
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 6, June 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Hindi Speech Recognition

Akanksha Saxena

Student at Galgotias College of Engineering and Technology, Greater Noida, Uttar Pradesh, India

Abstract: This work is to develop a speech recognition system for speaker dependent, real time, isolated words of Hindi Language.

Speech is a useful and effective communication medium with machines, especially in the environment where keyboard input is

awkward or impossible. The Speech Processing technology (Automatic Speech Recognition and Speech Synthesis) has made great

progress for European languages. In India, almost three-fourth of the population lives in rural areas and most of the population is

unfamiliar with computers and English. It would be a great boon for Indian society if communication with machines, mainly with

computers, in native languages can be made possible. It will enable people to interact with computers in their own language and

without the use of keyboard. This report is a study of the technology and modeling techniques, having been used for Speech Processing.

The focus of the present work is Hindi Speech Recognition.

Keywords: Natural language processing, Hidden Markov Model, Mel frequency cepstral coefficient, Human computer interaction, Viterbi

algorithm

1. Introduction

Hindi speech Recognition is the field of computer science

that deals with designing computer systems that can

recognize spoken words. They generally require an extended

training session during which the computer system becomes

accustomed to a particular voice and accent. Such systems

are said to be speaker dependent. Many systems also require

that the speaker speak slowly and distinctly and separate each

word with a short pause. These systems are called discrete

speech systems. Recently, great strides have been made in

continuous speech systems – voice recognition systems that

allow you to speak naturally. There are now several

continuous-speech systems available for personal computers.

Because of their limitations and high cost, voice recognition

systems have traditionally been used only in a few

specialized situations. For example, such systems are useful

in instances when the user is unable to use a keyboard to

enter data because his or her hands are occupied or disabled.

Instead of typing commands, the user can simply speak into a

headset. Increasingly, however, as the cost decreases and

performance improves, speech recognition systems are

entering the mainstream and are being used as an alternative

to keyboards. It appears that most computer users can create

and edit documents more quickly with a conventional

keyboard, despite the fact that most people are able to speak

considerably faster than they can type. Using both keyboard

and speech recognition simultaneously, however, can in some

cases be more efficient than using any one of these inputs

alone. Additionally, heavy use of the speech organs results in

vocal loading. Also, the typical office environment with high

amplitude of background speeches is among the most adverse

environment for current speech recognition technologies. For

use with computers, analog audio must be converted into

digital signals. This requires analog-to-digital conversion.

For a computer to decipher the signal, it must have a digital

database, or vocabulary, of words or syllables, and a speedy

means of comparing this data with signals. The speech

patterns are stored on the hard drive and loaded into memory

when the program is run. A comparator checks these stored

patterns against the output of the A/D converter. It has been

noticed that the success of isolated-word automatic speech

recognition systems requires a combination of various

techniques and algorithms, each of which performs a specific

task for achieving the main goal of the system. Therefore, a

combination of related algorithms improves the accuracy or

the recognition rate of such applications. A speech recognizer

system comprises of two distinct blocks, a Feature Extractor

and a Recognizer.

Figure 1: Building blocks of speech recognition system

One of the major problems in speech recognition is to find

suitable front end features. Various front end features used by

different researchers are linear prediction coefficients (LPC)

,the reflection coefficients (RC), the linear prediction

cepstrum coefficients (LPCC), mel-frequency cepstrum

coefficients (MFCC), linear frequency cepstrum coefficients

(LFCC) etc.

Here we focus on the scenario when the Feature extractor

block uses a standard MFCC coder, which translates the

incoming speech into a trajectory in the Mel Frequency

cepstrum feature space. The trajectories on such reduced

dimension spaces can provide reliable representations of

spoken word, while reducing the training complexity and the

operation of the recognizer. The output of the FE block is

blind i.e. it does not care about the word that is being

represented by that trajectory. The FE block only transduces

an incoming pressure wave into a trajectory in some feature

space. It is the Recognizer block that discovers the

Paper ID: SUB155534 1431

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 6, June 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

relationships between the trajectories and recognizes the

word. The Recognizer is to be designed in two different ways

using Neural Networks. The Neural Network architectures

used are Recurrent Neural Networks and the Multi Layer

Perceptrons. Here we will focus on Multi Layer Perceptron

Neural Network.

A speech recognition system, using the pattern recognition

capabilities of neural networks, and other mathematical and

signal processing tools will be able to correctly identify

simple words. The system will recognize samples that it

trained with, and will also be able to generalize to other

samples of the same word. As larger vocabularies are used,

recognition accuracy will decrease.

1.1 Speech Sample Collection

Speech samples collection is mostly concerned with

recording various speech samples of each distinct word by

different speakers. However, Rabiner and Juang [1]

identified four main factors that must be considered when

collecting speech samples, which affect the training set

vectors. Those factors include who the talkers are; the

speaking conditions; the transducers and transmission

systems and the speech units

The first factor is the profile of the talkers/speakers. For the

purpose of increasing robustness of the IWASR we can train

the system using speakers of various age, sex and regions.

The second factor is the speaking conditions in which the

speech samples were collected from, which basically refer to

the environment of the recording stage. The IWASR speech

samples collection is usually done in a noisy environment.

The rationale behind collecting the speech samples from

noisy environments is to represent a real world speech

samples collection, because most speech recognition systems

are meant to be used in different environments and spheres.

Therefore, collecting speech samples from noisy

environments is purposely done. After the speech samples

are collected they are converted from analog to digital form

by sampling at a frequency of about 16,000 Hz. Sampling

involves recording the speech signals at a regular interval.

Since a high sampling frequency is used it doesn‟t involve

loss of critical data. The collected data is now quantized if

required to eliminate inherent noise in the speech samples.

The collected speech samples are then going to pass through

the features extraction, features training and features testing

stages

1.2 Feature Extractor

The first step in developing this speech recognition program

is to design a feature extractor. The FE block can be modeled

after the stages evidenced in the human biology and

development. This is a block that transforms the incoming

sound into an internal representation such that it is possible

to reconstruct the original signal from it. This stage can be

modeled after the hearing organs, which first transduce the

incoming air pressure waves into a fluid pressure wave and

then convert them into aspecific neuronal firing pattern. The

Feature Extraction block used in speech recognition should

aim towards reducing the complexity of the problem before

later stages start to work with the data.Once the Feature

Extraction block completes its work, the Recognizer module

classifies its output. It integrates the sequences of phonemes

into words. This module sees the world as if it where only

composed of words and classifies each of the incoming

trajectories into one word of a specific vocabulary. The

process of correlating utterances to their symbolic

expressions, translating spoken language into written

language, is called speech recognition. The recognizer is

built using the neural network.

2. Design and Implementation using HTK

HTK is the “Hidden Markov Model Toolkit” developed by

the Cambridge University Engineering

Department (CUED). This toolkit aims at building and

manipulating Hidden Markov Models (HMMs). HTK is

primarily used for speech recognition research HTK

consists of a set of library modules and tools available in C.

2.1 Steps in the development of application using HTK:

2.1.1 Creation of directories in the home directory

 data/ : to store training test data (speech signals, labels,

etc.), with 3 sub-directories

 data/sig and data/lab

 model/proto

 model/hmm0

 model/hmm1

 model/hmm2

 model/hmm3

This directory structure is created inside PROJECT

directory.

2.1.2 Creation of a training database

First, we have to record the words speech signals with which

word models will be trained (the training corpus). Each

speech signal has to be labelled, that is: associated with a text

(a label)describing its content. Recording and labelling can

be done with the HSLab HTK tool (t any other tool could be

used).

To create and label a speech file:

1. Recording- We have used linux command arecord for the

recording.

2. Labelling- We have used wavesurfer for labeling the wav

files.

2.1.2.1 Recording the signal

The command used for recording a signal is:

arecord -d 10 -f cd -c1 -t wav -r 16000 test.wav

 -d: duration

 -f: format

 -t: file type

 -r: rate(Hz)

Paper ID: SUB155534 1432

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 6, June 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 2: Recorded voice

2.1.2.2 Label the file

To label the speech waveform, first press “Mark”, then select

the region you want to label. When the region is marked,

press “Label as”, type the name of the label, then press Enter.

For each signal, we have to label 3 successive regions: start

silence (with label sil), the recorded word with label of the

digit uttered), and end silence (with label sil). These 3

regions cannot overlap with each other (but no matter if there

is a little gap between them).When the 3 labels have been

written, press “Save”: a label file called any_name_0.lab is

created.

Figure 3: LabelledVoice

2.1.2.3 Renaming the files

We need to rename our files .the convention we used is

digit_number.sig. 10 samples of each digit are recorded. The

signal files should be stored in a data/train/sig/ directory (the

training corpus), the labels in a data/train/lab/ directory (the

training label set).

2.1.3 Acoustical Analysis

The speech recognition tools cannot process directly on

speech waveforms. These have to be represented in a more

compact and efficient way. This step is called “acoustical

analysis”:

 The signal is segmented in successive frames (whose length

is chosen between 20ms and 40ms, typically), overlapping

with each other.

 Each frame is multiplied by a windowing function (e.g.

Hamming function).

 A vector of acoustical coefficients (giving a compact

representation of the spectral properties of the frame) is

extracted from each windowed frame

The conversion from the original waveform to a series of

acoustical vectors is done with the HCopy HTK tool:

HCopy -A -D -C analysis.conf -S targetlist.txt

analysis.conf is a configuration file setting the parameters of

the acoustical coefficientextraction.

targetlist.txt specifies the name and location of each

waveform to process, along with thename and location of the

target coefficient files.

Figure 4: HMM Parameter

2.1.3.1 Configuration Parameters

The configuration file (analysis.conf) is a text file (“#” is

used to introduce a comment). For the development of our

application, the following configuration file is used:

SOURCEFORMAT = HTK # Gives the format of the

speech files TARGETKIND = MFCC_0_D_A # Identifier

of the coefficients to use

Unit = 0.1 micro-second:

WINDOWSIZE=250000.0# = 25 ms = length of a time

frame TARGETRATE = 100000.0 # = 10 ms = frame

periodicity NUMCEPS = 12 # Number of MFCC coeffs

(here from c1 to c12)

USEHAMMING = T # Use of Hamming function for

windowing frames PREEMCOEF = 0.97 # Pre-emphasis

coefficient

NUMCHANS = 26 # Number of filterbank channels

CEPLIFTER = 22 # Length of cepstralliftering

With such a configuration file, an MFCC (Mel Frequency

Cepstral Coefficient) analysis is performed (prefix “MFCC”

in the TARGETKIND identifier). For each signal frame, the

following coefficients are extracted:

2.1.4 HMM Definition

In this step, 40 acoustical events have to be modelled with a

Hidden Markov Model (HMM) for words and 1 for silence:

all the 40 words and “sil”. For each one we will design a

HMM.

The first step is to choose a priori a topology for each HMM:

 number of states

 form of the observation functions (associated with each

state)

 disposition of transitions between states

Paper ID: SUB155534 1433

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 6, June 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 5: Basic HMM topology

2.1.5 HMM training

The following command line initializes the HMM by time-

alignment of the training data with a Viterbi algorithm.

HInit -A -D –T 1 -S trainlist.txt -M model/hmm0 -H

model/proto/hmmfile -l label -L label_dirnameofhmm

Figure 6: HInit Command

2.1.5.1 Training

HRest is the final tool in the set designed to manipulate

isolated unit HMMs. Its operation is very similar to HInit

except that, it expects the input HMM definition to have

been initialised and it uses Baum-Welch re-estimation in

place of Viterbi training. This involves finding the

probability of being in each state at each time frame using

the Forward-Backward algorithm. This probability is then

used to form weighted averages for the HMM parameters.

Thus, whereas Viterbi training makes a hard decision as to

which state each training vector was “generated” by,. This

can be helpful when estimating phone-based HMMs since

there are no hard boundaries between phones in real speech

and using a soft decision may give better results.

The following command line perform one re-estimation

iteration with HTK tool HRest, estimating the optimal values

for the HMM parameters (transition probabilities, plus mean

and variance vectors of each observation function).

HRest -A -D -T 1 -S trainlist.txt -M model/hmmi -H

vFloors -H model/hmmi-1/hmmfile -l label -L

label_dirnameofhmm

Figure 7: HMMs

2.1.6 Task Definition

Every files concerning the task definition are stored in a

dedicated def/ directory.

2.1.6.1 Grammar and Dictionary

Before using our word models, we have to define the basic

architecture of our recognizer (the task grammar). We have

used the simplest one: a start silence, followed by a single

word, followed by an end silence.

In HTK, the task grammar is written in a text file, according

to some syntactic rules. In our case, the grammar is quite

simple:

For example:

$WORD = ONE | TWO | THREE | FOUR | FIVE |

SIX | SEVEN | EIGHT | NINE | ZERO; ({

START_SIL } [$WORD] { END_SIL })

The system must off course know to which HMM

corresponds each of the grammar variables ONE, TWO,

THREE, FOUR, FIVE, SIX, SEVEN, EIGHT, NINE,

ZERO, START_SIL and END_SIL. This information is

stored in a text file called the task dictionary.

2.1.6.2 Network

At this stage, our speech recognition task (Fig.17),

completely defined by its network, its dictionary, and its

HMM set (the 3 models stored in model/hmm3/), is ready for

use.

The task grammar (described in file gram.txt) have to be

compiled with tool HParse, to obtain the task network

(written in net.slf):

HParse -A -D -T 1 gram.txt net.slfAt this stage, our speech

recognition task, is completelydefined by its network, its

dictionary, and its HMM set (the models stored in

model/hmm0/). To be sure that no mistakes were made when

writing the grammar, the tool HSGen can be used to test it:

HSGen -A -D -n 10 -s net.slf dict.txt

Where dict.txt is the task dictionary. Option -n indicates that

10 grammatically conform sentences (i.e. 10 possible

recognition results) will be randomly generated and

Recognitioned.

Paper ID: SUB155534 1434

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 6, June 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

2.1.7 Recognition

An input speech signal input.sig is first transformed into a

series of “acoustical vectors” (here MFCCs) with tool

HCopy, in the same way as what was done with the training

data (Acoustical Analysis step). The result is stored in an

input.mfcc file (often called the acoustical observation). The

input observation is then process by a Viterbi algorithm,

which matches it against the recogniser‟s Markov models.

This is done by tool HVite

HVite -A -D -T 1 -H hmmsdef.mmf -i reco.mlf -w net.slf

dict.txt hmmlist.txt input.mfcc

To make the recognition user interactive we have use the

script file, called final The content of the final file is

#!/bin/sh

echo SPEAK DIGIT:

HSLabinput.sig

HCopy -A -D -C analysis.conf -S tgt.txt

Hvite –A D-T 1 –H hmmsdef.mmf -I reco.mlf –w net.slf

dict.txt hmmlist.txt input.mfcc

3. Errors and Precautions

In all the HTK commands that we have utilized the pathname

is very pivotal. The path name should be correct.

During the acoustical analysis, the path specified in the

source/target specification text file should be correct. Its

always desirable to write all the source .sig file names and

their respective target .MFCC file names in one text file and

that text file should begiven as a parameter instead of writing

individual file names. This file is called the script file.

4. Conclusions and Future work

The work has been done to implement speech recognition

systems for Hindi language which will recognize isolated

words from the predefined set of vocabulary in Hindi as well

as English Text .The brief introduction to the various basic

concepts of speech recognition.

The work can be further extended in many directions.

The dissertation deals with the recognition based upon small

vocabulary size and isolated words. The work can also be

extended from a limited vocabulary to large and from

connected words to continuous speech or spontaneous

speech.

 System developed for connected & continuous speech

recognition for Hindi Language.

 Large vocabulary size

 Independent from pre defined vocabulary.

 User can add new set of vocabulary/word.

 Speaker independent.

 Real user interface.

References

[1] L. R. Rabiner and B. H.Juang, “Statistical Methods for

the Recognition and Understanding of Speech”,

Encyclopedia of Language and Linguistics, 2004.

[2] P. Jancovic, J. Ming, “A Multi- Band Approach Based on

the Probabilistic Union Model and Frequency Filtering

Features for Robust Speech Recognition”, In: Euro

Speech‟ 01. pp. 579–582, 2001.

[3] Claudio Becchetti and LucioPrinaRicotti, “Speech

Recognition Theory and C++ Implementation”, John

Wiley & So

[4] Alan and Ronald, (1952) „Automatic Recognition of

spoken Digits‟, J. Acoust. Soc.

[5] Owens, F. J. (1993) Signal Processing of Speech,

Macmillan Press Ltd., London, UK.

Paper ID: SUB155534 1435

