
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 6, June 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Improving Quality of Service in Cloud Based

Networks with Software Defined Networks

Chinthagunta Mukundha

Professor, CSE Department, Institute of Aeronautical Engineering, Hyderabad -500043, Andhra Pradesh, India

Abstract: With the increase of network in cloud the complexity and flexibility of network control and management becomes a

nontrivial problem. Both Software Defined Network (SDN) and Autonomic Network technologies are sophisticated technologies for the

network control and management. In AQSDN, the various QoS features can be configured autonomically in an OpenFlow switch

through extending the OpenFlow and OF-Config protocols. Based on AQSDN, a novel packet context-aware QoS model (PCaQoS) is

also introduced for improving the cloud network QoS. PCaQoS takes packet context into account when packet is marked and managed

into forwarding queues. The implementation of a video application’s prototype which evaluates the self-configuration feature of the

AQSDN and the enhancement ability of the PCaQoS is presented in order to validate this design.

Keywords: Cloud network, SDN, Autonomic Management, Context aware, Quality of Service

1. Introduction

In the Cloud based networks increment of various network

equipments and services, the complexity of network control

and management has become more complex. The QoS

management is an important part of network management.

Various QoS models and mechanisms have been proposed,

but there is no common algorithm. The advantages and

disadvantages of the different combinations of queue

management and scheduling, which works at various

workloads and different transmission mediums are analyzed.

In order to reduce the Cloud network management cost and

the probability of Cloud network failure, autonomic network

technologies is introduced in Cloud network control and

management, and the autonomic function is also considered

as an important component in many projects which focused

on future network architecture. Software Defined Network

(SDN) separates the control plane and the data plane, some

Network control and management functions could be

implemented through the software instead of updating huge

numbers of network elements.

OpenFlow protocol which proposed by Open Networking

Foundation (ONF) is the most popular standard for

communication between controller and OpenFlow switch in

SDN. In order to support QoS management functions, each

version of OpenFlow protocol defines the enqueue action,

but the queue configuration has not been involved.

We design an Autonomic QoS management mechanism in

SDN (AQSDN) for Cloud network QoS guarantee. In this

mechanism, the controller undertakes the function of

analysis and decision in the autonomic control loop, while

the switch acts as collector of the context and executive of

the behavior. This mechanism controls adaptively the QoS

rules according to the context from data plane and the policy

from the operator. In addition, for improving the quality of

multimedia service, we also propose the Packet Context-

aware QoS model (PCaQoS), which processes packets

according to their semantic precedence level.

2. Theoretical basis and Literature Review

Very little research is done in the field of language of SDN

because this is a relatively new field. OpenFlow is the

Application Programming Interface used for the controller to

talk to the switches below where as the SDN makes it

possible to program the network, it does not make it easy.

OpenFlow controllers in today’s generation offer low-level

APIs that mimic the underlying switch hardware. As such a

new platform must be created to provide programmers to

program with ease and not have to deal with the lower level

switches.

Cloud computing refers to the delivery of computing

resources over the Internet. Instead of keeping data on your

own hard drive or updating applications for your needs, you

use a service over the Internet, at another location, to store

your information or use its applications. Doing so may give

rise to certain privacy implications. The cloud computing

model allows access to information and computer resources

from anywhere that a network connection is available. Cloud

computing provides a shared pool of resources, including

data storage space, networks, computer processing power,

and specialized corporate and user applications.

An automatic and scalable QoS control Architecture adds

Rate-limiters and queue mapping API to Open-Flow. The

rate-limiters API is used to map one or more flows to the

special rate limiters, while the queue mapping API is used to

map a flow to the special priority queue. QoSFlow extends

the OpenFlow protocol 1.0 for improving the QoS control

capability on OpenFlow/SDN networking. PindSwitch

provides Output Queue Control message for configuration

of the queue scheduling.

3. AQSDN Architecture

The AQSDN Architecture is illustrated in Fig.1. The QoS

control module which is located in SDN controller decides

or chooses QoS rules dynamically. The OpenFlow protocol

and OF-config protocol is extended for acquiring the context

from SDN switch or issueing the QoS rules to SDN switch.

For sensing context and instantiating the QoS rules, several

Paper ID: SUB155795 2040

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 6, June 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

functions and components are implemented in OpenFlow

switch.

3.1 QoS Control Module

The QoS control module, which is an application of the

ONF controller, has two function models. One is QoS

scheme decision model, which determines suitable queue

management and scheduling schemes as well as their

parameters. This model is activated infrequently, e.g., when

a switch is initialized or when the operator forces it. The

other one is QoS action decision model, which determines

packets marking and designates the queue for each flow

adaptively. This model may be activated frequently. QoS

schemes and actions are collectively referred as QoS rules.

The QoS control module comprises Context manager,

Analysis, Rule decision, Requirement DB, Rule DB and

Policy DB.

The detail functions of these models are described as

follows:

 Requirement DB: It stores the QoS requirements, which

are provided by network operator, end user or other

applications running on the controller.

 Rule DB: It stores the historical QoS rules which are used

for the special requirements or in specified network

environments.

 Policy DB: It stores the QoS Polices supported by

OpenFlow switch, which can be provided by network

operator or other applications.

Figure 1: Architecture of AQSDN

Context manager: context manager is responsible for

aggregating, storing and managing context perceived from

the data plane. Generally, context could include any

information charactering the situation of an entity. In

AQSDN, we only focus on QoS management of the cloud

network. So the entity is network and service. The network

context and the Flow context are defined as Definition 1and

2.

Definition 1. (Network Context): network context is an

information set characterizing the network performance,

which includes the state information of the switch or node

(e.g., utilization ratio of CPU and memory on a node and the

length of the packet queue), and the link information, (e.g.,

the Packet Loss Ratio (PLR) delay and jitter, available

bandwidth of the link). The controller attains the node state

information through accessing the Management Information

Base (MIB), and the link information through analyzing the

statistical information of the flow. As we known, the

statistical information are divided into multiple granularities:

table leve l, flow level, port level, queue level and meter

level.

Definition 2. (Flow Context): Flow context is an

information set characterizing a service flow, which includes

the inherent feature (e.g., the service type and the QoS

requirement), and the real-time flow feature (e.g., the burst

rate).The inherent features of the service can be carried in

the first packet of the flow, and then be achieved by

controller with Deep Packet Inspection (DPI) technologies.

The controller can achieve the real-time feature through

querying the switch for statistical information.

Analysis: The tasks of the analysis module are to analyze

whether the QoS requests can be satisfied and if there are

conflicts among them. If conflicts are founded or the QoS

requests could not be satisfied, these results are sent to the

administrator. If the QoS requests could be satisfied, the

related contexts and requirements are forwarded to the QoS

rule decision module.

Rule decision: T he Rule decision component can chooses

the appropriate QoS rule from the QoS Rule DB if it exits.

Otherwise, this component plans new QoS rule based on the

context, QoS requirement and QoS policy stored in the QoS

Policy DB, and stores the new QoS rule into the QoS Rule

DB for use later. To describe the control procedure clearly,

the main process of the QoS control module is presented in

algorithm 1.

3.2 The enforcement of the QoS rules

For QoS action in each flow, the packet marking algorithms

selection is configured via OpenFlow protocol by the

OpenFlow controller. Meanwhile, the QoS schemes for each

queue, queue management and schedule schemes are

configured through OF-config protocol by the OF-config

point.

3.2.1 The enforcement of the QoS actions

The existing OpenFlow protocol defines the message about

the configuration of the flow table, the group table and meter

table. The enqueue/ set-queue action specifies which queue

attached to a port should be entered by a flow. And the

meter table and meter band provide the meter operation for

flow. However, the existing remarking bands, which only

lower the drop precedence level of the packet, does not

satisfy various QoS requirement. So it is necessary to extend

OpenFlow protocol so that it could support diverse packet

marking algorithms. Based on the definition of meter band,

the band type, rate, and counters fields are fixed, while other

arguments are variable with the band type. For example,

there is prec level field in drop band and there is not in

remarking band. On the other hand, the number of specific

arguments is unpredictable for new band.

Algorithm 1 QoS_Control

Paper ID: SUB155795 2041

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 6, June 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Procedure QoS_Control () {

1: while (TURE) {

2: QoS_req:=read_QR (Requirement_DB);

3: QoS_policy:=read_QP(QoS_policy_DB);

4: Context:=wait_for_context();

5: Result:=analysis(QoS_req,QoS_policy, Context)

6: if(Result==Conflict)

7: exception(THERE_IS_CONFLICT);

8: else if(Result==Not_Guarantee)

9: exception (QoS_IS_NOT_SATISFIED);

 else

10: QoS_rule:=QoS_rule_decision (QoS_req,QoS_policy,

Context);

11: store_QoS_rule(QoS_rule);

}

}

4. Secure and Dependable Control Platform

Here, we present the general design of the secure and

dependable SDN control platform we propose.

4.1 Replication

One of the most important techniques to improve the

dependability of the system is replication. As can be seen in

below figure our controller is replicated, with three instances

in the example. Applications should be replicated as well.

Besides replicated instances of the controller, in the Fig:2

we can observe application B also replicated in all controller

instances. This mixed approach ensures tolerance of both

hardware and software faults, accidental or malicious.

Replication makes it possible to mask failures and to isolate

malicious or faulty applications and/or controllers.

Moreover, in case of a network partition, application B, with

the proper consistency algorithms, will still be able to

program all network switches, contrary to application A.

Figure 2: Secure & Dependable SDN

4.2 Diversity

Another relevant technique to improve the robustness of

secure and dependable systems is diversity .Replication with

diverse controllers is a good starting case. The basic

principle behind this mechanism is to avoid common-mode

faults (e.g., software bugs or vulnerabilities).For example, it

is known that off-the-shelf operating systems, from different

families, have few intersecting vulnerabilities which means

that OS diversity constrains the overall effect of attacks on

common vulnerabilities. In SDNs the same management

application could run on different controllers. This can be

simplified by defining a common abstraction for

applications (a northbound API).

4.3 Self-healing mechanisms

Under persistent adversary circumstances, proactive and

reactive recovery can bring the system back to a healthy

state, replacing compromised components, and keep it

working virtually forever. When re-placing components, it is

important that the replacement be done with new and diverse

versions of the components, whenever possible. In other

words, we should explore diversity in the recovery process,

strengthening the defense against attacks targeting specific

vulnerabilities in a system.

4.4 Dynamic device association

If a switch is associated with a single controller, its control

plane does not tolerate faults. Once the controller fails, the

control operation of the switch fails and the switch will need

to associate with another controller. For this reason, a switch

should be able to dynamically associate with several

controllers in a secure way A switch associated with

different controllers would be able to automatically tolerate

faults. Other advantages include increasing control plane

throughput several controllers could be used for load

balancing and reducing control delay by choosing the

quickest-responding controller.

5. What Is OpenFlow?

OpenFlow is an open, standards-based communications

protocol and an example of device-based SDN. OpenFlow

provides access to the forwarding plane of a network switch

or router over the network, facilitating more sophisticated

traffic management, especially for virtualized and cloud

environments. The OpenFlow protocol is standardized and

managed by the Open Networking Foundation (ONF),

whose mission also includes the promotion of SDN

technologies as a whole.

In a classical router or switch, the data plane and the control

plane reside on the device. OpenFlow enables part of control

plane operations to run on external servers called controllers.

In practice, an OpenFlow API is generally a feature added to

commercial network devices, whose hardware architecture

and features remain crucial to network performance. The

standard control plane of the device remains in place and

performs traditional routing or switching. Today, most

OpenFlow- enabled devices can also support both OpenFlow

traffic and non-OpenFlow traffic, with mechanisms for

determining to which pipeline each traffic flow should be

routed. The real benefit of OpenFlow lies in the applications

that it can enable. New forms of traditional control plane

applications such as security or specialized QoS functions—

and even entirely new applications—may be written to these

controllers, as shown in Fig:3 below. This will enable cloud

and hosting providers, in particular, to develop and market

more truly differentiated services to their clients. Traditional

enterprises can also benefit from this type of third-party

network application development, for example, in

developing capabilities that help meet the operational or

regulatory requirements of their industry.

Paper ID: SUB155795 2042

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 6, June 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 3: Controller Path

5.1 Use Cases for Control Plane Abstraction:

SDN will enable a wide variety of use cases as the

technologies mature. In the near term, these are some of the

most commonly envisioned scenarios:

Service assurance through flow optimization in the Wide

Area Network (WAN). Public cloud providers may wish to

ensure their SLAs by maintaining visibility and control of

traffic all the way to the client’s network edge. This can be

achieved by deploying OpenFlow-enabled devices both at

the cloud provider edge and client ingress, with both devices

communicating to the cloud provider OpenFlow controllers.

OpenFlow can also help provide granular control of inter-

data center traffic, including backup or disaster recovery

operations.

Service differentiation through rapid customization. As

illustrated in Figure 1, the ability to develop new features

quickly for highly specialized use cases is appealing to

many, particularly in the cloud and hosting space, as it can

provide opportunities for timely service differentiation and

incremental monetization of the network. Such use cases

might take the form of new security offerings, service levels,

or bandwidth on demand.

Service velocity through highly scalable and easily

orchestrated network virtualization. By defining within the

controller a set of policies that can be applied to any number

of flows at need, the operator is able to truly divorce the

service delivered to the client from the physical locations of

the infrastructure supporting it.

5.2 Cloud SDN

Dynamic nature of cloud services requires server

virtualization to be administered in real time utilizing

network virtualization. Software Defined Networking is the

new paradigm of networking, which uses a centralized

controller to control the flow of packets in the data plane.

This new approach makes network management easier and

has ability to save costs for the organization. There has been

significant advancement in cloud computing technologies,

which has led to the development of cloud management

tools like OpenStack (An Open source Infrastructure as a

Service (IaaS) cloud computing project).

6. Future Work

The future of cloud networking will rely more and more on

software, which will accelerate the pace of innovation for

cloud networks as it has in the computing and storage

domains. SDN promises to transform today’s static networks

into flexible, programmable platforms with the intelligence

to allocate resources dynamically, the scale to support

enormous data centers and the virtualization needed to

support dynamic, highly automated, and secure cloud

environments. With its many advantages and astonishing

industry momentum, SDN is on the way to becoming the

new norm for networks.

7. Conclusion

In the traditional IP network, resource utilization

improvement and network QoS guaranteeing are very

complicated for cloud network operators. For solving this

problem, research communities propose lot of ideas on it.

One of them is to upgrade the network nodes with

autonomic abilities. In addition, Software Defined Network

provides the capability to implement network control and

management functions by software. In this paper, the

AQSDN architecture, which combines the advantages of the

autonomic network management and the SDN technologies,

is proposed. A novel QoS model which is called Packet

Context-aware QoS (PCaQoS) model is also presented based

on the AQSDN architecture.

References

[1] Sivaraman, Anirudh, et al. No silver bullet: extending

SDN to the data plane. Proceedings of the Twelfth

ACM Workshop on Hot Topics in Networks. ACM,

2013.

[2] Kephart J O, Chess D M. The vision of

autonomiccomputing[J]. Computer, 2003, 36(1): 41-50.

[3] Miller. B. The autonomic computing edge: Can you

CHOP up autonomic computing? Technical report,

IBM, 2008.

http://www.ibm.com/developerworks/autonomic/library

/ac-edge4.

[4] EFIPSANS project. http://www.efipsans.org/.

[5] ANA (Autonomic Network Architecture) Project.

http://www.ana-project.org/.

[6] HAGGLE Project. http://www.haggleproject.org/

[7] CASCADAS project. http://www.cascadas-project.org/.

[8] BIONETS project. http://www.bionets.eu/.

[9] OpenFlow Specification 1.3.0. https://www.

opennetworking.org/images/stories/downloads/sdn-

resources/onf-specifications/openflow/openflow-spec-

v1.3.0.pdf.

Author Profile

Mukundha Chinthagunta, Associate Professor,

Department of Information Technology, Institute of

Aeronautical Engineering, HYD-500043, AP, India.

Paper ID: SUB155795 2043

