
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 6, June 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Methodologies and Technique for Software Agent

Kiran
1
, Vijay

2

1Department of Computer Science & Engineering, Meri College of Engineering.& Technology, Sampla, Bhadurgarh, Haryana-(India)

2B. Tech (IT), M.Tech (CSE), Department of Computer Science & Engineering, Sampla, Rohtak, Haryana-(India)

Abstract: Software agents and multi agent systems are a promising technology for today's complex, distributed systems. Methodologies

and techniques that address testing and reliability of these systems are increasingly demand in particular to support systematic

verification/validation and automated test generation and execution. This work deals with two major research problems: the lack of a

structured testing process in engineering software agents and the need of adequate testing techniques to tackle the nature of software

agents, e.g., being autonomous, decentralized, collaborative. To address the first problem, we proposed a goal-oriented testing

methodology, aiming at defining a systematic and comprehensive testing process for engineering software agents. It encompasses the

development process from the early requirements analysis until the deployment. We investigated how to derive test arte facts, i.e. inputs,

scenarios, and so on, from agent requirements specification and design, and use these arte facts to refine the analysis and design in

order to detect problems early. More importantly, they are executed afterwards to and defects in the implementation and build

confidence in the operation of the agents under development. Concerning the second problem, the peculiar properties of software agents

make testing them troublesome. We developed a number of techniques to generate test cases, automatically or semi-automatically. These

include goal-oriented, ontology-based, random, and evolutionary generation techniques. Our experiments have shown that each

technique has different strength. For instance, while the random technique is effective in revealing crashes or exceptions, the ontology-

based one is strong in detecting communication faults. The combination of these techniques can help to detect different types of fault,

making software agents more reliable. We also investigated approaches to monitoring agent and evaluating them. All together, the

generation, evaluation, and monitoring techniques form a bigger picture: our novel continuous testing method. In this method, test

execution can proceed independently of any other human-intensive activity; test cases are generated or evolved continuously using the

proposed generation techniques; test results are observed and evaluated by our monitoring and evaluation approaches to give feedbacks

to the generation step. The aim of continuous testing is to exercise and stress the agents under test as much as possible, the final goal

being the possibility to reveal yet unknown faults .We applied a case study to illustrate the proposed methodology and performed three

experiments to evaluate the performance of the proposed techniques. The obtained results are promising.

Keywords: Application, ECAT, Goal Types, Testing Suit, Testing Types, Mas

1. Introduction

Software agents, with their peculiar properties, e.g., (semi-

)autonomy, adaptivity, are key technologies to meet modern

business needs, e.g., world- wide computing, ubiquitous

computing, networked enterprises. They offer also an

effective conceptual paradigm to model such complex

systems. In fact, research on the development of software

agents and Multi Agent System (MAS) has grown into a

very active area, and interestingly they are receiving more

industrial attention as well.

As these systems are increasingly taking over operations

and controls in enterprise management, automated vehicles,

and financing systems, assurances that these complex

systems operate properly need to be given to their owners

and their users. This calls for an investigation of suit- able

software engineering frameworks, including requirements

engineering, architecture, and testing techniques, to provide

adequate software development processes and supporting

tools.

Testing of software agents and MAS is a challenging task

because these systems are distributed, autonomous, and

deliberative. They operate in an open world, which requires

context awareness. There are issues concerning

communication and semantic interoperability, as well as

coordination with peers. All these features are known to be

hard not only to design and to program (Bergenti et al.

2004), but also to test. In particular, the very specific

nature of software agents, which are designed to be

autonomous, proactive, collaborative, and ultimately

intelligent, makes it difficult to apply existing software

testing techniques to them. For instance, agents operate

asynchronously and in parallel, which challenges testing

and de- bugging. Agents communicate primarily through

message passing instead of method invocation, so existing

object-oriented testing approaches are not directly

applicable. Agents are autonomous and cooperate with

other agents, so they may run correctly by themselves but

incorrectly in a community or vice versa. Moreover, agents

can be programmed to learn; so successive tests with the

same test data may give different results (Rouf2002).

As a result, testing software agents and MAS seeks for

new testing techniques dealing with their peculiar nature.

The techniques need to be effective and adequate to

evaluate agent's autonomous behaviours and build

confidence in them. From another perspective, while this

research field is becoming more mature, there is an

emerging need for detailed guidelines during the

development process. This is considered a crucial step

towards the adoption of Agent-Oriented Software

Engineering (AOSE) methodology by industry. A number

of methodologies (Perini 2009, Henderson-Sellers and

Giorgini 2005) have been proposed so far. While some

work considered specification-based formal verification

2. Methodology

This Paper presents the proposed methodology. We discuss

different goal types, testing types, a testing process model.

Paper ID: SUB155691 1991

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 6, June 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

The relationships between goal types and testing levels are

presented with reference to the process. Finally, we discuss

how to derive systematically test cases from goal models.

Goal Types

Different perspectives give different goal classifications.

For instance, (Dasani et al. 2006) classify agent goals in

agent programming into three categories, namely perform,

achieve, and maintain, according to the agent's attitude

toward them. We use a general perspective on goals, but

not from a specific subject (e.g., agent), to classify them

based on the Tropos software engineering process. Goals

are classified into the following types according to the

different phases of the process:

Descriptions

Goals that represent stakeholder objectives and requirements

to- wards the system to-be. This type of goal is mainly

identified at the early requirements phase of Tropos. goals

that represent system-level objectives or qualities that the

system to-be has to reach or provide. For instance, goals

that are related to performance, openness of the system as a

whole are system goals. This type of goal is mainly

specified at the late requirements phase of Tropos. goals

that require the agents of the system to-be to cooperate or

share tasks, or goals that are related to emergent properties

resulting from interactions. This type of goal can be called

also as group goal. Goals that belong to or are assigned to

particular agents. This type of goal appears when designing

agent. Let's go back to our motivating example in Section

3.3. Goals shown in

3. Test Suit Derivation

This section introduces in details guidelines to derive test

suites according to the proposed V process model. The

guidelines contain four parts, as illustrated in Figure 3.6.

First, we discuss how to derive test suites for acceptance

test from organizational and system goals. Second, we

discuss how system, collaborative, and agent goals are used

to create system test suites. Next, as we move on in the

development process to the agent interaction and capability

design, we show how to exploit collaborative and agent

goals to create integration test suites. Finally, we discuss in

depth how to create test suites for agent plans, goals, and

agents themselves. Examples are given in each part to

illustrate the derivation. In addition, we also discuss when

the derivations take place, when test suites are executed, and

goal-oriented test adequacy at each test level

Acceptance test

Acceptance test suite derivation takes place at the Late

Requirements phase, in parallel with the system analysis.

At this stage, we have identified: actors, actors' goals, and

dependencies between actors. Actors in the organizational

setting include stakeholders, identified at Early

Requirements phase, and system actors. Stakeholder

actors present their intentions to the system actors by goal

dependencies: they delegate goals to the system actors. In

general, these goals represent users' objectives and

intentions with regard to the system-to-be, so the fulfillment

of these goals is a pivotal benchmark to the system

acceptance. Thus, we will use them as foundations for

acceptance test suites.

System Test

The transition from Late Requirements to Architectural

Design phase consists of identifying agents that realize the

specified system actors, assigning system actors' goals

(called system goals) to agents goals, and projecting system

actors' dependencies to agents dependencies and

interactions. At this stage, apart from the arte facts (actors,

goal models) obtained from the Late Requirements phase,

there are agents, their goals, roles, collaborative goals,

agents' dependencies for goals, resources, the dependencies

between agents and the environment, regulations,

constraints, and so forth. System test suites should consider

and make use of these arte facts. System tests suite

derivation takes place in parallel with architectural design.

Similar to acceptance test suite derivation where we take

stake- holder actors' goals as foundation concepts, we use

system actors' goals as foundations to create system test

suites as they provide the system-level objectives and

requirements. When the system as a whole is built so that

the system actors' goals (including functional hard goals

and quality soft- goals) are fulfilled, it is ready to be passed

to the customer for acceptance test

Integration Test

The aim of integration testing is to make sure that agents

work together correctly - sharing tasks and resources - to

achieve collaborative or agent goals. To obtain this

objective, we consider dependencies between agents for

collaborative goals and dependencies between agents and

resources. In fact, these dependencies are sources that lead

to interactions, i.e. agent- agent and agent-environment

interactions. We can use them to derive test suites that

exercise these dependencies and then evaluate the result of

the interactions.

Agent Testing

An agent is composed of smaller components, e.g., beliefs,

goals, plans, events, reasoning module, and so forth.

Testing at the agent level consists of integration testing of

agent components, so one has to derive test suites to verify

this integration. Agent-level test suites have a strong

relation with test suites created for testing agent goals.

Because, first of all, in most cases, testing a goal involves

testing one or a number of plans, testing a plan involves

events, percepts, and resources. So to some extent, testing

a goal triggers some integration of plans, events, and so

on. Hence, test suites derived to test agent goals are also

effective to test the agent integration.

4. ECAT Testing Framework

We build a testing frame work called eCAT (stand for

Environment for Continuous Agent Testing) to support the

GOST methodology and different testing techniques . The

framework consists of the TA, monitoring agent network,

and tools for test case specification, graphical

visualization, continuous execution, and fault reporting.. It

consists of threemain components: Test Suite Editor,

allowing human testers to derive test cases from goal

analysis diagrams; TA, capable to generate automatically

new test cases and to execute them on a MAS; and

Paper ID: SUB155691 1992

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 6, June 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Monitoring Agents, that monitor communication among

agents, including the TA, and all events happening in the

execution environments in order to trace and report errors.

Remote monitoring agents are deployed with the

environments of the agents under test, transparently to

them, in order to avoid possible side effects. All the

remote monitoring agents are under the control of the

Central monitoring agent, which is located at the same

host as the TA. The monitoring agents overhear agent

interactions, events, and constraint violations taking place

in the environments, providing a global view of what is

going on during testing and helping the TA evaluate test

results.

Generation & Execution Tool

Four test cases generation techniques are equipped to

eCAT: Goal-oriented, Ontology-based,Random, and

volutionary.

Goal-Oriented
Goal-oriented test cases generation is a part of the GOST

methodology presented in 3 that integrates testing into

Tropos, providing a systematic way of deriving test cases

from Tropos output arte facts. eCAT can take these arte

facts as inputs to generate test case skeletons that are aimed

at testing goal fulfillment. Specific test inputs (i.e. message

content), and expected outcome are partially generated

from plan design (e.g., UML activity or sequence

diagrams) and are then completed manually by testers.

Ontology-Based
eCAT takes advantage of agent interaction ontologies,

which define the semantics of agent interactions, in order to

generate automatically both valid and invalid test inputs, to

provide guidance in the exploration of the input space, and

to obtain a test oracle against which to validate the test

outputs.

Random
eCAT is capable of generating random test cases. First, the

TA selects a communication protocol among those

provided by the agent platform, e.g., FIPA Interaction

Protocol (FIPA 2002b). Then, messages are randomly

generated and sent to the agents under test. The message

format is that prescribed by the agent environment of choice

(such as the FIPA ACLMessage (FIPA 2002a)), while the

content is constrained by a domain data model. Such a

model prescribes the range and the structure of the data that

are produced randomly, either in terms of generation rules

or in the (simpler) form of sets of admissible data that are

sampled randomly.

Evolutionary
Evolutionary algorithms guided by mutation or quality-

function-based fitness are implemented in eCAT, allowing

it to evolve test cases during test execution. Based on

monitoring data from the current execution, the TA can

evolve the existing test cases (current population) to be

more challenging ones for the next execution. All the

above-mentioned techniques can be used in the continuous

test execution mechanism of eCAT. Testing process is seen

as a loop of generating, executing and monitoring,

evaluating, evolving (only in evolutionary technique), then

go back to generating. This continuous process makes it

possible to test software agents extensively and

automatically.

Monitoring Tool

eCAT contains a network of monitoring agents: the remote

monitoring agents that side in agent platforms guard for

events, violations, interactions happened at platform level

during testing, while the central agent incorporates

monitoring data from all the remote agents, makes the

avail- able for evaluating test results and reporting.

Multiple agent platforms that are used for testing can be

located at a same host (i.e. computer) or at geographically

different hosts thank to the monitoring network.

Application

The artificial environment is a square area, A. In the area

A there can be obstacles, dustbins, waste, and charging

stations located randomly. We define an environmental

setting as a particular configuration of A, in which numbers

of obstacles, dustbins, waste, and charging stations are

located at particular locations. Different settings pose

different levels of difficulty in which the cleaner agent

must operate.

1. Explore location of important objects;

2. Look for waste and bring it to the closest bin;

3. Maintain battery charge, with sufficient re-charging;

4. Avoid obstacles by changing course when necessary;

5. Exhibit alacrity by finding the shortest path to reach a

specific location, while avoiding obstacles on the way.

6. Exhibit safely by stopping gracefully when movement

becomes impossible or battery charge level is too low.

5. Conclusion

The conclusion of the paper is focusion on the increasing

use of Internet as the backbone for all interconnected ser-

vices and devices makes software systems highly complex

and virtually unlimited in scale. These systems often

involve variety of users and heterogeneous platforms. They

are evolved continuously in order to meet the changes of

business and technology. In some circumstances, they need

to be autonomous and adaptive for dealing with such

changes. Software agents and MAS are considered as key

enabling technologies for building such open, dynamic, and

complex systems.

Now, as software agents with built-in autonomy are

increasingly taking over control and management activities,

such as in automated vehicles or e-commerce systems,

testing these systems to make sure that they behave

properly becomes crucial. This calls for an investigation of

suitable soft- ware engineering frameworks, testing in

particular, to build high quality and dependable software

agents and MAS.

Testing software agents and MAS has been receiving much

effort from several active research groups. However, there

are still many open issues for research. A complete and

comprehensive testing process for software agents and MAS

is absent. We need adequate approaches to judge

autonomous behaviours, to evaluate agents that have their

own goals.

Paper ID: SUB155691 1993

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 6, June 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

References

[1] Adrion, W. R., Branstad, M. A. and Cherniavsky, J. C.:

1982, Validation, verification, and testing of computer

software, ACM Comput. Surv.14(2), 159-192

[2] Beizer, B.: 1990, Software Testing Techniques (2nd

ed.), Van Nostrand

[3] Bergenti, F., Gleizes, M.-P. and Zambonelli, F. (eds):

2004,Methodolo-

[4] gies and Software Engineering for Agent Systems :

The Agent-Oriented Software Engineering Handbook,

Springer.

[5] Bordini, R. H., Wooldridge, M. and H¨ ubner, J. F.:

2007, Programming Multi-Agent Systems in

AgentSpeak using Jason (Wiley Series in Agent

Technology), John Wiley & Sons

[6] Bourque, P. and Dupuis, R. (eds): 2004, Guide to the

Software Engineering Body of Knowledge: 2004

Edition, IEEE

[7] Cacciari, L. and Rafiq, O.: 1999, Controllability and

observability in dis-tributed testing, Information and

Software Technology 41(11-12), 767- 780

Paper ID: SUB155691 1994

