Mildly β-Normal Spaces and rgβ-Continuous Functions

M. C. Sharma¹, Hamant Kumar²

¹N. R. E. C. College, Department of Mathematics, Khurja-203131, Rampur, (U. P.) India

²Govt. P. G. College, Department of Mathematics, Bilaspur-244921, India

Abstract: The aim this paper is to introduce and study a new class of spaces, called mildly β -normal spaces. The relationship among normal, almost normal, quasi normal, mildly normal, π -normal spaces and their generalizations are investigated. Moreover, we introduce $rg\beta$ -continuous functions. Utilizing $rg\beta$ -continuity, we obtain characterization and preservation theorems for mildly β -normal spaces.

Keywords: β -open, β -normal, mildly β -normal spaces, $g\beta$ -closed and $rg\beta$ -closed function.

2010 Mathematics subject classification: 54D10, 54D15, 54A05, 54C08.

1. Introduction

The notion of quasi normal space was introduced by Zaitsev [25]. The concept of almost normality was introduced by Singal and Arya [20]. The notion of mildly normal space was introduced by Shchepin [19] and Singal and Singal [22] independently. Nour [4] introduced a weaker form of normality, called p-normality and obtained their properties. Mahmoud et al. [7] introduced the notion of β -normal spaces and obtained their characterizations and preservation theorems. Dontchev and Noiri [4] introduce the notion of π g-closed sets as a weak form of g-closed sets due to Levine [6]. By using π g-closed sets, Dontchev and Noiri [8] obtained a new characterization of quasi normal spaces. π normal topological space was introduced by Kalantan [5]. M. C. Sharma and Hamant Kumar [17] introduced a weaker form of normality, called $\pi\beta$ -normality and obtained their properties. The notion of quasi β -normal and mildly β normal spaces were introduced by M. C. Sharma and Hamant Kumar [16]. Thabit and Kamaraulhaili [24] introduced a new type of normality, called πp -normality and obtained their characterizations. The concept of quasi pnormality was introduced by Thabit and Kamaraulhaili [23]. The notion of almost p-normal and mildly p-normal spaces were introduced by G. B. Navalagi [10]. The notion of almost β-normal space was introduced by M. C. Sharma and Hamant Kumar [18].

2. Preliminaries

Throughout this paper, spaces (X, τ) , (Y, σ) , and (Z, γ) always mean topological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a space X. The closure of A and interior of A are denoted by cl(A) and int(A) respectively. A subset A is said to be **regular open** (resp. **regular closed**) if A = int(cl(A)) (resp. A = cl(int(A)). The finite union of regular open sets is said to be **\pi-open**. The complement of a π -open set is said to be **\pi-closed**. A is said to be **\beta-open** [1] if A \subset cl(int(cl(A))), **preopen** [9] (briefly **p-open**) if A \subset int(cl(A)). The

complement of a β -open (resp. p-open) set is said to be β closed [1] (resp. p-closed [9]). The intersection of all β closed (resp. p-closed) sets containing A is called β -closure [2] (resp. p-closure [9]) of A, and is denoted by β cl(A) (resp. pcl(A). The β -Interior [2] of A, denoted by β int(A), is defined as union of all β -open sets contained in A.

2.1 Definition

A subset A of a space (X, τ) is said to be

- 1) generalized closed (briefly g-closed) [6] if $cl(A) \subset U$ whenever $A \subset U$ and $U \in \tau$.
- 2) regular generalized closed (briefly rg-closed [14]) if $cl(A) \subset U$ whenever $A \subset U$ and U is regular open in X.
- 3) generalized preclosed (briefly gp-closed) [8]) if $pcl(A) \subset U$ whenever $A \subset U$ and U is open in X.
- 4) regular generalized preclosed (briefly rgp-closed)
 [11]) if pcl(A) ⊂ U whenever A ⊂ U and U is regular open in X.
- 5) generalized β -closed (briefly $g\beta$ -closed) [3]) if $\beta cl(A) \subset U$ whenever $A \subset U$ and U is open in X.
- 6) regular generalized β closed (briefly rg β -closed) [15]) if β cl(A) \subset U whenever A \subset U and U is regular open in X.
- 7) **g-open** (resp. **rg-open**, **gp-open**, **rgp-open**, **gβ-open**, **rgβ-open**) if the complement of A is g-closed (resp. rgclosed, gp-closed, rgp-closed, gβ-closed, rgβ-closed).

2.2 Remark

We have the following implications for the properties of subsets:

$closed \Rightarrow$	g-closed ⇒	rg-closed
1)	Ų	U
p-closed ⇒	gp-closed ⇒	gpr-closed
1)	Ų	1)
β -closed \Rightarrow	gβ-closed ⇒	rgβ-closed

Where none of the implications is reversible as can be seen from the following examples:

2.3 Example

Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, X\}$. Then $A = \{b\}$ is g-closed but not closed.

2.4 Example

Let $X = \{a, b, c, d, e, \}$ and $\tau = \{\emptyset, \{a, b\}, \{c, d\}, \{a, b, c, d\}, X\}$. Then $A = \{a\}$ is gpr-closed as well as rg β -closed. But it is not rg-closed.

2.5 Example

Let $X = \{a, b, c, \}$ and $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$. Then $A = \{a, b\}$ is gpr-closed as well as rg β –closed. But it is neither gp-closed nor p-closed.

2.6 Example

Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{c\}, \{d\}, \{a, c\}, \{c, d\}, \{a, c, d\}, X\}$. Then, $A = \{a\}$ is p-closed as well as β -closed. But it is not rg-closed.

2.7 Example

Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, \{a, b\}, X\}$. Then $A = \{b\}$ is $g\beta$ -closed as well as $rg\beta$ -closed. But it is neither g-closed nor closed.

2.8 Example

Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$ Then $A = \{a\}$ is β -closed as well as $g\beta$ -closed but it is not closed.

2.9 Lemma

A subset A of a space X is $rg\beta$ -open if and only if $F \subset \beta$ int(A) whenever F is a regular closed and $F \subset A$.

3. Mildly β-Normal Spaces

3.1 Definition

A topological space X is said to be **quasi** β -normal [16] (resp. **quasi-normal** [25], **quasi p-normal** [23]) if for every pair of disjoint π -closed subsets H, K, there exist disjoint β -open (resp. open, p-open) sets U, V of X such that H \subset U and K \subset V.

3.2 Definition

A topological space X is said to be **mildly** β -normal [20] (resp. **mildly-normal** [19, 22], **mildly p-normal** [10]) if for every pair of disjoint regular closed subsets H, K, there exist disjoint β -open (resp. open, p-open) sets U, V of X such that $H \subset U$ and $K \subset V$.

3.3 Definition

A topological space X is said to be $\pi\beta$ -normal [17] (resp. π -normal [5], π p-normal [24]) if for any two disjoint closed subsets A and B of X, one of which is π -closed, there exist

disjoint $\beta\text{-open}$ (resp. open, p-open) sets U and V of X such that $A\subset U$ and $B\subset V.$

3.4 Definition

A topological space X is said to be **almost \beta-normal [18]** (resp. **almost normal [20], almost p-normal [10]**) if for any two disjoint closed subsets A and B of X, one of which is regular closed, there exist disjoint β -open (resp. open, popen) sets U and V of X such that $A \subset U$ and $B \subset V$.

3.5 Definition

A topological space X is said to be β -normal [7] (resp. pnormal [13]) if for every pair of disjoint closed subsets A, B of X, there exist disjoint β -open (resp. p-open) sets U, V of X such that $A \subset U$ and $B \subset V$.

3.6 Example

Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, \{a, b\}, \{a, c\}, X\}$. Then (X, τ) is almost p-normal space, but it is not p-normal, since the pair of disjoint closed sets $\{b\}$ and $\{c\}$ have no disjoint p-open sets containing them.

3.7 Example

Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{b, d\}, \{a, b, d\}, \{b, c, d\}, X\}$. The pair of disjoint closed subsets of X are $A = \{a\}$ and $B = \{c\}$. Also $U = \{a, b\}$ and $V = \{c, d\}$ are β -open sets such that $A \subset U$ and $B \subset V$. Hence X is β -normal but it is not normal.

3.8 Example

Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, \{a, b\}, \{a, c\}, X\}$. Then (X, τ) is quasi p-normal space, but it is not p-normal.

3.9 Example

Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{b\}, \{d\}, \{b, d\}, \{a, b, d\}, \{b, c, d\}, X\}$. The pair of disjoint closed subsets of X are A = $\{a\}$ and B = $\{c\}$. Also U = $\{a, b\}$ and V = $\{c, d\}$ are popen sets such that A \subset U and B \subset V. Hence (X, τ) is pnormal but it is not normal.

3.10 Example

Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, \{a, b\}, \{a, c\}, X\}$. Then (X, τ) is almost normal but it is not normal.

3.11 Example

Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, \{a, b\}, \{a, c\}, X\}$. Then (X, τ) is p-normal space because the only closed sets in X are X and \emptyset . But it is not p-normal, since the pair of disjoint closed sets $\{b\}$ and $\{c\}$ have no disjoint p-open sets containing them.

By the definitions and examples stated above, we have the following diagram:

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

almost normal \Rightarrow mildly normal normal ⇒ π-normal ⇒ Ш mildly p-normal almost p-normal \Rightarrow p-normal \Rightarrow πp-normal ſ 1 U U β-normal $\pi\beta$ -normal \Rightarrow almost β -normal \Rightarrow mildly β -normal ⇒ and mildly normal π -normal quasi-normal normal \Rightarrow ⇒ Ш I Ш \Rightarrow mildly p-normal. p-normal ⇒ πp-normal quasi p-normal Ш U β -normal $\Rightarrow \pi\beta$ -normal \Rightarrow quasi β -normal \Rightarrow mildly β -normal.

3.12 Theorem

The following are equivalent for a space X:

- 1) X is mildly β -normal.
- For any disjoint regular closed sets A and B, there exist disjoint gβ-open sets U and V such that A ⊂ U and B ⊂ V
- For any disjoint regular closed sets A and B of X, there exist disjoint rgβ-open sets U and V such that A ⊂ U and B ⊂V.
- For any regular closed set A and any regular open set V containing A, there exists a gβ-open set U of X such that H ⊂ U ⊂ βcl(U) ⊂ V.
- For any regular closed set A and any regular open set V containing A, there exists a rgβ-open set U of X such that A ⊂ U ⊂ βcl(U) ⊂ V.

Proof

$$(1) \Rightarrow (2), (2) \Rightarrow (3), (3) \Rightarrow (4), (4) \Rightarrow (5) \text{ and } (5) \Rightarrow (1).$$

 $(1) \Rightarrow (2)$. Let X be mildly β -normal space. Let A, B be disjoint regular closed sets of X. By assumption, there exist disjoint β -open sets U, V such that $A \subset U$ and $B \subset V$. Since every β -open set is $g\beta$ -open, so, U and V are $g\beta$ -open sets such that $H \subset U$ and $K \subset V$.

(2) \Rightarrow (3). Let A, B be two disjoint regular closed sets. By assumption, there exist g β -open sets U and V such that A \subset U and B \subset V. Since g β -open set is rg β -open, so, U and V are rg β -open such that H \subset U and K \subset V.

(3) \Rightarrow (4). Let A be any regular closed set and V be any regular open set containing A. By assumption, there exist rg β -open sets U and W such that A \subset U and X-V \subset W. By **Lemma 2.9**, we get X-V $\subset \beta$ int(W) and U $\cap \beta$ int (W) = \emptyset . Therefore, we obtain β cl(U) $\cap \beta$ int(W) = \emptyset and hence A \subset U $\subset \beta$ cl(U) \subset X- β Int(W) \subset V.

(4) \Rightarrow (5). Let A be any regular-closed set and V be any regular-open set containing A. By assumption, there exist g β -open set U of X such that $H \subset U \subset \beta cl(U) \subset V$. Since, every g β -open set is rg β -open, there exist rg β -open sets U of X such that $H \subset U \subset \beta cl(U) \subset V$.

 $(5) \Rightarrow (1)$. Let A, B be any two disjoint regular-closed sets of X. Then H \subset X - K and X - B is regular-open. By assumption, there exists rg β -open set G of X such that A \subset G $\subset \beta cl(G) \subset X$ - B. Put U = $\beta int(G)$, V = K - $\beta cl(G)$. Then U and V are disjoint β -open sets of X such that $A \subset U$ and B $\subset V$.

Using **Theorem 3.12**, it is easy to show the following theorem, which is a Urysohn's Lemma version for mild β -normality. A proof can be established by a similar way of the normal case.

3.13 Theorem

A space X is mildly β -normal if and only if for every pair of disjoint regularly closed sets A and B of X, there exists a continuous function f on X into [0, 1], with its usual topology, such that $f(A) = \{0\}$ and $f(B) = \{1\}$.

It is easy to see that the inverse image of a regularly closed set under an open continuous function is regularly closed. We will use that in the next theorem.

3.14 Theorem

Let X is a mildly β -normal space and $f: X \rightarrow Y$ is an open continuous injective function. Then f(X) is a softly normal space.

Proof. Let A and B be any two regularly closed subset of f(X) such that $A \cap B = \emptyset$. Then $f^{-1}(A)$ and $f^{-1}(B)$ regularly closed sets of X. Since X is mildly β -normal, there are two disjoint β -open sets U and V such that $f^{-1}(A) \subset U$ and $f^{-1}(B) \subset V$. Since f is 1-1 and open, since every open set is β -open set, result follows.

3.15 Corollary

Mild β -normality is a topological property.

3.16 Definition. A function $f : X \rightarrow Y$ is said to be

- 1) **rgβ-continuous** if $f^{-1}(F)$ is rgβ-closed in X for every closed set F of Y.
- β-rgβ-continuous if f⁻¹(F) is rgβ-closed in X for every β-closed set F of Y.
- rgβ-irresolute if f⁻¹(F) is rgβ-closed in X for every rgβclosed set F of Y.
- 4) **rc-preserving** [**12**] (resp. **almost closed** [**21**]) if f(F) is regular closed (resp. closed) in Y for every regular closed set F of X.

3.17 Theorem

If $f: X \to Y$ is a β -rg β -continuous, rc-preserving injection and Y is mildly β -normal then X is mildly β -normal.

Proof. Let A and B be any disjoint regular closed sets of X. Since f is an rc-preserving injection, f(A) and f(B) are disjoint regular closed sets of Y. By mild β -normality of Y, there exist disjoint β -open sets U and V of Y such that $f(A) \subset U$ and $f(B) \subset V$. Since f is β -rg β -continuous, f⁻¹(U) and f⁻¹(V) are disjoint rg β -open sets containing A and B respectively. Hence by **Theorem 3.12** X is mildly β -normal.

3.18 Theorem

If $f: X \to Y$ is a β -rg β -continuous, almost closed surjection and Y is β -normal space, then X is mildly β -normal.

Proof. Similar to previous one.

4. Conclusion

In this paper, we introduced a new class of spaces, called mildly β -normal spaces and established their relationships with some weak forms of normal spaces like normal, almost normal, quasi normal, mildly normal, π -normal spaces and their generalizations in topological spaces.

References

- [1] M. E. Abd EI-Monsef, S. N. EI Deeb and R. A. Mohamoud, β -open sets and β -continuous mappings, Bull. Fac. Assiut Univ. Sci., **12**(1983), 77-90.
- [2] M. E. Abd EI-Monsef, R. A. Mahmoud, and E. R. Lashin, β closure and β -interior, J. Fac. Edu. Ain Shams Univ., **10**(1986), 235.
- [3] J. Dontchev, On generalizing semi- preopen sets, Mem. Fac. Sci. Kochi Univ. (Math.), 16 (1995), 35.
- [4] J. Dontchev and T. Noiri, Quasi-normal spaces and π gclosed sets, Acta Math. Hungar. **89**(3)(2000), 211-219.
- [5] L. N. Kalantan, π-normal toplogical spaces, Filomat 22:1 (2008), 173-181.
- [6] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo (2),19(1970), 89-96.
- [7] R. A. Mahmoud and M. E. Abd EI-Monsef, β -irresolute and β -topological invariant, Proc. Pakistan Acad. Sci., **27**(1990), 285.
- [8] H. Maki, J. Umehara and T. Noiri, Every topological space is pre- T_{1/2}, Mem. Fac. Sci. Kochi Univ. Ser. A Math. **17**(1996), 33-42.
- [9] A. S. Mashhour, M. E. Abd EI-Monsef and S. N. EI-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53(1982), 47-53.
- [10] G. B. Navalagi, P-normal, Almost p-normal and mildly p-normal spaces, (Communicated).
- [11] T. Noiri, Almost p-regular spaces and some functions, Acta Math. Hungar., 79(1998), 207-216.
- [12] T. Noiri, Mildly normal spaces and some functions, Kyungpook Math. J.36(1996), 183-190.
- [13] T. M. Nour, contribution to the Theory of Bitopologocal spaces, Ph. D. Thesis, Delhi Univ., 1989.

- [14] N. Palaniappan and K. C. Rao, Regular generalized closed sets, Kyungpook Math. J., 33(1993), 211-219.
- [15] Y. Palaniappan, On regular generalized β-closed sets, Int. J. of Sci. and Eng. Research, Vol. 4, 4(2013), 1410-1415.
- [16] M. C. Sharma and H. Kumar, Quasi β -normal spaces and $\pi g\beta$ -closed functions, Acta Ciencia Indica, Vol. XXXVIII, 1(2012), 149-153.
- [17] M. C. Sharma and H. Kumar, $\pi\beta$ -normal spaces, Acta Ciencia Indica, Vol. XXXVI, **4**(2010), 611-615.
- [18] M. C. Sharma and H. Kumar, Almost β -normal and some functions, (Communicated)
- [19] E. V. Shchepin, Real functions and near normal spaces, Sibirskii Mat. Zhurnal, 13(1972), 1182-1196.
- [20] M. K. Singal and S. P. Arya, Almost normal and almost completely regular spaces, Glasnik Matematicki, Tom 5(25) No. 1 (1970).
- [21] M. K. Singal and A. R. Singal, Almost continuous mappings, Yokohama Math. J., **16**(1968), 63-73.
- [22] M. K. Singal and A. R. Singal, Mildly normal spaces, Kyungpook Math. J., 13(1973), 27-31.
- [23] S. A. S. Thabit and H. Kamaruihaili, On quasi pnormality spaces, Int. Journalof Math. Anal., 6(27) (2012), 1301-1311.
- [24] S. A. S. Thabit and H. Kamaruihaili, π p-normality on topological spaces, Int. J. Math. Anal., 6(21) (2012), 1023-1033.
- [25] V. Zaitsev, On certain classes of topological spaces and their biocompactifications, Dokl. Akad. Nauk SSSR, 178(1968), 778-779.