (M.P.), India

²Assistant Professor, Department of Mechanical Engineering, Maulana Azad National Institute of Technology, Bhopal (M.P.), India

³Senior Manager, F.E.X. Division, Bharat Heavy Electricals Limited, Bhopal (M.P.), India

Abstract: In this paper, the studies of failure analysis of centrifugal pump from the perspective of life its components and frequency of occurrence of failure in it has done. Hence, a survey was conducted in industrial users based on questionnaire and data collected through the survey were subsequently analyzed.

Keywords: Centrifugal Pump, Reliability

1.Introduction

Centrifugal pumps are one of the most important components in any plant which have to deal with fluids as essential part of its industry. The primary function of moving those fluids which are undergoing any kind of transformation through other components of the plant such as furnaces, reactors, heat exchangers, and so on, make of the pumps a special focus of attention from reliability, safety, and financial viewpoints.

The reliability and maintainability of centrifugal pump systems have in the overall plant availability plays a very important role of a suitable maintenance strategy. The key issues of this strategy are not only the reduction of unplanned shutdowns and component repair times, but also failures of critical components elimination, once and for all, of chronic failures and unplanned downtime.

Figure 1: Centrifugal Pump Set-up [BHEL Bhopal Source]

2. Literature Review

S. Srinivasa Rao identifies the remedial actions are to be taken to ensure safer operation of total motor and pump unit [1]. Sakthivel et al., identified and diagnosed faults occurring in a centrifugal pump by normal running, bearing fault, impeller fault, seal fault and bearing fault and cavitation [2]. Bloch diagnosis premature failure of bearing in a centrifugal pump occurs and packing failure occurs mainly due to incorrect operating conditions, liquid contamination and misalignment of pump components [3].

3. Research Methodology

This paper defines the failure occurrence in centrifugal pump with critical component most on the basis of questionnaire survey in industry. It covers the following key points:

- Collect data of centrifugal pump users and analyze
- Frequency of occurrence of problems in the centrifugal pump.
- Useful life of centrifugal pump components prior to failure.

Research Methodology of Centrifugal pump on the Basis of Survey

4. Statistical Package for Social Sciences (SPSS) Software

SPSS is a frequently used program for statistical analysis in technology, science, market researchers, survey companies like as- engineering, medical etc., government, education researchers, data miners. [4] Statistics included in the base software: [5]

- It predicts numerical outcomes: Linear regression
- Its prediction for identifying groups: cluster analysis, Discriminant, Factor analysis.

4.1 Hypothesis Formulation

 Table 1: Questionnaire Related Pair of Centrifugal Pump the value of Cronbach's Alpha.

Hypotheses	Significance of Responses
Null Hypotheses(Ho)	Survey items are not significant.
Alternative Hypotheses (Ha)	Survey items are significant.

Questionnaire Pair	Cronbach's Alpha Value
Of Centrifugal Pump	Industrial Users
Group 1 Survey	0.849
Group 2 Survey	0.925

- Cronbach's Alpha Value Analysis defines internal consistency of collected data
- For Reliability, the value of Cronbach's Alpha should not be less than 0.7.

Cronbach's alpha coefficient values calculated for the two groups of questions are 0.849 & 0.925 for industrial users, as shown in Table-1. Therefore, above values are greater than 0.7, the survey data are considered to be reliable and used for analysis. [6]

4.2 Hypothesis Testing

Non-parametric Friedman test collected data with a 0.05 level of significance. With the help of SPSS, critical values from survey table are compared with test statistics calculated and these values of test statistic exceed critical values for two group sets of questions, as shown in Table-2. Hence, alternative hypothesis Ha is accepted and null hypothesis H0 is rejected. [7]

S.No	Questionnaire	D.O.F. (n-1)	Critical Value	Calculated test statistic	Result
			(χ2α)	Industrial user	
1	Life of centrifugal pump Components	4	9.495	74.52	H0 is rejected
2	Failure frequency of occurrence in centrifugal pump	4	9.495	34.64	H0 is rejected

Table 2 Non-parametric Friedman's Test Results

 Table 3: Components Life of Centrifugal Pump

Life	Industrial User	
Component	Mean	Standard Deviation
Impeller	3.42	0.609
Bearing	3.30	0.719
Mechanical Seal	3.24	0.678
Shaft	4.15	0.689

Figure 3: Useful Life of components in years of Centrifugal pump

5. Results

Rank of Critical Parts in Centrifugal pump	Components	Mean Values
1	Mechanical Seal	3.24
2	Bearing	3.30
3	Impeller	3.42
4	Shaft	4.15

6. Troubleshooting Chart

Trouble	What to	Actions	
TTOUDIC	inspect	Actions	
Bearing	Unit overload	Reduce loading or replace with drive of	
failure	e interrotad	sufficient capacity. Abnormal loading	
iunure		results in flaking, cracks, and fractures	
		of the bearing.	
	Bearing	Reduce speed or replace with drive	
	speed	suitable for speed.	
	Coupling	Disconnect couplings, check alignment	
	alignment	and realign as required.	
	Coupling	Adjust spacing between drive motor, and	
	lateral float	so on, to eliminate end pressure on	
	lateral fioat	shafts. Replace flexible coupling with	
		type allowing required lateral float.	
	Bearings	Bearings must not be pinched and	
	adjustment	adjustable tapered bearings should be fit	
	aujustinent	at proper bearing lateral clearance. All	
		shafts should spin freely when	
		disconnected from load. If bearing is too	
		free or not square with axis, erratic wear	
		pattern will appear in bearing races.	
	Bearings	Improper lubrication causes excessive	
	lubrication	wear and discoloration of bearing.	
	Rust	Make necessary provisions to prevent	
	formation	entrance of water. Use lubricant with	
	due to	good rust-inhibiting of properties. Make	
	entrance of	sure bearings are covered or with	
	water or	sufficient lubricant. Turn over gear unit	
	humidity	humidity more frequently during	
		prolonged shutdown periods.	
	Bearing	Make necessary provision to prevent	
	exposure to	entrance of abrasive substance and clean	
	abrasive	and flush drive thoroughly and add new	
	substance	oil.	
	Damage due	Prolonged periods of storage in moist air	
	to improper	and at ambient temperatures will cause	
	storage or	destructive storage or rusting of bearings	

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

prolonged	and gears. When these conditions are
shutdown	found to have existed, the unit must be
	disassembled and inspected and
	damaged parts either thoroughly cleaned
	of rust or replaced.

Trouble	What to inspect	Actions
Shaft failure	Type of coupling used	Rigid couplings can cause shaft failure. Replace with coupling that provides required flexibility and lateral float.
	Coupling alignment	Realign equipment is required.
	Overhung load	Reduce overhung load and replace with drive of sufficient capacity.
	Unit overload	Reduce loading or replace with drive of sufficient capacity.
	Presence of high	Apply couplings capable of
	energy loads or	absorbing shocks and, if necessary,
	extreme repetitive	replace with drive of sufficient
	shocks	capacity to withstand shock loads.
	Torsional or lateral	These vibrations can occur through
	vibration condition	1
		speed to at least 25% below critical
		speed. System mass elastic
		characteristics can be adjusted to
		control critical speed location.
	Alignment of	Realign bearing as required.
	outboard bearing	

7. Conclusions

- This survey paper presented a methodology to analyze the component failure and problems occurring in a centrifugal pump and diagnose or taking care them their priority.
- Questionnaire was tested for its validity and reliability and data collected from the industrial users were analyzed and get optimum results for components life of centrifugal pump.
- Most critical components in a centrifugal pump are packing and bearing, as per analysis of survey data.
- Hence, increase reliability and productivity of performance set-up of centrifugal pumps components.

References

- [1] S.Srinivasa Rao, Varre Chaitanya Vikas and Malla Raghava Rao, "Preventive Maintenance and Fault Diagnosis of Pump Motor Bearings," IOSR Journal of Mechanical and Civil Engineering, Volume 2, Issue 6, PP 17-20, Sep-Oct 201).
- [2] N. R. Sakthivel., V. Sugumaran. and S. Babudevasenapati. "Vibration based fault diagnosis of monoblock centrifugal pump using decision tree" Expert Systems with Applications. Vol. 37 (2010), No. 6, PP 4040-4049.
- [3] A. Soylemezoglu., S. Jagannathan and C. Saygin. "Mahalanobis-Taguchi system as a multi-sensor based decision making prognosis tool for centrifugal pump failures" IEEE Transactions on Reliability. Vol. 60 (2011), No. 4, PP 864-878.
- [4] SPSS 15.0 Command Syntax Reference, Chicago, Illinois: SPSS Inc., 2006.

- [5] https://en.wikipedia.org/wiki/SPSS.
- [6] J.K. Nayak, "Data Analysis for Research & Publication" IIT Roorkee, 20-21 December, 2014.
- [7] Selvakumar J. and Natarajan K, "FAILURE ANALYSIS OF CENTRIFUGAL PUMPS BASED ON SURVEY," ARPN Journal of Engineering and Applied Sciences, VOL. 10, NO. 4, MARCH 2015, PP 1960-1965.