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Abstract: A theoretical analysis of three dimensional free convection couette flow of a viscous incompressible fluid between two vertical 

parallel plates with transpiration cooling in the presence of a stationary magnetic field applied perpendicular to the planes of the 

insulating plates is presented. The stationary plate and the plate in uniform motion are, respectively, subjected to transverse sinusoidal 

injection and uniform suction of the fluid. The flow becomes three dimensional due to this type of injection velocity distribution. The 

series expansion method is used to obtain the expressions for the velocity and temperature fields. A comprehensive study of the problem 

is made for various parameters. 
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1. Introduction 
 

The magnetohydrodynamic (MHD) flows has many practical 

applications such as electromagnetic flow meters, 

electromagnetic pumps and hydromagnetic generators etc. 

Magnetohydrodynamics deals with dynamics of an 

electrically conducting fluid, which interacts with a magnetic 

field. The study of MHD flow in a channel has applications 

in many engineering problems. Chang and Lundgren [4], 

Hughes and Young [20], Hartmann [7], Jaffery [2], Cowling 

[18] discussed the exact solutions to the classical problem of 

hydrodynamic channel flow for different simplified solutions. 

The flow and heat transfer of electrically conducting fluids in 

channels under the effect of a transeverse magnetic field has 

been discussed by several authors notably Attia and Kotb [6], 

Nigam and Singh [15] and Alpher [14]. Convective flows in 

channels driven by temperature differences of bounding walls 

have been studied and reported, extensively in literature. Free 

convection flows in vertical slots were discussed by Burch et 

al. [17], Kim et al. [16], Buhler [8], and Weidman [13]. 

Ferraro and Plumpton [19] and Cramer and Pai [11] are 

notable authors for major contribution about MHD free 

convection flows and their significant application in the field 

of stellar and planetary magnetospheres, aeronautics, 

chemical engineering, electronics, and so on. An extensive 

contribution on heat transfer flow has been made by Gebhart 

[3] to highlight the insight on the phenomena. Raptis [1] 

investigated Hydrodmagnetic free convection flow through a 

porous medium between two parallel plates. Transpiration 

cooling is a very effective process to protect certain structural 

elements in turbojet and rocket engines, like combustion 

chamber walls, exhaust nozzles, or gas turbine blades, from 

the influence of hot gases. In view of this Eckert [5] obtained 

an exact solution of the plane couette flow with transpiration 

cooling. Singh [10] studied Three dimensional couette flow 

with transpiration cooling. Singh and Sharma [9] investigated 

MHD three dimensional couette flow with transpiration 

cooling. Jain and gupta [12] were analyzed Three 

dimensional free convection couette flow with transpiration 

cooling. 

 

The aim of the present problem is to study the effects of the 

transverse magnetic field on three dimensional free 

convection couette flow. If the effect of magnetic field is 

neglected ( M =0), in the present work, the results obtained 

are similar to those of Jain and gupta [12]. 

 

2. Formulation of the Problem 
 

Consider a steady laminar couette flow of viscous 

incompressible fluid between two vertical parallel flat plates 

distance „d‟ apart. A co-ordinate system is introduced with its 

origin at the stationary plate lying vertically on the * *x z  

plane. The another plate in uniform motion 
0U along the *x -

axis is subjected to a constant suction 
0V and stationary plate 

to a transverse sinusoidal injection velocity distribution of the 

form 

 
*

*

0

cos
1

z
v z V

d




 
  

 
 (1) 

where  1  is a positive constant quantity. 

A magnetic field of uniform strength 
0B  applied along *y -

axis perpendicular to the plane of plates. The value of this 

uniform magnetic field is assumed to be unaltered by making 

the necessary assumptions that guarantee the neglection of 

the induced electric and magnetic fields. Hall effects, 

electrical and polarization effects are also neglected. The 

plates are assumed to be at constant temperature *

0T  and *

1T , 

respectively. All the physical quantities are independent of 
*x for this problem of fully developed laminar flow but the 

flow remains three-dimensional due to the injection velocity 

Eq. (1). Denoting the velocity components *u , *v , *w  in the 
*x , *y , *z  directions respectively and the temperature by *T , 

the problem is governed by the following equations: 

 
* * 0y zv w  , (2) 

   
2

* * * * * * * * *0

y z e yy zz

B
v u w u g T T u u u





        (3)  

 
*

* * * * * *y

y z yy zz

p
v v w v v v


       (4) 
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where   is the density,   is the kinematic viscosity,   is 

the electrical conductivity, 
pC  is the specific heat at constant 

pressure, k  is the thermal conductivity, g  is the acceleration 

due to gravity,   is the coefficient of volume expansion, *

eT  

is the equilibrium temperature and *p  is the pressure. Here 

the „*‟ stands for the dimensional quantities. The boundary 

conditions of the problem are 

 
*
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where 1

1

1

2 m
L L

m


 , L  being mean free path and 

1m  the 

Maxwell‟s reflection coefficient. 

Introducing the following non-dimensional quantities: 
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  (The Grashof number), 

0
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V k



  (The heat source parameter), 
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h

d
  (The slip parameter), 0V d
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 (The suction 

parameter), 0M B d



  (The Hartmann number), 

And get the equations as: 
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The corresponding boundary conditions become: 

 

 0 : 0, 1 cos , 0, 1y u v z z w          

1: 1 , 1, 0,yy u hu v w m       (13)  

  

3. Solution of the Problem 
 

Since the amplitude of the injection velocity  1   is very 

small, we now assume the solution in the following form: 

 

       2

0 1 2, , , ...f y z f y f y z f y z      (14) 

 

where f  stands for , , ,u v w p  and  . When 0  , the 

problem reduces to the two dimensional flow with constant 

injection and suction at the respective plates and are governed 

by the following equations: 
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with boundary conditions: 

0 0 0 0

0 0 0 0 0

0 : 0, 1, 0, 1
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y u v w

y u hu v w m


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The solution of this two dimensional problem is 

 
1 2 11 22

0 3 4 1 2

r y r y x y x y
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11 22
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with 0 0 01, 0,v w p  =constant. (21) 

 

When 0  , substituting Eq.(14) in Eqs.(8)-(12) and 

comparing the coefficients of identical powers of  , 

neglecting those of 2 3,   etc., the following first order 

equations are obtained: 
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with boundary conditions 

1 1 1 10 : 0, cos , 0, 0y u v z w        

1 1 1 1 11: , 0, 0, 0yy u hu v w       (27) 

 

These are the linear partial differential equations which 

describe the three-dimensional flow. 

 

In order to solve these equations we shall first consider the 

Eqs.(22), (24) and (25) for cross flow, being independent of 
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the main flow component 
1u , and the temperature field 

1 . 

We assume 
1 1,v w  and 

1p  of the following form: 

 

   1 11, cosv y z v y z  (28) 

   1 11

1
, sinw y z v y z


   (29) 

   1 11, cosp y z p y z  (30) 

 

Where a prime denotes differentiation with respect to y . 

Equations (28) and (29) have been so choosen that the 

continuity Eq.(22) is satisfied. Substituting these equations 

into Eqs.(24) and (25) and applying the corresponding 

transformed boundary conditions, we get the solutions of 

1 1,v w  and
1p  as 
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 (33)  

Now assuming 
1u and 

1  as 

   1 11, cosu y z u y z  (34) 

   1 11, cosy z y z    (35) 

 

and substituting in Eqs.(23) and (26), we obtain the following 

equations: 
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with the corresponding boundary conditions: 
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Substitution of 
11u  and 

11  obtained from Eqs.(36) and (37) 

under boundary conditions Eq.(38) in Eqs.(34) and (35), we 

get 
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Constants of integration and other constants are not reported 

here for the sake of brevity. 

  

Now after knowing the velocity field, we can calculate the 

skin friction components 
x  and 

z  in the main flow and 

transverse directions, respectively as 
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From the temperature field we can obtain the heat transfer 

coefficient i.e. Nusselt number as: 
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4. Results and Discussion 
 

The effect of magnetic field on three dimensional convection 

flow of a viscous incompressible fluid through a vertical 

channel with transpiration cooling is analyzed. In order to 

study the effects of different parameters appearing in the flow 

problem, we have carried out analytical calculations for the 

main flow velocity distribution  u , temperature field   , 

cross flow velocity  w , skin friction     ,x z   and rate 

of heat transfer  Nu . 

The main flow velocity profiles are presented in Fig. 1 to 3. 

From Fig. 1 it is interesting to note that when magnetic field 

strength M  increased the velocity decreased near the 

stationary plate while that near the moving plate velocity is 

increased. The effects of a transverse magnetic field on an 

electrically conducting fluid gives rise to a resistive-type 

force called Lorentz force similar to drag force this force has 

the tendency to slow down the motion of the fluid in the 

channel. In Fig. 2 it can be interpreted that velocity increases 

with increase in Grashof number G  and injection parameter 

S  near the stationary plate but decreases near the moving 

plate. Fig. 3 shows that the velocity decreases throughout the 

channel with the increase of the slip parameter h . Also from 
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this figure it is shown that when heat source parameter   

and m  are increased the velocity near the stationary plate 

increased while that near the moving plate is decreased. 

 

Temperature profiles are presented in Fig. 4 to 6. It is evident 

from Fig. 4 that increase in heat source parameter 

 increases the temperature field. Fig. 5 shows that the 

temperature field increases with increase in injection 

parameter S  and m . From Fig. 6 it is clear that temperature 

field decreases with the increase in Prandtle number P . This 

is because the fluid is highly conductive for small value of 

Prandtl number. Physically, if Prandtl number increases, the 

thermal diffusivity decreases and this phenomenon lead to the 

decreasing manner of the energy transfer ability that reduces 

the thermal boundary layer. 

  

The cross flow velocity component  w  is due to transverse 

sinusoidal injection velocity distribution applied through the 

plate at rest. This secondary flow component is shown in Fig. 

7. It is interesting to note that magnetic field prevents back 

flow throughout the flow field.  

 

The variations of skin friction components at the left plate 

versus suction parameter in the main flow and transverse 

directions are shown in Fig. 8 and 9. It was found from Fig. 8 

 x  decreases with an increase in , ,m z  up to the middle 

and thereafter  x  increases with increasing , ,m z  Also 

from this figure it is clear that the  x  decreases with the 

increase in slip parameter h . Fig. 9 shows that 

when z increases,  z  also increases. 

 

Fig. 10 illustrates the variation of heat transfer Nu  is plotted 

against the suction parameter S . It is clear from the figure 

that rate of heat transfer tends to increase by increasing the 

magnitude of suction parameter. The figure also showing that 

when strength of heat source parameter  and m  are 

increased, the Nusselt number is increased.  

 

 
Figure 1: Main flow velocity distribution u  plotted against 

y  for different values of M  and  =0.01, P =0.71, z =0.25, 

G =5, h =0.2, m =2,  =1, S =0.5. 

 

 
Figure 2: Main flow velocity distribution u  plotted against 

y  for different values of G , S  and M =1, h =0.2, m =2, 

 =1,  =0.01, P =0.71, z =0.25. 

  

 
Figure 3: Main flow velocity distribution u  plotted against 

y  for different values of h , m ,  and M =1,  =0.01, 

P =0.71, z =0.25, G =5, S =0.5 

 

 

 
Figure 4: Temperature distribution   plotted against y  for 

different values of  and M =1, =0.01, P =0.71, z =0.25, 

G =5, S =0.5, h =0.2, m =2. 
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Figure 5: Temperature distribution   plotted against y  for 

different values of S , m  and h =0.2,  =1, M =1,  =0.01, 

P =0.71, z =0.25, G =5. 

 

 
Figure 6: Temperature distribution   plotted against y  for 

different values of P  and h =0.2,  =1, M =1,  =0.01, 

m =2, z =0.25, G =5, S =0.5 

 

 
Figure 7: Cross flow velocity w  plotted against y  for 

different values of M , z , S  and h =0.2,  =1,  =0.01, 

m =2, P =0.71, G =5. 

 

 
Figure 8: Skin friction  x  plotted against S  for different 

values of h , m ,  , z  and M =1,  =0.01, P =0.71, G =5, 

S =0.5. 

 

 
Figure 9: Skin friction  y  plotted against S  for different 

values of z  and M =1,  =0.01, P =0.71, G =5, S =0.5, 

h =0.2, m =2,  =1 

 

 
Figure 10: Nussult number Nu  plotted against S  for 

different values of m ,  and M =1,  =0.01, P =0.71, 

G =5, S =0.5, h =0.2, z =0.25. 
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