
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 6, June 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Malware Detection System using ID3 Algorithm for

Android

Trupti D. Deshmukh
1
, Vrunda K. Bhusari

2

1P.G. Student, Savitribai Phule Pune University, Department of Computer Engineering, BSIOTR, Wagholi, Pune, Maharashtra, India

2Assistant Professor, Savitribai Phule Pune University, Department of Computer Engineering, BSIOTR, Wagholi, Pune, Maharashtra, India

Abstract: The popularity of Android OS for mobile is inviting the threats such as malwares. The term ‘malware’ is defined as variety of

form of intrusive software. Malware is any program or data which affects the working of a device. Thus malware detection is the

invigorating issue in the computer security. To avoid the malware attacks different anti-malwares are also have been developed. But

there is a need to evaluate these anti-malwares which can be done by using Droid Chameleon. Droid Chameleon does the

transformation of malwares automatically and helps to check the efficiency of anti-malware. Here we propose a system that identifies

the malicious apps affected due to malwares. The permissions given by android apps are used as the dataset. The ID3 algorithm is used

to apply mining on these datasets i.e. training is provided to generate the trained dataset. The Admin will take care of new entries of

malwares as well as apps in the database. The results are shown as whether the given app is malicious or not.

Keywords: Malware, Anti-malware,Android, mobile

1. Introduction

The adoption rate of mobile devices continues to mount

upward, with Android leading the way. Google provides this

open-source operating system that is leading in market. More

than half smartphones are found which includes Android OS.

The research firm Strategy Analytics found that 81.3 percent,

or 204.4 million, of smartphones launched in the third quarter

of 2013 were powered by Android. Android is an operating

system which is used for smartphones and tablets. It is based

in Linux kernel with the user-friendly feature. Android

applications are developed in Java native interface. All the

classes of Android are packed together in single .dex file

which is called Dalvik bytecode instead of running on Java

bytecode.

The android smart phones are largely targeted by the

malware attackers, among the mobile phone users and

attackers. The reason behind it is, the open platform is

provided by android applications market to all the

application. When you download any app into your android

phone malware gets entry in the system. Also, it can also

become serious threat to businesses. A third person can use a

malware infected smart phone and use it as a proxy or a

gateway to enter into a restricted business network. Some of

the dangerous malware attacks are:

1) Fake Banking Apps: This attracts the customers into

entering their online account login details.

2) Android.Geinimi: Genimi is a malware which corrupted

many legitimate Android games on Chinese download

sites.

3) DroidDream: It infectes devices, breaks the android

security sandbox and steals data.

4) AndroidOS fake player: It shows that it is working like a

media player and then silently sends SMS to premium

SMS numbers.

Polymorphism is technique to avoid detection tools by

performing transformation on malwares but with same code.

These attacks are being a serious problem for both traditional

desktop and server systems. The existing anti-malware

softwares are evaluated by DroidChameleon, a systematic

framework with several common transformation techniques

[1]. DroidChameleon does the transformation of Android

application automatically. The term transformation here

refers to semantics preserving changes of the program. Here

we propose a system which will detect the malicious apps

based on the permissions given by Andorid OS. The

capabilities of any Android apps are strictly constrained by

the permissions users grant to them [2]. Therefore, it will be

fascinating to check top permissions requested by malicious

apps in the dataset. We propose a system which will use

these permissions as an input to the ID3 algorithm, based on

which the malicious functionality of the app is recognized.

2. Literature Review

Several studies have been contributed to reduce the malware

attacks and to increase the performance of the mobile

devices.

2.1 ADAM

ADAM is an extensible platform which is automatic, generic

and able to evaluate the Android malware detection systems.

ADAM is able to automatically transform an original

malware sample to different variants using repackaging and

obfuscation techniques in order to evaluate the strength of

different anti-virus systems against malware mutation [3].

ADAM is built by connecting different building blocks such

as transformation, scanning and analysis of malwares. These

blocks help to test different anti-malwares against malware

samples. But ADAM is not always able to avoid anti-

malware tool. So, it will not always provide the better

detection mechanism.

Paper ID: SUB155532 1736

http://www.cnet.com/android-atlas/
http://www.cnet.com/news/android-snags-record-81-percent-of-smartphone-market/
http://www.cnet.com/android-update/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 6, June 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

2.2 Automatic Code Obfuscation

It is done to protect the messages which help to preserve

privacy policies between sender and receiver [4]. As shown

in Figure 1. the obfuscation technique provides the protection

of messages between Alice and Bob. By using source

message object code is created which is then obfuscated and

passed to the server. The server sends it to Bob i.e. client.

The reverse operation is done by Bob to get the original

source code.

Although the system can easily trace the software pirates but

it remains secret until the powerful deobfuscator to be built.

So, obfuscated software version release must be within short

period.

Figure 1: Protection through obfuscation [4].

2.3 Malware Detection by Semantics-preserving

As per the name semantics-preserving malware detectors use

pattern-matching technique to search the obfuscations made

by hackers [5]. The hackers use obfuscation ; so the detector

is used to find out malicious behavior of a program. The

detector is easy to be understood by detectors as it is based

on syntax analysis but needs large databases to save the

patterns of malicious instructions.

2.4 Automatic Security Analysis of Smartphone

Applications

The AppPlayground tool is used to do the automation of

security analysis. AppPlayground does the integration of

multiple components comprising different detection and

automatic exploration techniques for this purpose [6]. It does

the analysis of security with large number of application, but

also it is less effective for automatically detecting privacy

leaks and malicious functionalities in application.

2.5 Crowdroid

Burguera et al., [7] proposed behavior –based malware

detection system for Android. They used detector which is

embedded in an overall framework for a collection of traces

collected from unlimited real users based on crowdsourcing.

The system analyzed collected data in central server using

two types of data sets: artificially created malwares and real

malwares. It is an effective method of isolating the malware

as well as alerting the users about the downloaded malwares.

When it is actually going to apply on mobile, it might result

an extra overhead in the processor, causes a faster battery

drain.

3. System Implementation

3.1 System Architecture

The Figure 2 shows the overall system architecture. As per

shown in figure the process flow goes according to the

system architecture. The system architecture includes

following components:

1. Application Permissions and Data Import

The different android application permissions are fetched

from android applications. These permissions are used as

dataset for process.

Figure 2: System Architecture.

Paper ID: SUB155532 1737

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 6, June 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

2. Malware Database

The malware samples will be stored at database.

3. Feature Transformation and Decision Tree

The Decision tree is generated using ID3 algorithm [8].

The permissions of application are given as an input for

feature transformation. The permissions are training

datasets for the algorithm. These permissions are the

initial inputs for feature transformation.

4. Prediction

The datasets of application will be analyzed here and the

related prediction of malware samples is done with the

help of Decision Tree.

5. Report

The result of whether the given Android App is malicious

or not will be shown.

3.2 Algorithm

The classifier algorithm ID3 works as follows:

Assumptions:

I: is the set of input attributes i.e. permissions (Here we will

consider the permissions given by android to app to find out

classification attribute.)

O: is the output attribute

T: is a set of training data

Function ID3: returns a decision tree

Function ID3 (I, 0, T) {

if (T is empty) {

return a single node with the value "Failure";

}

if (all records in T have the same value for O) {

return a single node with that value;

}

if (I is empty) {

return a single node with the value of the most frequent value

of

O in T;

}

Compute the information gain for each attribute in I relative

to T using permissions;

let X be the attribute with largest Gain(X, T) of the attributes

in I;

let {x_j| j=1,2, .., m} be the values of X;

let {T_j| j=1,2, .., m} be the subsets of T when T is

partitioned

according the value of X;

return a tree with the root node labeled X and

arcs labeled x_1, x_2, .., x_m, where the arcs go to

the

trees ID3(I-{X}, O, T_1), ID3(I-{X}, O, T_2), ..,

ID3(I-{X}, O, T_m);

}

The Entropy and Information gain are calculated as:

1. Entropy: Entropy gives the measure in information

theory, which characterizes the unwanted attributes of an

arbitrary collection. If target attribute takes on r different

permissions (values), then entropy X relative to this r-wise

classification is defined as:

2. Information Gain: The information gain, Gain(X, T) of

an attribute T (here the permission), relative to the collection

of examples X, is defined as:



 Where, Values (T) is the set of all possible values for

attribute T and Xv is the subset of X for which the attribute T

has value v.

4. Results

The system is developed by using JAVA (Version JDK). The

development tool used is NetBeans for desktop application.

Eclipse is used for development of Android Application for

smartphone. The database used for storing the malwares is

Apache Tomcat. The experiments are performed on

Core2Duo Intel processor 2 GB RAM. The results are shown

as the report whether the app is malicious or not.

4.1 Dataset of Android permissions for Training

4.2 Single Entry of App for Testing the single App

Paper ID: SUB155532 1738

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 6, June 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

4.3 The result of malware on Android App

4.4 Graph of Retrieved Objects

Table 1: Retrieved Objects

Dataset Name
Actual

Objects

Retrieved

Objects

Correct Retrieved

Objects

Malware Apps

A

A Apps

20 18 17

Nonmalware-Apps 25 24 23

Table 2: Total Accuracy

Dataset Name Precision Recall

Malware Apps

0.94444444 0.85

Nonmalware-Apps 0.95833333 0.92

Total 0.951388889

0.885

Accuracy ercentage 0.885 -

Figure 1: Accuracy Plotted

The Table 1 shows the correct retrieved objects i.e. which

apps are found to be malicious and which are not correctly.

The actual retrieved objects are showing how much

malicious apps are found correctly and how much malicious

apps are not found correctly.

Table 2 shows the accuracy plotted in terms of Precision and

recall.

5. Conclusion

Mobile malwares are attacking the android systems which

cause the vulnerability to the whole application. To avoid this

we have proposed classifier based anti-malware which will

detect the malwares with different functionalities. The

permissions of apps with malicious characteristics are used

for finding the malicious behavior. Using the ID3 algorithm

the most permission requests used by an app help to classify

the smartphone application into malicious and non-malicious

application.

As a future work a more comprehensive anti-malware tool is

possible to implement using artificial- intelligence. There is a

scope to detect large number of malwares.

6. Acknowledgement

I would like to express my sincere gratitude to my guide

Prof. Vrunda K. Bhusari for her continuous support,

patience, motivation, enthusiasm, and immense knowledge.

Her guidance helped me in all the time of research and

writing of this paper.

References

[1] Vaibhav Rastogi, Yan Chen, and Xuxian Jiang, "Catch

Me If You Can: Evaluating Android Anti-Malware

Against Transformation attacks", IEEE transactions on

information forensics and security, VOL. 9, NO. 1, Jan

2014.

[2] Y. Zhou and X. Jiang, “Dissecting android malware:

Characterization and evolution,” in Proc. IEEE Symp.

Security Privacy, May 2012, pp. 95–109.

[3] M. Zheng, P. Lee, and J. Lui, “ADAM: An automatic

and extensible platform to stress test Android anti-virus

systems,” in Proc. DIMVA,

Jul. 2012, pp. 1–20.

Paper ID: SUB155532 1739

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 6, June 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[4] C. Collberg, C. Thomborson, and D. Low, “A taxonomy

of obfuscating transformations,” Dept. Comput. Sci.,

Univ. Auckland, Auckland, New Zealand, Tech. Rep.

148, 1997.

[5] M. Christodorescu, S. Jha, S. Seshia, D. Song, and R.

Bryant, “Semantics-aware malware detection,” in Proc.

IEEE Symp. Security Privacy, May 2005, pp. 32-46.

[6] V. Rastogi, Y. Chen, and W. Enck, “AppsPlayground:

Automatic security analysis of smartphone applications,”

in Proc. ACM CODASPY, Feb. 2013, pp. 209–220.

[7] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani,

“Crowdroid: Behaviorbased malware detection system

for android,” in Proc. 1st ACM Workshop Security

Privacy Smartphones Mobile Devices, 2011,pp. 15–26.

[8] David McG. Squire,, “CSE5230 Tutorial: The ID3

Decision Tree Algorithm,” Monash University, Faculty

of Information Technology, CSE5230 Data Mining

Semester 2, August 26, 2004.

 References

Ms. Trupti D. Deshmukh received the Bachelors

degree (B.E.) Computer Engineering in 2013 from

VPCOE, Baramati. She is now pursuing Masters

degree (Computer Engineering), from BSIOTR,

Wagholi, Pune, Maharashtra.

Prof. Vrunda K. Bhusari received her M.Tech(

Computer Engineering) from Bharati Vidyapeeth,

Pune and now she is working as Assistant professor,

Department Of Computer Engineering, Bhivarabai

Sawant Institute of Technology & Research, Wagholi,

Pune, Maharashtra.. Her research areas include Network Security.

Paper ID: SUB155532 1740

